3.4. The chain rule. (Sec. 3.4 in the textbook)

Theorem 3.7. If g is differentiable at x and f is differentiable at $g(x)$, then $f \circ g$ is differentiable at x and $\frac{d}{d x}(f \circ g)(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)$.

Remark 3.2. In Leibniz notation, if $y=f(u)$ and $u=g(x)$, then $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$ or more precisely, $\frac{d y}{d x}=\left.\frac{d y}{d u}\right|_{u=g(x)} \cdot \frac{d u}{d x}$.
Proof. Fix x and set $\Delta u=g(x+h)-g(x), L=g^{\prime}(x)$ and $M=f^{\prime}(g(x))$. Consider the following two cases.

Case 1: $L \neq 0$. In this case, $\Delta u \neq 0$ for h small enough. Write

$$
\frac{f(g(x+h))-f(g(x))}{h}=\frac{f(g(x)+\Delta u)-f(g(x))}{\Delta u} \cdot \frac{g(x+h)-g(x)}{h} .
$$

Since g is differentiable at x, g is continuous at x. This implies

$$
h \rightarrow 0 \Rightarrow \Delta u \rightarrow 0 \Rightarrow \frac{f(g(x)+\Delta u)-f(g(x))}{\Delta u} \rightarrow f^{\prime}(g(x))
$$

and also

$$
h \rightarrow 0 \Rightarrow \frac{g(x+h)-g(x)}{h} \rightarrow g^{\prime}(x) .
$$

By the limit laws, we have

$$
\lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{h}=f^{\prime}(g(x)) \cdot g^{\prime}(x) .
$$

Case 2: $L=0$. Let $\epsilon>0$ and choose $\eta>0$ such that

$$
|f(g(x)+k)-f(g(x))-M k|<\epsilon|k|, \quad \forall 0<|k|<\eta .
$$

For such ϵ, we may select $\delta>0$ such that

$$
|g(x+h)-g(x)|<\frac{\epsilon}{|M|+\epsilon}|h|, \quad \forall 0<|h|<\delta .
$$

Set $\delta_{0}=\min \{\delta, \eta\}$. If $0<|h|<\delta_{0}$ and $g(x+h) \neq g(x)$, then $0<|g(x+h)-g(x)|<\eta$. By the triangle inequality, we have

$$
|f(g(x+h))-f(g(x))| \leq(|M|+\epsilon)|g(x+h)-g(x)|<\epsilon|h| .
$$

It is clear that the above inequality also holds if $0<|h|<\delta_{0}$ and $g(x+h)=g(x)$. This proves that $(f \circ g)^{\prime}(x)=0=f^{\prime}(g(x)) g^{\prime}(x)$.

Example 3.7. Let g be a differentiable function and $f(x)=g(a x)$ with $a \in \mathbb{R}$. By letting $u=a x$ and $y=g(u)$, we have

$$
\frac{d y}{d u}=g^{\prime}(u), \quad \frac{d u}{d x}=a .
$$

This implies

$$
f^{\prime}(x)=\left.\frac{d y}{d u}\right|_{u=a x} \cdot \frac{d u}{d x}=a g^{\prime}(a x) .
$$

In particular,

$$
\frac{d}{d x}(g(-x))=-g^{\prime}(-x) .
$$

Example 3.8. Let g be a differentiable function and $f(x)=e^{g(x)}$. To compute f^{\prime}, we set $u=g(x)$ and $y=e^{u}$. Note that

$$
\frac{d y}{d u}=e^{u}, \quad \frac{d u}{d x}=g^{\prime}(x) .
$$

By the chain rule, this implies

$$
f^{\prime}(x)=\left.\frac{d y}{d u}\right|_{u=g(x)} \cdot \frac{d u}{d x}=g^{\prime}(x) f(x) .
$$

When $g(x)=(\ln a) x$ with $a>0$, we have

$$
f(x)=e^{(\ln a) x}=a^{x}, \quad \frac{d}{d x}\left(a^{x}\right)=(\ln a) a^{x} .
$$

Example 3.9. Let $g(x)$ be a positive differentiable function defined on an open interval I and set $f(x)=[g(x)]^{r}$ with $r \in \mathbb{R}$. By setting $u=g(x)$ and $y=u^{r}$, we have

$$
\frac{d y}{d u}=r u^{r-1}, \quad \frac{d u}{d x}=g^{\prime}(x) \quad \Rightarrow \quad f^{\prime}(x)=r[g(x)]^{r-1} g^{\prime}(x), \quad \forall x \in I .
$$

In the case that $g(x)=x^{2}-1$ and $r=1 / 2$, the last identity yields

$$
\frac{d}{d x} \sqrt{x^{2}-1}=\frac{x}{\sqrt{x^{2}-1}}, \quad \forall|x|>1 .
$$

