
2.4. Continuity. (Sec. 2.5 in the textbook)

Definition 2.8. A function is continuous at a if

lim
x→a

f(x) = f(a) = f
(
lim
x→a

x
)
,

or, equivalently, for any ϵ > 0, there is δ > 0 such that

|f(x)− f(a)| < ϵ, ∀|x− a| < δ.

Remark 2.11. If f is continuous at a, then

(1) f is defined on an open interval containing a.
(2) The limit of f(x) as x approaches a exists and equals to f(a).

Remark 2.12. A function that is not continuous at a is called discontinuous at a.

Remark 2.13. Let f be a function defined on an open interval containing a. Then, f is
discontinuous at a if and only if either of the following holds.

(1) The limit of f at a does not exist.
(2) The limit of f at a exists but doesn’t equal f(a), including the case that f(a) isn’t

defined.

Specific discontinuity A function f has a

(1) removable discontinuity at a if

lim
x→a

f(x) = L,

but either f is not defined at a or f(a) 6= L.
(2) jump discontinuity at a if

lim
x→a−

f(x) = L, lim
x→a+

f(x) = R,

but L 6= R.
(3) infinite discontinuity at a if either of the following conditions holds,

lim
x→a−

f(x) ∈ {±∞} and lim
x→a+

f(x) ∈ {±∞}.

Example 2.13. Let f(x) = (x2 − 1)/[(x − 1)(x − 2)] with domain R \ {1, 2}. Since f(x) =
g(x) := (x+1)/(x− 2) for x /∈ {1, 2}, the limits of f, g at any point other than 1, 2 agree with
each other. Note that g(x) → −2 as x → 1 and g(x) → ∞ as x → 2+ and g(x) → −∞ as
x → 2−. This implies that f has a removable discontinuity at 1 and an infinite discontinuity
at 2. It’s worthwhile to remark that g is continuous at 1.

Remark 2.14. There are examples of which discontinuity is not of any type introduced above.
For instance, consider the function f(x) = sin(1/x) for x 6= 0. One can show that the right-
hand and left-hand limits of f at 0 neither exist nor become infinity.

Definition 2.9. A function f is continuous from the right or right-continuous at a if

lim
x→a+

f(x) = f(a) or equivalently ∀ϵ > 0, ∃δ > 0 s.t. |f(x)− f(a)| < ϵ, ∀a ≤ x < a+ δ.

f is continuous from the left or left-continuous at a if

lim
x→a−

f(x) = f(a) or equivalently ∀ϵ > 0, ∃δ > 0 s.t. |f(x)− f(a)| < ϵ, ∀a− δ < x ≤ a.

Remark 2.15. A function is continuous at a if and only if it is continuous from the left and
from the right at a.
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Example 2.14. Let f(x) = [x], where [x] is the greatest integer among all integers less than or
equal to x. For a /∈ Z, f(x) = f(a) for [a] < x < [a] + 1. This implies that f is continuous at
a for a /∈ Z. For a ∈ Z, one has

lim
x→a+

f(x) = a = f(a), lim
x→a−

f(x) = a− 1 6= f(a).

This implies that f has a jump discontinuity at a. In fact, f is continuous from the right at
a but discontinuous from the left at a.

Definition 2.10. A function is continuous on an interval if it is continuous at every point of
that interval, while the continuity at boundary points refers to the left or right continuity.

Example 2.15. Consider the function f(x) = 1−
√
1− x2 with domain [−1, 1]. By the direct

substitution property for algebraic functions, f is continuous on [−1, 1].

Theorem 2.4. Let c, d be constants and assume that f, g are continuous at a. Then, cf +dg,
fg and f/g are continuous at a, where f/g requires g(a) 6= 0.

Proof. By the limit laws, we have

lim
x→a

f(x)g(x) = lim
x→a

f(x)× lim
x→a

g(x) = f(a)g(a)

and

lim
x→a

cf(x) = c lim
x→a

f(x) = cf(a), lim
x→a

f(x)

g(x)
=

lim
x→a

f(x)

lim
x→a

g(x)
=

f(a)

g(a)
.

�
Remark 2.16. Note that Theorem 2.4 also holds for right-continuous and left-continuous.

Applying Theorem 2.4 to the function x 7→ x yields the following theorem.

Theorem 2.5. Polynomials and rational functions are continuous on their domains.

Remark 2.17. By the root law, all root functions are continuous on their domains. Immedi-
ately, this implies that algebraic functions are also continuous on their domains.

Example 2.16. Let f(x) = x2+x+1
3−x . Since f is a rational function of which domain contains 2,

the limit of f at 2 equals f(2) = 7.

For trigonometric functions, one can see from the geometric definition that 0 ≤ sinx ≤ x
for 0 ≤ x ≤ π/2. By the squeeze theorem, the right-hand limit of sinx at 0 is 0. Since sinx
is an odd function, the left-hand limit of sinx at 0 is also 0. As a consequence, this implies

lim
x→0

sinx = 0 = sin 0,

and, thus, sinx is continuous at 0. In addition with the identity, cosx =
√

1− sin2 x for
x ∈ [−π/2, π/2], one may conclude that cosx is continuous at 0. Let a ∈ R and recall the
following formulas,

sin(x+ a) = sinx cos a+ cosx sin a, cos(x+ a) = cosx cos a− sinx sin a.

By the limit laws, we obtain

lim
x→a

sinx = lim
y→0

sin(y + a) = sin 0 cos a+ cos 0 sin a = sin a

and
lim
x→a

cosx = lim
y→0

cos(y + a) = cos 0 cos a− sin 0 sin a = cos a.

This proves that sinx and cosx are continuous everywhere.
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For exponential functions, let f(x) = 2x. Note that 1 + s ≤ (1 + s/n)n for s ≥ 0. Clearly,
one has f(1/n) ≤ 1 + 1/n. By the law of exponent and the squeeze theorem, the right limit
of f at 0 equals 1. In addition with the identity f(−x) = 1/f(x), we may conclude that the
left-hand limit of f at 0 also equals 1. This implies that f is continuous at 0 and, then, for
a ∈ R,

lim
x→a

f(x) = lim
y→0

f(y + a) = lim
y→0

f(a)f(y) = f(a).

This proves that f is continuous on R. The general case can be proved in a similar way and
the details are omitted.

We summarize the above discussions in the following theorem.

Theorem 2.6. Trigonometric and exponential functions are continuous on their domains.

The next two theorems concern the composition and inverse of continuous functions.

Theorem 2.7. If f is continuous at b and lim
x→a

g(x) = b, then

lim
x→a

f(g(x)) = f
(
lim
x→a

g(x)
)
= f(b).

In particular, if g is continuous at a and f is continuous at g(a), then f ◦ g is continuous at
a.

Proof. Let ϵ > 0. Since f is continuous at b, one may choose δ > 0 such that |f(y)− f(b)| < ϵ
for |y−b| < δ. For such δ, since g has limit b at a, one may choose η > 0 such that |g(x)−b| < δ
for 0 < |x− a| < η. This implies that |f(g(x))− f(b)| < ϵ for 0 < |x− a| < η. �
Theorem 2.8. Let f be a function defined on an open interval I and a ∈ I. If f is one-to-one
and continuous on I, then f−1 is continuous on f(I).

The proof of Theorem 2.8 is based on the intermediate value theorem (see below) and will
be discussed in the end of this subsection.

Corollary 2.9. Root functions, logarithmic functions and inverse trigonometric functions are
continuous on their domains.

Example 2.17. Let f(x) = sin−1 x and g(x) = 1−
√
x

1−x . Note that g(x) = 1/(1 +
√
x) for x > 0

and x 6= 1. This implies

lim
x→1

g(x) = lim
x→1

1

1 +
√
x
=

1

2
.

By Theorem 2.7, since 1/2 is contained in the domain of f , we have

lim
x→1

f(g(x)) = f(1/2) = π/6.

Theorem 2.10 (The intermediate value theorem). Suppose that f is continuous on [a, b] and
let C be a number between f(a) and f(b) (that is, f(a) < C < f(b) or f(b) < C < f(a)).
Then, there exists c ∈ (a, b) such that f(c) = C.

Corollary 2.11. If f is a continuous function on [a, b] with f(a)f(b) < 0, then there must be
a root of the equation f(x) = 0 between a and b.

Proof of Theorem 2.10. Set α = f(a) and β = f(b). Without loss of generality, we assume
that α < β. (Otherwise, one may consider the function g := −f .) Set a1 = a and b1 = b. If
f(a+b

2 ) ≥ C, we set a2 = a1 and b2 = (a + b)/2. If f(a+b
2 ) < C, we set a2 = (a + b)/2 and

b2 = b1. Inductively, we define

an+1 =

{
an if f(an+bn

2 ) ≥ C

(an + bn)/2 if f(an+bn
2 ) < C

, bn+1 =

{
(an + bn)/2 if f(an+bn

2 ) ≥ C

bn if f(an+bn
2 ) < C

.
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In the above setting, it is easy to see that an ≤ an+1 ≤ bn+1 ≤ bn for all n ≥ 1, bn − an =
(b − a)21−n and f(an) ≤ C ≤ f(bn). By the completion of real numbers, there is a constant
c ∈ [a, b] such that an ≤ c ≤ bn for all n ≥ 1 and the sequences, (an)

∞
n=1 and (bn)

∞
n=1, converge

to c. By the continuity of f , this implies

C ≥ lim
n→∞

f(an) = f(c), C ≤ lim
n→∞

f(bn) = f(c),

which yields f(c) = C. �
Proof of Theorem 2.8. Let C ∈ f(I) and c ∈ I such that C = f(c). Set g = f−1. For ϵ > 0,
choose x1 ∈ (c− ϵ, c) and x2 ∈ (c, c+ ϵ) and define

α := f(x1), β := f(x2).

Without loss of generality, we may assume that α < β. (Otherwise, one may consider the
function x 7→ −f(x).) Since f is one-to-one and continuous on I, the intermediate value
theorem implies that α < C < β and (α, β) ⊂ f((x1, x2)). As a consequence, this leads to

g((α, β)) ⊂ g(f((x1, x2))) = (x1, x2) ⊂ (c− ϵ, c+ ϵ).

By setting δ = min{C − α, β − C}, we may conclude that |g(y)− c| < ϵ for |y − C| < δ. �
Remark 2.18. By a similar proof as above, one can show that if f is one-to-one and continuous
on I, then f is either increasing or decreasing.
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