
2.3. The precise definition of a limit. (Sec. 2.4 in textbook)
Let’s start with the following function

f(x) =

{
3x− 1 if x ̸= 1

0 if x = 1

Intuitively, as x approaches 1 but not equal 1, the values of f(x) is getting close to 2. To show
that f(x) can be arbitrarily close to 2 as x is sufficiently close to 1 but not equal to 1, we first
let 0.1 be the tolerance and our goal is to find δ > 0 such that

(2.1) 0 <|x− 1|< δ ⇒ |f(x)− 2|< 0.1.

Consider the following computation,

|f(x)− 2| < 0.1 ∀x ̸= 1 ⇔ 3|x− 1| < 0.1 ∀x ̸= 1 ⇔ 0 < |x− 1| < 0.1/3.

Immediately, this implies that any δ less than or equal 0.1/3 is sufficient for (2.1). In a similar
way, if the tolerance is respectively replaced by 0.01 and 0.001, then δ can be selected as any
positive real number respectively less than 0.01/3 and 0.001/3.

In general, if ϵ is the tolerance, then δ can be selected as any positive real number less than
or equal to ϵ/3. For convenience, we set δ = ϵ/3 for any ϵ > 0. In the setting, one has

(2.2) 0 <|x− 1|< δ ⇒ 0 <|x− 1|< ϵ/3 ⇒ |f(x)− 2|< ϵ.

Note that, in the above reasoning, ⇒ is in fact ⇔.

Remark 2.7. Note that, in (2.2), δ can be replaced by any positive real number less than ϵ/3,
say ϵ/4 or ϵ/5.

Definition 2.5 (Limits). Let f be a function defined on some open interval containing a
except probably at a. The limit of f(x) as x approaches a is L if, for any ϵ > 0 (arbitrarily
close), there is δ > 0 (sufficiently close) such that

(2.3) 0 <|x− a|< δ ⇒ |f(x)− L|< ϵ.

In this case, we write

lim
x→a

f(x) = L.

Remark 2.8. Let a, c ∈ R and f(x) = c and g(x) = x. Note that, for ϵ > 0,

|f(x)− c| = 0 < ϵ, ∀x ∈ R, |g(x)− a| = |x− a| < ϵ, ∀|x− a| < ϵ.

This implies f(x) → f(a) and g(x) → g(a) as x → a.

Remark 2.9. Note that if (2.3) holds for (δ, ϵ), then it holds for any pairs (δ′, ϵ) and (δ, ϵ′) with
δ′ < δ and ϵ′ > ϵ. Hence, to prove (2.3), it loses no generality to assume that ϵ is less then
some fixed constant, say ϵ < 1.

Example 2.10. Let f(x) =
√
x for x ≥ 0. Obviously, one can guess from the graph y = f(x)

that the limit of f at 4 equals 2. We demonstrate two rigorous proofs in the following.
Proof 1: The proof is given during the search of δ. We start with the requirement |f(x)−2| <

ϵ. Note that f is defined on [0,∞) and |f(0)− 2| = 2. For x ≥ 0 and ϵ < 2, one may compute

|
√
x− 2| < ϵ ⇔ 2− ϵ <

√
x < 2 + ϵ ⇔ ϵ(ϵ− 4) < x− 4 < ϵ(ϵ+ 4).

When 0 < ϵ < 1, it is easy to check that ϵ(ϵ− 4) < −3ϵ and ϵ(ϵ+ 4) > 3ϵ. Immediately, this
implies that, for ϵ ∈ (0, 1),

−3ϵ < x− 4 < 3ϵ ⇒ ϵ(ϵ− 4) < x− 4 < ϵ(ϵ+ 4) ⇔ |
√
x− 2| < ϵ.
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As a result, we may conclude from the above computations that, for ϵ ∈ (0, 1) and δ = 3ϵ,

0 < |x− 4| < δ ⇒ |f(x)− 2| < ϵ.

Proof 2: Provide a reasoning of (2.3) with prescribed δ. Let 0 < ϵ < 1 and δ = 3ϵ. Observe
that if 0 < |x− 4| < δ, then 1 < x < 7, which implies

|f(x)− 2| = |
√
x− 2| = |(

√
x− 2)(

√
x+ 2)|√

x+ 2
=

|x− 4|√
x+ 2

<
δ√
1 + 2

= ϵ,

as desired.

Definition 2.6 (One-sided limits). The left-hand limit of f(x) as x approaches a equals L if,
for any ϵ > 0, there is δ > 0 such that

a− δ <x< a ⇒ |f(x)− L|< ϵ.

In this case, we write
lim

x→a−
f(x) = L.

The definition for the right-hand limit is given by replacing a − δ < x < a and a− with
a < x < a+ δ and a+.

Example 2.11. Let f be a function defined by

f(x) =


1− 2x if x < 1,

0 if x = 1,

3x− 2 if x > 1.

Note that, for any ϵ > 0,

1− ϵ/2 < x < 1 ⇒ |f(x)− (−1)| < ϵ,

and
1 < x < 1 + ϵ/3 ⇒ |f(x)− 1| < ϵ.

This implies the left-hand and right-hand limits of f at 1 are −1 and 1.

Next, we prove some limit laws.

Proof of the limit law for addition. Let L,M be the limits of f, g at a. For ϵ > 0, we may
choose δ1 > 0 and δ2 > 0 such that

|f(x)− L| < ϵ/2, ∀0 < |x− a| < δ1, |g(x)−M | < ϵ/2, ∀0 < |x− a| < δ2.

Set δ = min{δ1, δ2}. Then, for 0 < |x− a| < δ,

|(f + g)(x)− (L+M)| ≤ |f(x)− L|+ |g(x)−M | < ϵ/2 + ϵ/2 = ϵ.

�
Proof of the limit law for multiplication. Let L,M be the limits of f, g at a. For ϵ > 0, we
may choose δ1 > 0 and δ2 > 0 such that

(2.4) 0 < |x− a| < δ1 ⇒ |f(x)− L| < ϵ

|L|+ |M |+ 1
,

and

(2.5) 0 < |x− a| < δ2 ⇒ |g(x)−M | < ϵ

|L|+ |M |+ 1
.

Assume ϵ < 1, set δ = min{δ1, δ2} and let 0 < |x− a| < δ. Note that

|f(x)g(x)− LM | = |(f(x)− L)g(x) + L(g(x)−M)| ≤ |f(x)− L||g(x)|+ |L||g(x)−M |.
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By (2.4)-(2.5), we have

|f(x)− L| < ϵ/(|L|+ |M |+ 1), |g(x)−M | < ϵ/(|L|+ |M |+ 1).

The second inequality implies |g(x)| < M + ϵ/(|L|+ |M |+ 1), which yields

|f(x)g(x)− LM | ≤ ϵ

|L|+ |M |+ 1

(
|M |+ ϵ

|L|+ |M |+ 1

)
+ |L| ϵ

|L|+ |M |+ 1
< ϵ.

�
Proof of the limit law for division. It suffices to show that if g(x) → L ̸= 0 as x → a, then
1/g(x) → 1/L as x → a. For 0 < ϵ < 1/|L|, we may select δ > 0 such that |g(x)−L| < ϵL2/2
for 0 < |x− a| < δ. This implies, when 0 < |x− a| < δ,

|g(x)− L| < ϵL2

2
<

|L|
2

⇒ |g(x)| > |L|
2

> 0,

and, then, ∣∣∣∣ 1

g(x)
− 1

L

∣∣∣∣ = |g(x)− L|
|g(x)| × |L|

<
ϵL2/2

L2/2
= ϵ.

�
Definition 2.7 (Infinite limits). Let f be a function defined on an open interval containing
a, except possibly at a. We write

lim
x→a

f(x) = ∞
if, for any M > 0, there exists δ > 0 such that

0 <|x− a|< δ ⇒ f(x)> M.

Similarly, we write
lim
x→a

f(x) = −∞
if, for any N > 0, there exists δ > 0 such that

0 <|x− a|< δ ⇒ f(x)< −N.

Example 2.12. Let f(x) = 1/
√

|x|. To show that f has an infinite limit at 0, let M > 0 and

set δ = M−2. For 0 < |x| < δ, one has
√

|x| < M−1, which implies f(x) = 1/
√

|x| > M .
Hence, we obtain f(x) → ∞ as x → 0.

Remark 2.10. For the one-sided infinite limit, we say that f(x) → ∞ as x → a+ if, for any
M > 0, there is δ > 0 such that

a <x< a+ δ ⇒ f(x)> M.

The other three infinite limits are defined in a similar way and omitted.
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