
3.4. The chain rule. (Sec. 3.4 in the textbook)

Theorem 3.7. If g is differentiable at x and f is differentiable at g(x), then f ◦ g is differ-
entiable at x and d

dx(f ◦ g)(x) = f ′(g(x)) · g′(x).

Remark 3.2. In Leibniz notation, if y = f(u) and u = g(x), then dy
dx = dy

du
du
dx or more precisely,

dy
dx = dy

du |u=g(x) · du
dx .

Proof. Fix x and set ∆u = g(x + h) − g(x), L = g′(x) and M = f ′(g(x)). Consider the
following two cases.

Case 1: L ̸= 0. In this case, ∆u ̸= 0 for h small enough. Write

f(g(x+ h))− f(g(x))

h
=

f(g(x) + ∆u)− f(g(x))

∆u
· g(x+ h)− g(x)

h
.

Since g is differentiable at x, g is continuous at x. This implies

h → 0 ⇒ ∆u → 0 ⇒ f(g(x) + ∆u)− f(g(x))

∆u
→ f ′(g(x))

and also

h → 0 ⇒ g(x+ h)− g(x)

h
→ g′(x).

By the limit laws, we have

lim
h→0

f(g(x+ h))− f(g(x))

h
= f ′(g(x)) · g′(x).

Case 2: L = 0. Let ϵ > 0 and choose η > 0 such that

|f(g(x) + k)− f(g(x))−Mk| < ϵ|k|, ∀0 < |k| < η.

For such ϵ, we may select δ > 0 such that

|g(x+ h)− g(x)| < ϵ

|M |+ ϵ
|h|, ∀0 < |h| < δ.

Set δ0 = min{δ, η}. If 0 < |h| < δ0 and g(x + h) ̸= g(x), then 0 < |g(x + h) − g(x)| < η. By
the triangle inequality, we have

|f(g(x+ h))− f(g(x))| ≤ (|M |+ ϵ)|g(x+ h)− g(x)| < ϵ|h|.

It is clear that the above inequality also holds if 0 < |h| < δ0 and g(x+h) = g(x). This proves
that (f ◦ g)′(x) = 0 = f ′(g(x))g′(x). �

Example 3.7. Let g be a differentiable function and f(x) = g(ax) with a ∈ R. By letting
u = ax and y = g(u), we have

dy

du
= g′(u),

du

dx
= a.

This implies

f ′(x) =
dy

du

∣∣∣∣
u=ax

· du
dx

= ag′(ax).

In particular,

d

dx
(g(−x)) = −g′(−x).
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Example 3.8. Let g be a differentiable function and f(x) = eg(x). To compute f ′, we set
u = g(x) and y = eu. Note that

dy

du
= eu,

du

dx
= g′(x).

By the chain rule, this implies

f ′(x) =
dy

du

∣∣∣∣
u=g(x)

· du
dx

= g′(x)f(x).

When g(x) = (ln a)x with a > 0, we have

f(x) = e(ln a)x = ax,
d

dx
(ax) = (ln a)ax.

Example 3.9. Let g(x) be a positive differentiable function defined on an open interval I and
set f(x) = [g(x)]r with r ∈ R. By setting u = g(x) and y = ur, we have

dy

du
= rur−1,

du

dx
= g′(x) ⇒ f ′(x) = r[g(x)]r−1g′(x), ∀x ∈ I.

In the case that g(x) = x2 − 1 and r = 1/2, the last identity yields

d

dx

√
x2 − 1 =

x√
x2 − 1

, ∀|x| > 1.
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