
2. Limits and derivatives

2.1. The limit of a function. (Sec. 2.2 in the textbook) Let f(x) = x2 − x + 2 for x 6= 2
and consider the value of f when x is close to 2.

x f(x) x f(x)
1.9 3.71 2.1 4.31
1.99 3.9701 2.01 4.0301
1.999 3.997001 2.001 4.003001

From the table, one can see that the value of f(x) approaches 4 when x gets close to 2.

Definition 2.1 (Informal definition of limits). Let f be a function defined on a neighborhood
of a except at a. We write

lim
x→a

f(x) = L, or f(x) → L as x → a,

and say

the limit of f(x) equals L as x approaches a,

if the values of f(x) can be arbitrarily close to L as x is sufficiently close to a, but not equal
to a. Here, L is called the limit of f at a.

Remark 2.1. Note that the value and limit of f at a are unrelated.

Example 2.1. Consider the following two functions.

f(x) =
x− 1

x2 − 1
, g(x) =

1

x+ 1
.

Note that the domains of f and g are R \ {±1} and R \ {−1} respectively. Since f and g are
equal on a neighborhood of 1 except at 1, their limits at 1 coincide.

Example 2.2. Let f(x) = sin(1/x) at 0. Note that

f(1/nπ) = 0, f(1/(2nπ + π/2)) = 1, ∀n ∈ N.

This means that the value of f(x) can be arbitrarily close to 0 and 1 as x follows specific
sequences tending to 0. Hence, the limit of f at 0 does not exist. We will show later that the
limit of f exists at any point other than 0.

Example 2.3. Consider the following function.

f(x) =

{
1 for x > 0

0 for x ≤ 0

The value of f is close to 0 and 1 when x approaches 0 from the left and right sides. This
implies the limit of f at 0 does not exist.

Definition 2.2 (Informal definition of one-sided limits). We write

lim
x→a−

f(x) = L,

and say

the left-hand limit of f(x) as x approaches a,

or

the limit of f(x) as x approaches a from the left,

is equal to L if the values of f(x) can be arbitrarily close to L when x is sufficiently close to
a and less than a.
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The informal definition of the right limit is obtained by replacing a−, “left” and “less” with
a+, “right” and “greater”. An immediate result of the above definition says

lim
x→a

f(x) = L ⇔ lim
x→a−

f(x) = lim
x→a+

f(x) = L.

Example 2.4. For the function f(x) = 1/|x|, it is clear that the value of f(x) can be positive
and arbitrarily large, as x is close to 0. By the definition of limits, f has no limit at 0. In this
case, we write

lim
x→0

f(x) = ∞,

where ∞ is called the infinity and refers to the concept of being arbitrarily large, becoming
infinite or increasing without bound.

Definition 2.3 (Informal definition of tending to infinity). For a function f defined on both
side of a, we write

lim
x→a

f(x) = ∞, or f(x) → ∞ as x → a,

if the values of f(x) can be arbitrarily large as x is sufficiently close to a but not equal to a.

Remark 2.2. We use −∞ to denote the concept of being arbitrarily large negative or decreasing
without bound, and write

lim
x→a

f(x) = −∞, when lim
x→a

(−f(x)) = ∞.

Remark 2.3. For the following one-sided limits, one may define them in a similar way as before.

lim
x→a−

f(x) = ∞, lim
x→a+

f(x) = ∞, lim
x→a−

f(x) = −∞, lim
x→a+

f(x) = −∞.

Example 2.5. Let f(x) = x
x3−1

. Note that x3 − 1 → 0 as x → 1. This implies that f(x) can

be arbitrarily large when x → 1+, and can be arbitrarily large negative when x → 1−. Hence,
we may conclude that

lim
x→1+

f(x) = ∞, lim
x→1−

f(x) = −∞.

Definition 2.4. A line x = a is called a vertical asymptote of the curve y = f(x) if at least
one of the following conditions holds.

lim
x→a+

f(x) = ∞, lim
x→a−

f(x) = ∞, lim
x→a+

f(x) = −∞, lim
x→a−

f(x) = −∞.

Example 2.6. Let f(x) = sec(x2). Note that cos(x2) = 0 if and only if x2 = (n − 1/2)π for

n ∈ N. This implies x = ±
√

(n− 1/2)π are vertical asymptotes of y = f(x) for n ∈ N.

7


