2.3. The precise definition of a limit. (Sec. 2.4 in textbook)
Let’s start with the following function

flz) =

3r—1 ifx#1
0 ifr=1

Intuitively, as = approaches 1 but not equal 1, the values of f(x) is getting close to 2. To show
that f(x) can be arbitrarily close to 2 as x is sufficiently close to 1 but to 1, we first
let 0.1 be the tolerance and our goal is to find ¢ > 0 such that

(2.1) lr—1j<o = |f(z)—2|<0.1.
Consider the following computation,
|f(z) =2/ <01 Vz#1 & 3lz—1/<01 Ve#1 & 0<]|z—-1/<0.1/3.

Immediately, this implies that any 0 less than or equal 0.1/3 is sufficient for (2.1). In a similar
way, if the tolerance is respectively replaced by 0.01 and 0.001, then § can be selected as any
positive real number respectively less than 0.01/3 and 0.001/3.

In general, if € is the tolerance, then ¢ can be selected as any positive real number less than
or equal to ¢/3. For convenience, we set 6 = ¢/3 for any € > 0. In the setting, one has

(2.2) lz—1]<d = lz—1]<¢/3 = |f(z)—2|<e.
Note that, in the above reasoning, = is in fact <.

Remark 2.7. Note that, in (2.2), § can be replaced by any positive real number less than €/3,
say €/4 or €/5.

Definition 2.5 (Limits). Let f be a function defined on some open interval containing a
except probably at a. The limit of f(z) as x approaches a is L if, for any € > 0 (arbitrarily
close), there is § > 0 (sufficiently close) such that

(2.3) |zt —al<d = |f(z)—-Ll<e
In this case, we write

lim f(z) = L.

Tr—a

Remark 2.8. Let a,c € R and f(z) = ¢ and g(x) = z. Note that, for € > 0,
|f(z) —c|=0<e VzeR, |gx)—al=|z—a|l<e V|r—a|<e
This implies f(z) — f(a) and g(x) — g(a) as z — a.

Remark 2.9. Note that if (2.3) holds for (9, €), then it holds for any pairs (¢, €) and (, €') with
0" < ¢ and € > e. Hence, to prove (2.3), it loses no generality to assume that € is less then
some fixed constant, say € < 1.

Ezample 2.10. Let f(x) = \/x for x > 0. Obviously, one can guess from the graph y = f(z)

that the limit of f at 4 equals 2. We demonstrate two rigorous proofs in the following.
Proof 1: The proof is given during the search of 6. We start with the requirement |f(x)—2| <

e. Note that f is defined on [0,00) and |f(0) — 2| = 2. For z > 0 and € < 2, one may compute

Wr—2<e & 2-e<\Vr<2+4+e & ele—4)<z—4<e(e+4).

When 0 < € < 1, it is easy to check that e(e —4) < —3e and €(e + 4) > 3e. Immediately, this
implies that, for € € (0,1),

—Be<zr—4<3c = ele—4)<x—4<ele+4) & |Wr-2 <e
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As a result, we may conclude from the above computations that, for € € (0,1) and ¢ = 3e,
O<lr—4]<d = |f(x)—2|<e
Proof 2: Provide a reasoning of (2.3) with prescribed 6. Let 0 < € < 1 and § = 3e. Observe
that if 0 < |z — 4| < §, then 1 < x < 7, which implies
x—2)(vx +2 x—4 0
VT +2 Ve+2 142

€,

as desired.

Definition 2.6 (One-sided limits). The left-hand limit of f(z) as x approaches a equals L if,
for any € > 0, there is 6 > 0 such that

a—0<zx = |f(z) - Ll<e.
In this case, we write

lim f(z)=L.

Tr—a—
The definition for the right-hand limit is given by replacing a —d < x < a and a~ with
a<z<a+dandal.

FEzample 2.11. Let f be a function defined by
1-2x ifx<l,
flx)y=<0 ifx=1,
3r—2 ifz>1.
Note that, for any € > 0,
l—¢/2<z<1l = |f(z)—(-1)| <e,
and

l<z<l+4+¢/3 = |[f(zx)-1]<e
This implies the left-hand and right-hand limits of f at 1 are —1 and 1.

Next, we prove some limit laws.

Proof of the limit law for addition. Let L, M be the limits of f,g at a. For € > 0, we may
choose 61 > 0 and d9 > 0 such that

|f(z) —L| <e€/2, YO<|z—al<b, |g(x)—DM|<e/2, VO<|z—al<ids.
Set 6 = min{d1,d2}. Then, for 0 < |z —a| < 4,
(F +0)(&) — (L + M)| < |F(@) — Ll +lg(a) - M| < /2 + ¢/2 =
O

Proof of the limit law for multiplication. Let L, M be the limits of f,g at a. For ¢ > 0, we
may choose §; > 0 and ds > 0 such that

€
2.4 0<|z—al <o “H<grnne
and
€
2. - “Mi<oaanet
( 5) 0<‘$ CL|<52 = ‘g(.ﬁ) |<’L‘+‘M’+1

Assume € < 1, set 6 = min{dy, 2} and let 0 < |z — a| < 4. Note that

[f(@)g(z) — LM| = |(f(x) — L)g(x) + L(g(x) — M)| < |f(x) = Lllg(x)[ + [L[lg(x) — M].
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By (2.4)-(2.5), we have
[f(z) = LI < e/(IL| + M|+ 1), [g(z) — M| <e/(|L|+ |M]+1).
The second inequality implies |g(z)| < M + €/(|L| 4+ |M| + 1), which yields
€ € €
- LM< ——r—r—— M|+ 77— | + L5777 <e
F(@ge) = LM < pem (’ | |L|+|M|+1> ot =
O
Proof of the limit law for division. It suffices to show that if g(z) — L # 0 as © — a, then
1/g(x) — 1/L as & — a. For 0 < € < 1/|L|, we may select § > 0 such that |g(x) — L| < eL?/2
for 0 < |z —a| < 6. This implies, when 0 < |z —a| < 4,
1L
2 2

L
9@ > H s,

9(a) — L] < -

and, then,

’1_1‘ _ lg(@)— L] _eLl?/2 _
glx) LI lg(@)| x[L] = L?/2 .

Definition 2.7 (Infinite limits). Let f be a function defined on an open interval containing
a, except possibly at a. We write
lim f(z) = oo
r—a
if, for any M > 0, there exists 0 > 0 such that
|t —al<d = f(z)> M.
Similarly, we write
lim f(z) = —o0
r—a
if, for any N > 0, there exists ¢ > 0 such that
|z —al<d = f(z)<—N.
Ezample 2.12. Let f(x) = 1/4/|x|. To show that f has an infinite limit at 0, let M > 0 and
set § = M~2. For 0 < |z| < §, one has /|z| < M1, which implies f(z) = 1//|z| > M.
Hence, we obtain f(z) — oo as z — 0.

Remark 2.10. For the one-sided infinite limit, we say that f(x) — oo as x — a™ if, for any
M > 0, there is § > 0 such that

z<a+o0 = f(x)> M.

The other three infinite limits are defined in a similar way and omitted.
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