2.6. Derivatives and rates of changes. (Sec. 2.7 in the textbook)

Definition 2.14. The tangent line to the curve $y=f(x)$ at the point $(a, f(a))$ is defined to be a straight line passing through $(a, f(a))$ with slope

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

provided such a limit exists.
Definition 2.15. The derivative of f at a, denoted by $f^{\prime}(a)$, is defined by

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h},
$$

provided the limit exists.
Remark 2.23. If $f^{\prime}(a)$ exists, then the tangent line to the curve $y=f(x)$ at $(a, f(a))$ is given by $y=f(a)+(x-a) f^{\prime}(a)$.
Example 2.21. Let $f(x)=x^{2}+1$. The derivative of f at a is given by

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \frac{\left(x^{2}+1\right)-\left(a^{2}+1\right)}{x-a}=\lim _{x \rightarrow a}(x+a)=2 a
$$

The tangent line to the curve $y=f(x)$ at $\left(a, a^{2}+1\right)$ is $y=2 a(x-a)+\left(a^{2}+1\right)$.
To see an interpretation of the derivative, define
$\Delta x=x-a:$ the increment of $x, \quad \Delta y=f(x)-f(a):$ the corresponding change in y, and
$\Delta y / \Delta x$: the average rate of change of y with respect to x over the interval $[a, x]$.
The limit of $\Delta y / \Delta x$ is called the instantaneous rate of change of y w.r.t. x at $x=a$.
Practically, let's consider an object moving on the real line with equation of motion $s=f(t)$, where t is the time and s is the position on \mathbb{R}. For $t>a$, set $\Delta t=t-a$ and $\Delta s=f(t)-f(a)$. Then, $\Delta s / \Delta t$ is the average speed of this object during the time interval $[a, x]$. As t approaches a, the limit

$$
\lim _{t \rightarrow a} \frac{\Delta s}{\Delta t}=\lim _{t \rightarrow a} \frac{f(t)-f(a)}{t-a}=f^{\prime}(a)
$$

is known as the instantaneous speed of this object at time $t=a$. Roughly speaking, if t is close to a, then

$$
f(t)-f(a) \approx f^{\prime}(a)(t-a) \quad \text { or } \quad f(t) \approx f(a)+f^{\prime}(a)(t-a)
$$

where $u \approx v$ means that u is approximately (not precisely) equal to v. For an illustration of the above discussion, let $f(t)=3 t^{2}-2 t+1$ and $a=2$. One may compute $f(2)=9$ and $f^{\prime}(2)=10$, which lead to

$$
f(2.001) \approx f(2)+f^{\prime}(2) \times 0.001=9.01
$$

In fact, $f(2.001)=9.010003$.
Example 2.22. Let $f(x)=x \sin (1 / x)$ for $x \neq 0, f(0)=0$ and $g(x)=x f(x)$. Note that

$$
\frac{f(x)-f(0)}{x-0}=\sin (1 / x), \quad \frac{g(x)-g(0)}{x-0}=x \sin (1 / x)=f(x)
$$

As it has been shown before that $\sin (1 / x)$ has no limit at $0, f^{\prime}(0)$ does not exist. For $g^{\prime}(0)$, consider the inequality $-|x| \leq f(x) \leq|x|$ for $x \in \mathbb{R}$. By the squeeze theorem, f is continuous at 0 . This implies $g^{\prime}(0)=f(0)=0$.

