2. Limits and Derivatives

2.1. The limit of a function. (Sec. 2.2 in the textbook) Let $f(x)=x^{2}-x+2$ for $x \neq 2$ and consider the value of f when x is close to 2 .

x	$f(x)$	x	$f(x)$
1.9	3.71	2.1	4.31
1.99	3.9701	2.01	4.0301
1.999	3.997001	2.001	4.003001

From the table, one can see that the value of $f(x)$ approaches 4 when x gets close to 2 .
Definition 2.1 (Informal definition of limits). Let f be a function defined on a neighborhood of a except at a. We write

$$
\lim _{x \rightarrow a} f(x)=L, \quad \text { or } \quad f(x) \rightarrow L \quad \text { as } \quad x \rightarrow a
$$

and say

$$
\text { the limit of } f(x) \text { equals } L \text { as } x \text { approaches } a \text {, }
$$

if the values of $f(x)$ can be arbitrarily close to L as x is sufficiently close to a, but not equal to a. Here, L is called the limit of f at a.

Remark 2.1. Note that the value and limit of f at a are unrelated.
Example 2.1. Consider the following two functions.

$$
f(x)=\frac{x-1}{x^{2}-1}, \quad g(x)=\frac{1}{x+1} .
$$

Note that the domains of f and g are $\mathbb{R} \backslash\{ \pm 1\}$ and $\mathbb{R} \backslash\{-1\}$ respectively. Since f and g are equal on a neighborhood of 1 except at 1 , their limits at 1 coincide.

Example 2.2. Let $f(x)=\sin (1 / x)$ at 0 . Note that

$$
f(1 / n \pi)=0, \quad f(1 /(2 n \pi+\pi / 2))=1, \quad \forall n \in \mathbb{N} .
$$

This means that the value of $f(x)$ can be arbitrarily close to 0 and 1 as x follows specific sequences tending to 0 . Hence, the limit of f at 0 does not exist. We will show later that the limit of f exists at any point other than 0 .
Example 2.3. Consider the following function.

$$
f(x)= \begin{cases}1 & \text { for } x>0 \\ 0 & \text { for } x \leq 0\end{cases}
$$

The value of f is close to 0 and 1 when x approaches 0 from the left and right sides. This implies the limit of f at 0 does not exist.

Definition 2.2 (Informal definition of one-sided limits). We write

$$
\lim _{x \rightarrow a^{-}} f(x)=L,
$$

and say
the left-hand limit of $f(x)$ as x approaches a,
or
the limit of $f(x)$ as x approaches a from the left,
is equal to L if the values of $f(x)$ can be arbitrarily close to L when x is sufficiently close to a and less than a.

The informal definition of the right limit is obtained by replacing a^{-}, "left" and "less" with a^{+}, "right" and "greater". An immediate result of the above definition says

$$
\lim _{x \rightarrow a} f(x)=L \quad \Leftrightarrow \quad \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L .
$$

Example 2.4. For the function $f(x)=1 /|x|$, it is clear that the value of $f(x)$ can be positive and arbitrarily large, as x is close to 0 . By the definition of limits, f has no limit at 0 . In this case, we write

$$
\lim _{x \rightarrow 0} f(x)=\infty,
$$

where ∞ is called the infinity and refers to the concept of being arbitrarily large, becoming infinite or increasing without bound.

Definition 2.3 (Informal definition of tending to infinity). For a function f defined on both side of a, we write

$$
\lim _{x \rightarrow a} f(x)=\infty, \quad \text { or } \quad f(x) \rightarrow \infty \quad \text { as } \quad x \rightarrow a,
$$

if the values of $f(x)$ can be arbitrarily large as x is sufficiently close to a but not equal to a.
Remark 2.2. We use $-\infty$ to denote the concept of being arbitrarily large negative or decreasing without bound, and write

$$
\lim _{x \rightarrow a} f(x)=-\infty, \quad \text { when } \quad \lim _{x \rightarrow a}(-f(x))=\infty .
$$

Remark 2.3. For the following one-sided limits, one may define them in a similar way as before.

$$
\lim _{x \rightarrow a^{-}} f(x)=\infty, \quad \lim _{x \rightarrow a^{+}} f(x)=\infty, \quad \lim _{x \rightarrow a^{-}} f(x)=-\infty, \quad \lim _{x \rightarrow a^{+}} f(x)=-\infty
$$

Example 2.5. Let $f(x)=\frac{x}{x^{3}-1}$. Note that $x^{3}-1 \rightarrow 0$ as $x \rightarrow 1$. This implies that $f(x)$ can be arbitrarily large when $x \rightarrow 1^{+}$, and can be arbitrarily large negative when $x \rightarrow 1^{-}$. Hence, we may conclude that

$$
\lim _{x \rightarrow 1^{+}} f(x)=\infty, \quad \lim _{x \rightarrow 1^{-}} f(x)=-\infty .
$$

Definition 2.4. A line $x=a$ is called a vertical asymptote of the curve $y=f(x)$ if at least one of the following conditions holds.

$$
\lim _{x \rightarrow a^{+}} f(x)=\infty, \lim _{x \rightarrow a^{-}} f(x)=\infty, \lim _{x \rightarrow a^{+}} f(x)=-\infty, \lim _{x \rightarrow a^{-}} f(x)=-\infty .
$$

Example 2.6. Let $f(x)=\sec \left(x^{2}\right)$. Note that $\cos \left(x^{2}\right)=0$ if and only if $x^{2}=(n-1 / 2) \pi$ for $n \in \mathbb{N}$. This implies $x= \pm \sqrt{(n-1 / 2) \pi}$ are vertical asymptotes of $y=f(x)$ for $n \in \mathbb{N}$.

