
3.5. Implicit differentiation. (Sec. 3.5 in the textbook)
Consider the well-known folium of Decartes, which is the set, say S, of solutions (x, y) to

x3 + y3 = 6xy. There are many ways to express part of S as a function of x. Suppose that
y = f(x) for x ∈ I solves x3 + y3 = 6xy, where I is an open interval. Clearly, one has
x3 + [f(x)]3 = 6xf(x) for x ∈ I. If f is differentiable at x, then

3x2 + 3[f(x)]2f ′(x) = 6[f(x) + xf ′(x)].

This implies

f ′(x) =
x2 − 2f(x)

2x− [f(x)]2
=

x2 − 2y

2x− y2
.

Using this formula, one can see that the tangent line to the folium of Decartes at (3, 3) has
slope −1 if any. To see the points in the first quadrant with horizontal tangent lines, we
assume that f ′(x) = 0. Again, the above formula implies x2 = 2y and 2x 6= y2. Along with
the identity x3 + y3 = 6xy, we obtain

6xy = x3 + y3 = 2xy + y3 ⇒ 4x = y2 =
x4

4
⇒ x = 24/3, y = 25/3.

Clearly, 2×24/3 6= (25/3)2 and, thus, (24/3, 25/3) is the unique solution to f ′(x) = 0 in the first
quadrant.

Remark 3.3. In the above setting, f is call an implicit function and we refer the reader to the
implicit function theorem for the differentiability of f .

Finding the derivative of an implicit function to the equation F (x, y) = 0

• Step 1: Regard y as a function of x.
• Step 2: Differentiate both sides of F = 0. w.r.t. x.
• Step 3: Express dy

dx as a function of x and y.
• Always remember that the pair (x, y) in Step 3 is a solution to F (x, y) = 0.

Example 3.10. Consider the curve x2+ y2 = 9 and regard y as a function of x. Differentiating
both sides of x2 + y2 = 9 yields 2x+ 2y dy

dx = 0. This implies dy
dx = −x

y for y 6= 0. At the point

(1, 2
√
2), the tangent line has slope −1

2
√
2
and formulated by y =

√
2
4 (9− x).

Theorem 3.8. Let f be a one-to-one function defined on an open interval I. Assume that f
is continuously differentiable on I and f ′(a) 6= 0. Then, f−1 is differentiable at f(a) and

df−1

dx
(f(a)) =

1

f ′(a)
.

Proof. The differentiability of f−1 at f(a) is given by the inverse function theorem and omitted.
To see its value, note that x = f(f−1(x)) for x ∈ f(I). By the chain rule, if f−1 is differentiable
at x, then

1 =
dx

dx
=

d

dx
f ◦ f−1(x) = f ′(f−1(x))(f−1)′(x).

Further, if f ′(f−1(x)) 6= 0, then (f−1)′(x) = 1/f ′(f−1(x)). The desired identity is obtained
by letting x = f(a). �

Example 3.11. Let y = f(x) = sinx. Then, f ′(x) = cosx for |x| < π/2. This implies

d

dy
(sin−1 y) =

1

cosx
=

1

cos(sin−1(y))
, ∀y ∈ (−1, 1).
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Note that, for |y| ≤ 1,

cos(sin−1 y) =

√
1− sin2(sin−1 y) =

√
1− y2.

Hence, we have
d

dy
(sin−1 y) =

1√
1− y2

, ∀ − 1 < y < 1.

Next, let y = g(x) = tanx. Clearly, g′(x) = sec2 x = 1 + tan2 x. For −π/2 < x < π/2, one
may compute

d

dy
(tan−1 y) =

1

1 + tan2(tan−1 y)
=

1

1 + y2
.

One may use similar computations to derive

d

dy
(cos−1 y) = − 1√

1− y2
,

d

dy
(cot−1 y) = − 1

1 + y2

and
d

dy
(sec−1 y) =

1

y
√

y2 − 1
,

d

dy
(csc−1 y) = − 1

y
√
y2 − 1

.

Example 3.12. For f(x) = sin−1(
√
1− x2) with 0 < |x| ≤ 1, f ′(x) = −x

|x|
√
1−x2

.
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