3.2. The product and quotient rules. (Sec. 3.2 in the textbook)

Theorem 3.4. Let f,g be differentiable at a. Then, fg is differentiable at a and
(f9)'(a) = f'(a)g(a) + f(a)g'(a).

Proof. Since f and g are differentiable at a, they are continuous at a. Note that

fla+h)gla+h) = f(a)g(a) = [fla+h) = f(a)lgla+h) + [g(a + h) — g(a)]f(a).
This desired identity is then given by
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x f(a)| = g'(a)f(a).
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Ezxample 3.1. For f(x) = xze®, f'(z) = %(x) e’ + x%(e“”) = (z+1)e”.
Ezample 3.2. Let f(x) = v/zg(z). If ¢’(a) exists for some a > 0, then f'(a) = g(—\(/% +Vag (a).
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When ¢(2) =1 and ¢'(2) = —1, the replacement of a = 2 yields f/(2) = —
Theorem 3.5. Let f,g be functions differentiable at a with g(a) # 0. Then, f/qg is differen-

tiable at a and
(f)’ () = {(@9(0) ~ f(@)g' (@)
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Proof. Since g is differentiable at a, g is continuous at a. As a result of g(a) # 0, we know
that g(z) # 0 for x sufficiently close to a. This implies f/g is well-defined in a neighborhood
of a. When f(z) =1 for all z, one has
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In addition with the product rule, we obtain
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f>' / 1 —g'(a) _ f'(a)g(a) — f(a)g'(a)
=) (a) = f'(a) x — + f(a) x = .
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Ezample 3.3. Let f(x) = szmff'l. To see f'(0), we first compute
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Letting z = 0 yields f/(0) = —3.
Example 3.4. To see the derivative of e™*, we write e™* = e% and compute
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