
3. Differentiation rules

3.1. Derivatives of polynomials and exponential functions. (Sec. 3.1 in the textbook)

Theorem 3.1. For n ∈ N and c ∈ R, one has

d

dx
(c) = 0,

d

dx
(xn) = nxn−1,

d

dx
(x−n) = (−n)x−n−1 ∀x 6= 0.

Proof. The first one is clear. For the second one, note that

xn − an = (x− a)(xn−1 + xn−2a+ xn−3a2 + · · ·+ xan−2 + an−1).

This implies

lim
x→a

xn − an

x− a
= lim

x→a
(xn−1 + xn−2a+ xn−3a2 + · · ·+ xan−2 + an−1) = nan−1.

Immediately, for a 6= 0,

lim
x→a

x−n − a−n

x− a
= lim

x→a

(
−1

xnan
× xn − an

x− a

)
=

−1

a2n
× (nan−1) = (−n)a−n−1.

�
Remark 3.1. In fact, for r ∈ R, d

dx(x
r) = rxr−1 for x > 0.

Theorem 3.2. Let c be a constant. If f, g are differentiable at a, then f + g, cf are differ-
entiable at a with (f + g)′(a) = f ′(a) + g′(a) and (cf)′(a) = cf ′(a). In particular, if f, g are
differentiable on an open interval I, then (f + g)′ = f ′ + g′ and (cf)′ = cf ′ on I.

Proof. The differentiation rule for addition is obtained by

lim
x→a

[f(x) + g(x)]− [f(a) + g(a)]

x− a
= lim

x→a

f(x)− f(a)

x− a
+ lim

x→a

g(x)− g(a)

x− a
= f ′(a) + g′(a),

while that for scalar multiplication can be proved in a similar way and omitted. �
Corollary 3.3. For P (x) =

∑n
k=0 akx

k, P ′(x) =
∑n

k=1 kakx
k−1.

To see derivatives of exponential functions, let f(x) = bx with b > 0. Note that

lim
h→0

f(x+ h)− f(x)

h
= lim

h→ 0

bx(bh − 1)

h
= bx lim

h→0

bh − 1

h
.

If f is differentiable at 0, then it is differentiable on R and f ′(x) = f(x)f ′(0). To see the

existence of f ′(0), we set an = n(b1/n−1) and g(y) = n(yn+1−1)−(n+1)(yn−1). It is easy to
show that g′(y) > 0 for y > 1. By the increasing/decreasing test(see Chapter 4), g(y) > g(1) =

0 for y > 1. For the case of b > 1, replacing y with b1/[n(n+1)] yields an > an+1. As an > 0 for all
n, an converges. Set L = limn an. Note that [n/(n+1)]an+1 < [f(x)−f(0)]/x < [(n+1)/n]an
for 1/(n + 1) < x < 1/n. By the squeeze theorem, [f(x) − f(0)]/x → L as x → 0+. By the
continuity of f at 0, the left limit of [f(x)− f(0)]/x can be derived from and equal to its right
limit. This implies that f is differentiable at 0. For the case of 0 < b < 1, one may prove the

differentiability with the equality bx−1
x = (−bx) (1/b)

x−1
x .

Recall that e is the number such that

lim
h→0

eh − 1

h
= 1.

From the above definition, one may compute

lim
h→0

bh − 1

h
= lim

h→0

eh ln b − 1

h
= lim

k→0

(
ek − 1

k

)
ln b = ln b, ∀b > 0.

Immediately, this implies (bx)′ = (ln b)bx and (ex)′ = ex.
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