
3.2. The product and quotient rules. (Sec. 3.2 in the textbook)

Theorem 3.4. Let f, g be differentiable at a. Then, fg is differentiable at a and

(fg)′(a) = f ′(a)g(a) + f(a)g′(a).

Proof. Since f and g are differentiable at a, they are continuous at a. Note that

f(a+ h)g(a+ h)− f(a)g(a) = [f(a+ h)− f(a)]g(a+ h) + [g(a+ h)− g(a)]f(a).

This desired identity is then given by

lim
h→0

[
f(a+ h)− f(a)

h
× g(a+ h)

]
= f ′(a)g(a), lim

h→0

[
g(a+ h)− g(a)

h
× f(a)

]
= g′(a)f(a).

�
Example 3.1. For f(x) = xex, f ′(x) = d

dx(x) · e
x + x d

dx(e
x) = (x+ 1)ex.

Example 3.2. Let f(x) =
√
xg(x). If g′(a) exists for some a > 0, then f ′(a) = g(a)

2
√
a
+
√
ag′(a).

When g(2) = 1 and g′(2) = −1, the replacement of a = 2 yields f ′(2) = −3
√
2

4 .

Theorem 3.5. Let f, g be functions differentiable at a with g(a) ̸= 0. Then, f/g is differen-
tiable at a and (

f

g

)′
(a) =

f ′(a)g(a)− f(a)g′(a)

(g(a))2
.

Proof. Since g is differentiable at a, g is continuous at a. As a result of g(a) ̸= 0, we know
that g(x) ̸= 0 for x sufficiently close to a. This implies f/g is well-defined in a neighborhood
of a. When f(x) = 1 for all x, one has(

1

g

)′
(a) = lim

h→0

1

h

[
1

g(a+ h)
− 1

g(a)

]
= lim

h→0

−1

g(a)g(a+ h)
× g(a+ h)− g(a)

h
=

−g′(a)

(g(a))2
.

In addition with the product rule, we obtain(
f

g

)′
(a) = f ′(a)× 1

g(a)
+ f(a)× −g′(a)

g2(a)
=

f ′(a)g(a)− f(a)g′(a)

g2(a)
.

�
Example 3.3. Let f(x) = 2x3−x+1

ex+1 . To see f ′(0), we first compute

f ′(x) =
1

(ex + 1)2

[
(ex + 1)

d

dx
(2x3 − x+ 1)− (2x3 − x+ 1)

d

dx
(ex + 1)

]
=

(ex + 1)(6x2 − 1)− (2x3 − x+ 1)ex

(ex + 1)2
.

Letting x = 0 yields f ′(0) = −3
4 .

Example 3.4. To see the derivative of e−x, we write e−x = 1
ex and compute

d

dx

(
1

ex

)
=

1

e2x

[
ex

d

dx
(1)− d

dx
(ex)

]
= −e−x.
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