3.3. Derivatives of trigonometric functions. (Sec. 3.3 in the textbook)

First, recall the following formulas.

$$
\sin (x+h)=\sin x \cos h+\cos x \sin h, \quad \cos (x+h)=\cos x \cos h-\sin x \sin h .
$$

This implies

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h}=(\sin x) \lim _{h \rightarrow 0} \frac{\cos h-1}{h}+(\cos x) \lim _{h \rightarrow 0} \frac{\sin h}{h} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos x}{h}=(\cos x) \lim _{h \rightarrow 0} \frac{\cos h-1}{h}-(\sin x) \lim _{h \rightarrow 0} \frac{\sin h}{h}, \tag{3.2}
\end{equation*}
$$

provided that the derivatives of sine and cosine functions at 0 exists.
Lemma 3.6. For any $\theta \in(0, \pi / 2), \sin \theta<\theta<\tan \theta$.
Proof. A geometric proof of this lemma is given in the textbook and omitted.
By Lemma 3.6, $\cos \theta<\sin \theta / \theta<1$ for $\theta \in(0, \pi / 2)$. Since the limit of $\cos x$ at 0 equals 1 , the squeeze theorem implies

$$
\lim _{h \rightarrow 0^{+}} \frac{\sin h}{h}=1, \quad \lim _{h \rightarrow 0^{-}} \frac{\sin h}{h}=\lim _{k \rightarrow 0^{+}} \frac{\sin (-k)}{-k}=\lim _{k \rightarrow 0^{+}} \frac{\sin k}{k}=1 .
$$

Hence, $\sin h / h \rightarrow 1$ as $h \rightarrow 0$. For the cosine function, note that

$$
\cos \theta-1=\frac{\cos ^{2} \theta-1}{\cos \theta+1}=\frac{-\sin ^{2} \theta}{\cos \theta+1}, \quad \forall \theta \in(-\pi / 2, \pi / 2) .
$$

By the limit laws, this implies

$$
\lim _{h \rightarrow 0} \frac{\cos h-1}{h}=\lim _{h \rightarrow 0}\left(\frac{\sin h}{h} \times \frac{-\sin h}{\cos h+1}\right)=0 .
$$

As a consequence, we obtain

$$
\lim _{h \rightarrow 0} \frac{\sin h}{h}=1, \quad \lim _{h \rightarrow 0} \frac{\cos h-1}{h}=0 .
$$

The derivatives of sine and cosine functions are given by (3.1) and (3.2), while the derivatives of other trigonometric functions can be derived using the product and quotient rules.

$$
\frac{d}{d x} \sin x=\cos x, \quad \frac{d}{d x} \cos x=-\sin x, \quad \frac{d}{d x} \tan x=\sec ^{2} x
$$

and

$$
\frac{d}{d x} \cot x=-\csc ^{2} x, \quad \frac{d}{d x} \sec x=\tan x \sec x, \quad \frac{d}{d x} \csc x=-\cot x \csc x .
$$

Example 3.5. For $f(x)=\frac{\sec x}{1+\tan x}, f^{\prime}(x)=\frac{(\tan x-1) \sec x}{(1+\tan x)^{2}}$.
Example 3.6. To compute the limit, say L, of $\frac{\sin (3 x)}{2 x}$ at 0 , let $y=3 x$. Clearly, $y \rightarrow 0$ if and only if $x \rightarrow 0$. This implies

$$
L=\lim _{y \rightarrow 0} \frac{\sin y}{(2 y) / 3}=\frac{3}{2} \lim _{y \rightarrow 0} \frac{\sin y}{y}=\frac{3}{2} .
$$

