3.5. Implicit differentiation. (Sec. 3.5 in the textbook)

Consider the well-known folium of Decartes, which is the set, say S, of solutions (x, y) to $x^{3}+y^{3}=6 x y$. There are many ways to express part of S as a function of x. Suppose that $y=f(x)$ for $x \in I$ solves $x^{3}+y^{3}=6 x y$, where I is an open interval. Clearly, one has $x^{3}+[f(x)]^{3}=6 x f(x)$ for $x \in I$. If f is differentiable at x, then

$$
3 x^{2}+3[f(x)]^{2} f^{\prime}(x)=6\left[f(x)+x f^{\prime}(x)\right] .
$$

This implies

$$
f^{\prime}(x)=\frac{x^{2}-2 f(x)}{2 x-[f(x)]^{2}}=\frac{x^{2}-2 y}{2 x-y^{2}}
$$

Using this formula, one can see that the tangent line to the folium of Decartes at $(3,3)$ has slope -1 if any. To see the points in the first quadrant with horizontal tangent lines, we assume that $f^{\prime}(x)=0$. Again, the above formula implies $x^{2}=2 y$ and $2 x \neq y^{2}$. Along with the identity $x^{3}+y^{3}=6 x y$, we obtain

$$
6 x y=x^{3}+y^{3}=2 x y+y^{3} \quad \Rightarrow \quad 4 x=y^{2}=\frac{x^{4}}{4} \quad \Rightarrow \quad x=2^{4 / 3}, y=2^{5 / 3}
$$

Clearly, $2 \times 2^{4 / 3} \neq\left(2^{5 / 3}\right)^{2}$ and, thus, $\left(2^{4 / 3}, 2^{5 / 3}\right)$ is the unique solution to $f^{\prime}(x)=0$ in the first quadrant.

Remark 3.3. In the above setting, f is call an implicit function and we refer the reader to the implicit function theorem for the differentiability of f.

Finding the derivative of an implicit function to the equation $F(x, y)=0$

- Step 1: Regard y as a function of x.
- Step 2: Differentiate both sides of $F=0$. w.r.t. x.
- Step 3: Express $\frac{d y}{d x}$ as a function of x and y.
- Always remember that the pair (x, y) in Step 3 is a solution to $F(x, y)=0$.

Example 3.10. Consider the curve $x^{2}+y^{2}=9$ and regard y as a function of x. Differentiating both sides of $x^{2}+y^{2}=9$ yields $2 x+2 y \frac{d y}{d x}=0$. This implies $\frac{d y}{d x}=-\frac{x}{y}$ for $y \neq 0$. At the point $(1,2 \sqrt{2})$, the tangent line has slope $\frac{-1}{2 \sqrt{2}}$ and formulated by $y=\frac{\sqrt{2}}{4}(9-x)$.

Theorem 3.8. Let f be a one-to-one function defined on an open interval I. Assume that f is continuously differentiable on I and $f^{\prime}(a) \neq 0$. Then, f^{-1} is differentiable at $f(a)$ and

$$
\frac{d f^{-1}}{d x}(f(a))=\frac{1}{f^{\prime}(a)}
$$

Proof. The differentiability of f^{-1} at $f(a)$ is given by the inverse function theorem and omitted. To see its value, note that $x=f\left(f^{-1}(x)\right)$ for $x \in f(I)$. By the chain rule, if f^{-1} is differentiable at x, then

$$
1=\frac{d x}{d x}=\frac{d}{d x} f \circ f^{-1}(x)=f^{\prime}\left(f^{-1}(x)\right)\left(f^{-1}\right)^{\prime}(x)
$$

Further, if $f^{\prime}\left(f^{-1}(x)\right) \neq 0$, then $\left(f^{-1}\right)^{\prime}(x)=1 / f^{\prime}\left(f^{-1}(x)\right)$. The desired identity is obtained by letting $x=f(a)$.

Example 3.11. Let $y=f(x)=\sin x$. Then, $f^{\prime}(x)=\cos x$ for $|x|<\pi / 2$. This implies

$$
\frac{d}{d y}\left(\sin ^{-1} y\right)=\frac{1}{\cos x}=\frac{1}{\cos \left(\sin ^{-1}(y)\right)}, \quad \forall y \in(-1,1)
$$

Note that, for $|y| \leq 1$,

$$
\cos \left(\sin ^{-1} y\right)=\sqrt{1-\sin ^{2}\left(\sin ^{-1} y\right)}=\sqrt{1-y^{2}}
$$

Hence, we have

$$
\frac{d}{d y}\left(\sin ^{-1} y\right)=\frac{1}{\sqrt{1-y^{2}}}, \quad \forall-1<y<1
$$

Next, let $y=g(x)=\tan x$. Clearly, $g^{\prime}(x)=\sec ^{2} x=1+\tan ^{2} x$. For $-\pi / 2<x<\pi / 2$, one may compute

$$
\frac{d}{d y}\left(\tan ^{-1} y\right)=\frac{1}{1+\tan ^{2}\left(\tan ^{-1} y\right)}=\frac{1}{1+y^{2}}
$$

One may use similar computations to derive

$$
\frac{d}{d y}\left(\cos ^{-1} y\right)=-\frac{1}{\sqrt{1-y^{2}}}, \quad \frac{d}{d y}\left(\cot ^{-1} y\right)=-\frac{1}{1+y^{2}}
$$

and

$$
\frac{d}{d y}\left(\sec ^{-1} y\right)=\frac{1}{y \sqrt{y^{2}-1}}, \quad \frac{d}{d y}\left(\csc ^{-1} y\right)=-\frac{1}{y \sqrt{y^{2}-1}} .
$$

Example 3.12. For $f(x)=\sin ^{-1}\left(\sqrt{1-x^{2}}\right)$ with $0<|x| \leq 1, f^{\prime}(x)=\frac{-x}{|x| \sqrt{1-x^{2}}}$.

