2.2. Calculating limits using the limit laws. (Sec. 2.3 in the textbook)

Limit laws Let c be a constant and assume the existence of the limits of f, g at a. Then,

$$
\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x), \quad \lim _{x \rightarrow a}[c f(x)]=c \lim _{x \rightarrow a} f(x)
$$

and

$$
\lim _{x \rightarrow a}[f(x) g(x)]=\lim _{x \rightarrow a} f(x) \times \lim _{x \rightarrow a} g(x), \quad \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)} \quad \text { if } \quad \lim _{x \rightarrow a} g(x) \neq 0
$$

Remark 2.4. Note that the limit laws also apply for the one-sided limits.
Based on the following two fundamental limits,

$$
\lim _{x \rightarrow a} c=c, \quad \lim _{x \rightarrow a} x=a
$$

one may derive that, for any polynomial $P(x)$,

$$
\lim _{x \rightarrow a} P(x)=P(a)
$$

Proposition 2.1 (Direct substitution property). Let f be a rational function with domain D. For $a \in D, f(x) \rightarrow f(a)$ as $x \rightarrow a$.
Power law and root law Let $n \in \mathbb{N}$ and assume that $\lim _{x \rightarrow a} f(x)$ exists. Then,

$$
\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}, \quad \lim _{x \rightarrow a}[f(x)]^{1 / n}=\left[\lim _{x \rightarrow a} f(x)\right]^{1 / n}
$$

where the latter equality requires $f(x) \geq 0$ for x is close enough to a, when n is even.
Remark 2.5. The direct substitution property also applies for algebraic functions on their domains.

Example 2.7. Let $f(x)=\left(x^{2}-2 x+3\right)^{1 / 2}$. Since $x^{2}-2 x+3 \rightarrow 2>0$ as $x \rightarrow 1$, the limit of f at 1 is $\sqrt{2}=f(1)$. In fact, f is an algebraic function with domain \mathbb{R} and the desired limit can be given by Remark 2.5.

Example 2.8. To compute the limit of $f(x)=\frac{\sqrt{x+1}-1}{x}$ at 0 , we write

$$
f(x)=\frac{\sqrt{x+1}-1}{x} \times \frac{\sqrt{x+1}+1}{\sqrt{x+1}+1}=\frac{1}{\sqrt{x+1}+1}=: g(x), \quad \forall x \neq 0 .
$$

Since $f(x)=g(x)$ for $x \neq 0$ and the domain of g is \mathbb{R}, we have

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} g(x)=g(0)=1 / 2
$$

Theorem 2.2. Assume $f(x) \leq g(x)$ as x is close to a and the limits of f, g at a exist. Then,

$$
\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)
$$

Theorem 2.3 (The Squeeze theorem). Assume that $f(x) \leq g(x) \leq h(x)$ as x is close to a and that the limits of f, h at a exist and equal L. Then, $g(x) \rightarrow L$ as $x \rightarrow a$.
Example 2.9. To compute the limit of $f(x)=x^{2} \sin (1 / x)$ at 0 , note that $|\sin (1 / x)| \leq 1$. This implies

$$
-x^{2} \leq x^{2} \sin (1 / x) \leq x^{2}, \quad \forall x \in \mathbb{R}
$$

Since $x^{2} \rightarrow 0$ as $x \rightarrow 0$, the squeeze theorem implies that $f(x) \rightarrow 0$ as $x \rightarrow 0$.
Remark 2.6. Theorems 2.2-2.3 also hold for one-sided limits.

