2.7. The derivative as a function. (Sec. 2.8 in the textbook)

Definition 2.16. The derivative of f is denoted and defined by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

The domain of f^{\prime} is the set of points x such that the above limit exists, which must be a subset of the domain of f.
Remark 2.25. Note that $f^{\prime}(x)$ is the slope of the tangent line to the curve $y=f(x)$ at $(x, f(x))$.
Example 2.23. Let $f(x)=(x-1) /(x+1)$. Clearly, the domain of f is $(-\infty,-1) \cup(-1, \infty)$ and $f(x)=1-\frac{2}{x+1}$. This implies that, for all $x \neq 1$,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{-2}{x+h+1}-\frac{-2}{x+1}\right) \\
& =\lim _{h \rightarrow 0} \frac{2}{(x+1)(x+h+1)}=\frac{2}{(x+1)^{2}} .
\end{aligned}
$$

Definition 2.17. A function f is called differentiable at a if $f^{\prime}(a)$ exists and called differentiable on (a, b) if it is differentiable at every point in (a, b).
Example 2.24. Consider the following function,

$$
f(x)=\left\{\begin{array}{ll}
x^{2} & \text { if } x \geq 1 \\
2 x^{2}-1 & \text { if } x<1
\end{array} .\right.
$$

One may show that f is continuous on \mathbb{R} and differentiable on \mathbb{R} except at 1 , since

$$
\lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h}=2, \quad \lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h}=4 .
$$

Remark 2.26. When writing $y=f(x)$, we also use $\frac{d y}{d x}, \frac{d f}{d x}, \frac{d}{d x} f(x)$ and $D f(x)$ to denote $f^{\prime}(x)$.
Theorem 2.14. If f is differentiable at a, then f is continuous at a.
Proof. The proof follows immediately from limit laws and

$$
\lim _{x \rightarrow a}[f(x)-f(a)]=\left(\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}\right)\left(\lim _{x \rightarrow a}(x-a)\right)=0 .
$$

Remark 2.27. The converse of Theorem 2.14 can fail. In general, f is not differentiable at a if f is not continuous at a or f is continuous at a but its graph has a "corner" at $(a, f(a))$.

The derivative of f^{\prime}, i.e. $\left(f^{\prime}\right)^{\prime}$, is called the second derivative of f and written as $f^{\prime \prime}$. Inductively, the derivative of the nth derivative of f is called the $(n+1)$ st derivative of f. The nth derivative of f is written as $\frac{d^{n} y}{d x^{n}}$ or $f^{(n)}$.
Example 2.25. For $f(x)=x^{3}-2 x$, one may derive by following the definition of derivatives that $f^{\prime}(x)=3 x^{2}-2, f^{\prime \prime}(x)=6 x, f^{\prime \prime \prime}(x)=6$ and $f^{(n)}(x)=0$ for $n \geq 4$.

