
4. Applications of differentiation

4.1. Maximum and minimum values. (Sec. 4.1 in the textbook)

Definition 4.1. Let f be a function with domain D and c ∈ D.

(1) f has an absolute maximum or global maximum at c if f(x) ≤ f(c) for x ∈ D. In this
case, f(c) is called the maximum value of f on D.

(2) f has an absolute minimum or a global minimum at c if f(x) ≥ f(c) for x ∈ D. In this
case, f(c) is called the minimum value of f on D.

(3) f has an absolute extremum or a global extremum at c if f has a global maximum at c
or a global minimum at c. The value f(c) is called an extremum value of f .

Example 4.1. Let f be functions defined by f(x) = x2. Then,

• When D = [−1, 1], f has absolute maxima at ±1 and an absolute minimum at 0.
• When D = (−1, 1), f has no absolute maximum but has an absolute minimum at 0.
• When D = (−1, 0) ∪ (0, 1), f has no absolute extremum.

Theorem 4.1 (The extremum value theorem). Let f be a continuous function defined on a
closed interval [a, b]. Then, there exist c, d ∈ [a, b] such that f has an absolute maximum and
an absolute minimum at c and d.

Proof. Consider the following two cases.
Case 1: f is bounded on [a, b], i.e. there is M > 0 such that |f(x)| ≤ M for a ≤ x ≤ b.

In this case, we may assume the existence of constants ℓ < L such that ℓ ≤ f(x) ≤ L for
a ≤ x ≤ b and, for any n ∈ N, there are xn, yn ∈ [a, b] such that ℓ ≤ f(xn) < ℓ + 1/n and
L − 1/n < f(yn) ≤ L. By the dichotomy method, one may select convergent subsequences,
(xnk

)∞k=1 and (ymk
)∞k=1, with limit x, y ∈ [a, b]. By the continuity of f and the squeeze, we

obtain

f(x) = lim
k→∞

f(xnk
) = ℓ, f(y) = lim

k→∞
f(ymk

) = L.

Case 2: f is unbounded on [a, b], i.e. there is a sequence (xn)
∞
n=1 such that such that

f(xn) → ∞ or f(xn) → −∞. In either case, one may use the dichotomy method to select a
convergent subsequence (xn′

k
)∞k=1 with limit x. By the continuity of f , this implies

f(x) = lim
k→∞

f(xn′
k
) = ∞ or f(x) = lim

k→∞
(xn′

k
) = −∞,

which is obviously a contradiction. �

Definition 4.2. f has a local maximum or relative maximum at c if there exists δ > 0 such
that f(x) ≤ f(c) for |x − c| < δ. f has a local minimum or relative minimum at c if there is
δ > 0 such that f(x) ≥ f(c) for |x− c| < δ. Either case is called a local extremum of f .

Remark 4.1. f has a global (resp. local) maximum at c if and only if −f has a global (resp.
local) minimum at c.

Remark 4.2. If f has a global extremum at c and f is defined in a neighborhood of c, then f
has a local extremum at c.

Example 4.2. For x ∈ R, let f(x) = sinx and g(x) = x3. Then, f has global (local) maximum
at 2nπ for n ∈ Z with maximum value 1 and global (local) minimum at (2n + 1)π for n ∈ Z
with minumum value −1. For g, there is no global (local) extremum at all.

Theorem 4.2 (Fermat’s theorem). If f has a local extremum at c and f ′(c) exists, then
f ′(c) = 0.
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Proof. By Remark 4.1, it suffices to prove the case of local maximum. Suppose f has a local
maximum at c and choose δ > 0 such that f(x) ≤ f(c) for |x− c| < δ. This implies

f(x)− f(c)

x− c
≤ 0, ∀c < x < c+ δ,

f(x)− f(c)

x− c
≥ 0 ∀c− δ < x < c.

Since f ′(c) exists, we have

f ′(c) = lim
x→c+

f(x)− f(c)

x− c
≤ 0, f ′(c) = lim

x→c−

f(x)− f(c)

x− c
≥ 0.

Hence, f ′(c) = 0. �
Remark 4.3. By Fermat’s theorem, if f is differentiable, then f ′ = 0 is necessary for the
existence of local extremum. However, the inverse statement is not necessarily true. See e.g.
f(x) = x3.

Definition 4.3. A critical number or critical point of a function f is a number c such that
either f ′(c) = 0 or f ′(c) does not exist.

Theorem 4.3. If f has a local extremum at c, then c is a critical number of f .

Remark 4.4. The inverse statement of Theorem 4.3 is not necessarily true.

The closed interval method Let f be a function defined on [a, b]. The following is a
scheme of finding the extremum values of f on [a, b].

• Step 1: Compute f(a), f(b) and those values of f at all critical numbers in (a, b).
• Step 2: The largest and smallest values in Step 1 are the extremum values of f .

Example 4.3. Let f(x) = x3 − 6x2 + 9x− 1 for x ∈ [0, 4]. Note that f ′(x) = 3(x2 − 4x+ 3) =
3(x − 1)(x − 3). Clearly, 1 and 3 are solutions to f ′(x) = 0 with x ∈ (0, 4). By the closed
interval method, the extremum values of f on [0, 4] are

max{f(0), f(1), f(3), f(4)} = 3, min{f(0), f(1), f(3), f(4)} = −1.
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