2.3. The precise definition of a limit. (Sec. 2.4 in textbook)

Let's start with the following function

$$
f(x)= \begin{cases}3 x-1 & \text { if } x \neq 1 \\ 0 & \text { if } x=1\end{cases}
$$

Intuitively, as x approaches 1 but not equal 1 , the values of $f(x)$ is getting close to 2 . To show that $f(x)$ can be arbitrarily close to 2 as x is sufficiently close to 1 but not equal to 1 , we first let 0.1 be the tolerance and our goal is to find $\delta>0$ such that

$$
\begin{equation*}
0<|x-1|<\delta \quad \Rightarrow \quad|f(x)-2|<0.1 \tag{2.1}
\end{equation*}
$$

Consider the following computation,

$$
|f(x)-2|<0.1 \quad \forall x \neq 1 \quad \Leftrightarrow \quad 3|x-1|<0.1 \quad \forall x \neq 1 \quad \Leftrightarrow \quad 0<|x-1|<0.1 / 3
$$

Immediately, this implies that any δ less than or equal $0.1 / 3$ is sufficient for (2.1). In a similar way, if the tolerance is respectively replaced by 0.01 and 0.001 , then δ can be selected as any positive real number respectively less than $0.01 / 3$ and $0.001 / 3$.

In general, if ϵ is the tolerance, then δ can be selected as any positive real number less than or equal to $\epsilon / 3$. For convenience, we set $\delta=\epsilon / 3$ for any $\epsilon>0$. In the setting, one has

$$
\begin{equation*}
0<|x-1|<\delta \quad \Rightarrow \quad 0<|x-1|<\epsilon / 3 \quad \Rightarrow \quad|f(x)-2|<\epsilon \tag{2.2}
\end{equation*}
$$

Note that, in the above reasoning, \Rightarrow is in fact \Leftrightarrow.
Remark 2.7. Note that, in (2.2), δ can be replaced by any positive real number less than $\epsilon / 3$, say $\epsilon / 4$ or $\epsilon / 5$.

Definition 2.5 (Limits). Let f be a function defined on some open interval containing a except probably at a. The limit of $f(x)$ as x approaches a is L if, for any $\epsilon>0$ (arbitrarily close), there is $\delta>0$ (sufficiently close) such that

$$
\begin{equation*}
0<|x-a|<\delta \quad \Rightarrow \quad|f(x)-L|<\epsilon \tag{2.3}
\end{equation*}
$$

In this case, we write

$$
\lim _{x \rightarrow a} f(x)=L
$$

Remark 2.8. Let $a, c \in \mathbb{R}$ and $f(x)=c$ and $g(x)=x$. Note that, for $\epsilon>0$,

$$
|f(x)-c|=0<\epsilon, \quad \forall x \in \mathbb{R}, \quad|g(x)-a|=|x-a|<\epsilon, \quad \forall|x-a|<\epsilon
$$

This implies $f(x) \rightarrow f(a)$ and $g(x) \rightarrow g(a)$ as $x \rightarrow a$.
Remark 2.9. Note that if (2.3) holds for (δ, ϵ), then it holds for any pairs $\left(\delta^{\prime}, \epsilon\right)$ and $\left(\delta, \epsilon^{\prime}\right)$ with $\delta^{\prime}<\delta$ and $\epsilon^{\prime}>\epsilon$. Hence, to prove (2.3), it loses no generality to assume that ϵ is less then some fixed constant, say $\epsilon<1$.

Example 2.10. Let $f(x)=\sqrt{x}$ for $x \geq 0$. Obviously, one can guess from the graph $y=f(x)$ that the limit of f at 4 equals 2 . We demonstrate two rigorous proofs in the following.

Proof 1: The proof is given during the search of δ. We start with the requirement $|f(x)-2|<$ ϵ. Note that f is defined on $[0, \infty)$ and $|f(0)-2|=2$. For $x \geq 0$ and $\epsilon<2$, one may compute

$$
|\sqrt{x}-2|<\epsilon \quad \Leftrightarrow \quad 2-\epsilon<\sqrt{x}<2+\epsilon \quad \Leftrightarrow \quad \epsilon(\epsilon-4)<x-4<\epsilon(\epsilon+4)
$$

When $0<\epsilon<1$, it is easy to check that $\epsilon(\epsilon-4)<-3 \epsilon$ and $\epsilon(\epsilon+4)>3 \epsilon$. Immediately, this implies that, for $\epsilon \in(0,1)$,

$$
-3 \epsilon<x-4<3 \epsilon \quad \Rightarrow \quad \epsilon(\epsilon-4)<\underset{9}{x}-4<\epsilon(\epsilon+4) \quad \Leftrightarrow \quad|\sqrt{x}-2|<\epsilon .
$$

As a result, we may conclude from the above computations that, for $\epsilon \in(0,1)$ and $\delta=3 \epsilon$,

$$
0<|x-4|<\delta \quad \Rightarrow \quad|f(x)-2|<\epsilon .
$$

Proof 2: Provide a reasoning of (2.3) with prescribed δ. Let $0<\epsilon<1$ and $\delta=3 \epsilon$. Observe that if $0<|x-4|<\delta$, then $1<x<7$, which implies

$$
|f(x)-2|=|\sqrt{x}-2|=\frac{|(\sqrt{x}-2)(\sqrt{x}+2)|}{\sqrt{x}+2}=\frac{|x-4|}{\sqrt{x}+2}<\frac{\delta}{\sqrt{1}+2}=\epsilon,
$$

as desired.
Definition 2.6 (One-sided limits). The left-hand limit of $f(x)$ as x approaches a equals L if, for any $\epsilon>0$, there is $\delta>0$ such that

$$
a-\delta<x<a \quad \Rightarrow \quad|f(x)-L|<\epsilon
$$

In this case, we write

$$
\lim _{x \rightarrow a^{-}} f(x)=L .
$$

The definition for the right-hand limit is given by replacing $a-\delta<x<a$ and a^{-}with $a<x<a+\delta$ and a^{+}.
Example 2.11. Let f be a function defined by

$$
f(x)= \begin{cases}1-2 x & \text { if } x<1 \\ 0 & \text { if } x=1 \\ 3 x-2 & \text { if } x>1\end{cases}
$$

Note that, for any $\epsilon>0$,

$$
1-\epsilon / 2<x<1 \quad \Rightarrow \quad|f(x)-(-1)|<\epsilon,
$$

and

$$
1<x<1+\epsilon / 3 \quad \Rightarrow \quad|f(x)-1|<\epsilon
$$

This implies the left-hand and right-hand limits of f at 1 are -1 and 1 .
Next, we prove some limit laws.
Proof of the limit law for addition. Let L, M be the limits of f, g at a. For $\epsilon>0$, we may choose $\delta_{1}>0$ and $\delta_{2}>0$ such that

$$
|f(x)-L|<\epsilon / 2, \quad \forall 0<|x-a|<\delta_{1}, \quad|g(x)-M|<\epsilon / 2, \quad \forall 0<|x-a|<\delta_{2} .
$$

Set $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then, for $0<|x-a|<\delta$,

$$
|(f+g)(x)-(L+M)| \leq|f(x)-L|+|g(x)-M|<\epsilon / 2+\epsilon / 2=\epsilon
$$

Proof of the limit law for multiplication. Let L, M be the limits of f, g at a. For $\epsilon>0$, we may choose $\delta_{1}>0$ and $\delta_{2}>0$ such that

$$
\begin{equation*}
0<|x-a|<\delta_{1} \quad \Rightarrow \quad|f(x)-L|<\frac{\epsilon}{|L|+|M|+1} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
0<|x-a|<\delta_{2} \quad \Rightarrow \quad|g(x)-M|<\frac{\epsilon}{|L|+|M|+1} \tag{2.5}
\end{equation*}
$$

Assume $\epsilon<1$, set $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ and let $0<|x-a|<\delta$. Note that

$$
|f(x) g(x)-L M|=|(f(x)-L) g(x)+L(g(x)-M)| \leq|f(x)-L||g(x)|+|L \| g(x)-M|
$$

By (2.4)-(2.5), we have

$$
|f(x)-L|<\epsilon /(|L|+|M|+1), \quad|g(x)-M|<\epsilon /(|L|+|M|+1)
$$

The second inequality implies $|g(x)|<M+\epsilon /(|L|+|M|+1)$, which yields

$$
|f(x) g(x)-L M| \leq \frac{\epsilon}{|L|+|M|+1}\left(|M|+\frac{\epsilon}{|L|+|M|+1}\right)+|L| \frac{\epsilon}{|L|+|M|+1}<\epsilon
$$

Proof of the limit law for division. It suffices to show that if $g(x) \rightarrow L \neq 0$ as $x \rightarrow a$, then $1 / g(x) \rightarrow 1 / L$ as $x \rightarrow a$. For $0<\epsilon<1 /|L|$, we may select $\delta>0$ such that $|g(x)-L|<\epsilon L^{2} / 2$ for $0<|x-a|<\delta$. This implies, when $0<|x-a|<\delta$,

$$
|g(x)-L|<\frac{\epsilon L^{2}}{2}<\frac{|L|}{2} \quad \Rightarrow \quad|g(x)|>\frac{|L|}{2}>0
$$

and, then,

$$
\left|\frac{1}{g(x)}-\frac{1}{L}\right|=\frac{|g(x)-L|}{|g(x)| \times|L|}<\frac{\epsilon L^{2} / 2}{L^{2} / 2}=\epsilon
$$

Definition 2.7 (Infinite limits). Let f be a function defined on an open interval containing a, except possibly at a. We write

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

if, for any $M>0$, there exists $\delta>0$ such that

$$
0<|x-a|<\delta \quad \Rightarrow \quad f(x)>M
$$

Similarly, we write

$$
\lim _{x \rightarrow a} f(x)=-\infty
$$

if, for any $N>0$, there exists $\delta>0$ such that

$$
0<|x-a|<\delta \quad \Rightarrow \quad f(x)<-N
$$

Example 2.12. Let $f(x)=1 / \sqrt{|x|}$. To show that f has an infinite limit at 0 , let $M>0$ and set $\delta=M^{-2}$. For $0<|x|<\delta$, one has $\sqrt{|x|}<M^{-1}$, which implies $f(x)=1 / \sqrt{|x|}>M$. Hence, we obtain $f(x) \rightarrow \infty$ as $x \rightarrow 0$.

Remark 2.10. For the one-sided infinite limit, we say that $f(x) \rightarrow \infty$ as $x \rightarrow a^{+}$if, for any $M>0$, there is $\delta>0$ such that

$$
a<x<a+\delta \quad \Rightarrow \quad f(x)>M
$$

The other three infinite limits are defined in a similar way and omitted.

