3.2. The product and quotient rules. (Sec. 3.2 in the textbook)

Theorem 3.4. Let f, g be differentiable at a. Then, $f g$ is differentiable at a and

$$
(f g)^{\prime}(a)=f^{\prime}(a) g(a)+f(a) g^{\prime}(a) .
$$

Proof. Since f and g are differentiable at a, they are continuous at a. Note that

$$
f(a+h) g(a+h)-f(a) g(a)=[f(a+h)-f(a)] g(a+h)+[g(a+h)-g(a)] f(a) .
$$

This desired identity is then given by

$$
\lim _{h \rightarrow 0}\left[\frac{f(a+h)-f(a)}{h} \times g(a+h)\right]=f^{\prime}(a) g(a), \quad \lim _{h \rightarrow 0}\left[\frac{g(a+h)-g(a)}{h} \times f(a)\right]=g^{\prime}(a) f(a) .
$$

Example 3.1. For $f(x)=x e^{x}, f^{\prime}(x)=\frac{d}{d x}(x) \cdot e^{x}+x \frac{d}{d x}\left(e^{x}\right)=(x+1) e^{x}$.
Example 3.2. Let $f(x)=\sqrt{x} g(x)$. If $g^{\prime}(a)$ exists for some $a>0$, then $f^{\prime}(a)=\frac{g(a)}{2 \sqrt{a}}+\sqrt{a} g^{\prime}(a)$.
When $g(2)=1$ and $g^{\prime}(2)=-1$, the replacement of $a=2$ yields $f^{\prime}(2)=-\frac{3 \sqrt{2}}{4}$.
Theorem 3.5. Let f, g be functions differentiable at a with $g(a) \neq 0$. Then, f / g is differentiable at a and

$$
\left(\frac{f}{g}\right)^{\prime}(a)=\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{(g(a))^{2}} .
$$

Proof. Since g is differentiable at a, g is continuous at a. As a result of $g(a) \neq 0$, we know that $g(x) \neq 0$ for x sufficiently close to a. This implies f / g is well-defined in a neighborhood of a. When $f(x)=1$ for all x, one has

$$
\left(\frac{1}{g}\right)^{\prime}(a)=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{g(a+h)}-\frac{1}{g(a)}\right]=\lim _{h \rightarrow 0} \frac{-1}{g(a) g(a+h)} \times \frac{g(a+h)-g(a)}{h}=\frac{-g^{\prime}(a)}{(g(a))^{2}} .
$$

In addition with the product rule, we obtain

$$
\left(\frac{f}{g}\right)^{\prime}(a)=f^{\prime}(a) \times \frac{1}{g(a)}+f(a) \times \frac{-g^{\prime}(a)}{g^{2}(a)}=\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{g^{2}(a)} .
$$

Example 3.3. Let $f(x)=\frac{2 x^{3}-x+1}{e^{x}+1}$. To see $f^{\prime}(0)$, we first compute

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{\left(e^{x}+1\right)^{2}}\left[\left(e^{x}+1\right) \frac{d}{d x}\left(2 x^{3}-x+1\right)-\left(2 x^{3}-x+1\right) \frac{d}{d x}\left(e^{x}+1\right)\right] \\
& =\frac{\left(e^{x}+1\right)\left(6 x^{2}-1\right)-\left(2 x^{3}-x+1\right) e^{x}}{\left(e^{x}+1\right)^{2}} .
\end{aligned}
$$

Letting $x=0$ yields $f^{\prime}(0)=-\frac{3}{4}$.
Example 3.4. To see the derivative of e^{-x}, we write $e^{-x}=\frac{1}{e^{x}}$ and compute

$$
\frac{d}{d x}\left(\frac{1}{e^{x}}\right)=\frac{1}{e^{2 x}}\left[e^{x} \frac{d}{d x}(1)-\frac{d}{d x}\left(e^{x}\right)\right]=-e^{-x} .
$$

