3. Differentiation rules

3.1. Derivatives of polynomials and exponential functions. (Sec. 3.1 in the textbook)

Theorem 3.1. For $n \in \mathbb{N}$ and $c \in \mathbb{R}$, one has

$$
\frac{d}{d x}(c)=0, \quad \frac{d}{d x}\left(x^{n}\right)=n x^{n-1}, \quad \frac{d}{d x}\left(x^{-n}\right)=(-n) x^{-n-1} \quad \forall x \neq 0
$$

Proof. The first one is clear. For the second one, note that

$$
x^{n}-a^{n}=(x-a)\left(x^{n-1}+x^{n-2} a+x^{n-3} a^{2}+\cdots+x a^{n-2}+a^{n-1}\right)
$$

This implies

$$
\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=\lim _{x \rightarrow a}\left(x^{n-1}+x^{n-2} a+x^{n-3} a^{2}+\cdots+x a^{n-2}+a^{n-1}\right)=n a^{n-1}
$$

Immediately, for $a \neq 0$,

$$
\lim _{x \rightarrow a} \frac{x^{-n}-a^{-n}}{x-a}=\lim _{x \rightarrow a}\left(\frac{-1}{x^{n} a^{n}} \times \frac{x^{n}-a^{n}}{x-a}\right)=\frac{-1}{a^{2 n}} \times\left(n a^{n-1}\right)=(-n) a^{-n-1}
$$

Remark 3.1. In fact, for $r \in \mathbb{R}, \frac{d}{d x}\left(x^{r}\right)=r x^{r-1}$ for $x>0$.
Theorem 3.2. Let c be a constant. If f, g are differentiable at a, then $f+g, c f$ are differentiable at a with $(f+g)^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a)$ and $(c f)^{\prime}(a)=c f^{\prime}(a)$. In particular, if f, g are differentiable on an open interval I, then $(f+g)^{\prime}=f^{\prime}+g^{\prime}$ and $(c f)^{\prime}=c f^{\prime}$ on I.

Proof. The differentiation rule for addition is obtained by

$$
\lim _{x \rightarrow a} \frac{[f(x)+g(x)]-[f(a)+g(a)]}{x-a}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}+\lim _{x \rightarrow a} \frac{g(x)-g(a)}{x-a}=f^{\prime}(a)+g^{\prime}(a)
$$

while that for scalar multiplication can be proved in a similar way and omitted.
Corollary 3.3. For $P(x)=\sum_{k=0}^{n} a_{k} x^{k}, P^{\prime}(x)=\sum_{k=1}^{n} k a_{k} x^{k-1}$.
To see derivatives of exponential functions, let $f(x)=b^{x}$ with $b>0$. Note that

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{b^{x}\left(b^{h}-1\right)}{h}=b^{x} \lim _{h \rightarrow 0} \frac{b^{h}-1}{h}
$$

If f is differentiable at 0 , then it is differentiable on \mathbb{R} and $f^{\prime}(x)=f(x) f^{\prime}(0)$. To see the existence of $f^{\prime}(0)$, we set $a_{n}=n\left(b^{1 / n}-1\right)$ and $g(y)=n\left(y^{n+1}-1\right)-(n+1)\left(y^{n}-1\right)$. It is easy to show that $g^{\prime}(y)>0$ for $y>1$. By the increasing/decreasing test(see Chapter 4), g(y)>g(1)= 0 for $y>1$. For the case of $b>1$, replacing y with $b^{1 /[n(n+1)]}$ yields $a_{n}>a_{n+1}$. As $a_{n}>0$ for all n, a_{n} converges. Set $L=\lim _{n} a_{n}$. Note that $[n /(n+1)] a_{n+1}<[f(x)-f(0)] / x<[(n+1) / n] a_{n}$ for $1 /(n+1)<x<1 / n$. By the squeeze theorem, $[f(x)-f(0)] / x \rightarrow L$ as $x \rightarrow 0^{+}$. By the continuity of f at 0 , the left limit of $[f(x)-f(0)] / x$ can be derived from and equal to its right limit. This implies that f is differentiable at 0 . For the case of $0<b<1$, one may prove the differentiability with the equality $\frac{b^{x}-1}{x}=\left(-b^{x}\right) \frac{(1 / b)^{x}-1}{x}$.

Recall that e is the number such that

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

From the above definition, one may compute

$$
\lim _{h \rightarrow 0} \frac{b^{h}-1}{h}=\lim _{h \rightarrow 0} \frac{e^{h \ln b}-1}{h}=\lim _{k \rightarrow 0}\left(\frac{e^{k}-1}{k}\right) \ln b=\ln b, \quad \forall b>0 .
$$

Immediately, this implies $\left(b^{x}\right)^{\prime}=(\ln b) b^{x}$ and $\left(e^{x}\right)^{\prime}=e^{x}$.

