4. Applications of differentiation

4.1. Maximum and minimum values. (Sec. 4.1 in the textbook)

Definition 4.1. Let f be a function with domain D and $c \in D$.

- (1) f has an *absolute maximum* or *global maximum* at c if $f(x) \le f(c)$ for $x \in D$. In this case, f(c) is called the *maximum value* of f on D.
- (2) f has an *absolute minimum* or a *global minimum* at c if $f(x) \ge f(c)$ for $x \in D$. In this case, f(c) is called the *minimum value* of f on D.
- (3) f has an *absolute extremum* or a *global extremum* at c if f has a global maximum at c or a global minimum at c. The value f(c) is called an *extremum value* of f.

Example 4.1. Let f be functions defined by $f(x) = x^2$. Then,

- When D = [-1, 1], f has absolute maxima at ± 1 and an absolute minimum at 0.
- When D = (-1, 1), f has no absolute maximum but has an absolute minimum at 0.
- When $D = (-1, 0) \cup (0, 1)$, f has no absolute extremum.

Theorem 4.1 (The extremum value theorem). Let f be a continuous function defined on a closed interval [a,b]. Then, there exist $c, d \in [a,b]$ such that f has an absolute maximum and an absolute minimum at c and d.

Proof. Consider the following two cases.

Case 1: f is bounded on [a, b], i.e. there is M > 0 such that $|f(x)| \leq M$ for $a \leq x \leq b$. In this case, we may assume the existence of constants $\ell < L$ such that $\ell \leq f(x) \leq L$ for $a \leq x \leq b$ and, for any $n \in \mathbb{N}$, there are $x_n, y_n \in [a, b]$ such that $\ell \leq f(x_n) < \ell + 1/n$ and $L - 1/n < f(y_n) \leq L$. By the dichotomy method, one may select convergent subsequences, $(x_{n_k})_{k=1}^{\infty}$ and $(y_{m_k})_{k=1}^{\infty}$, with limit $x, y \in [a, b]$. By the continuity of f and the squeeze, we obtain

$$f(x) = \lim_{k \to \infty} f(x_{n_k}) = \ell, \quad f(y) = \lim_{k \to \infty} f(y_{m_k}) = L.$$

Case 2: f is unbounded on [a, b], i.e. there is a sequence $(x_n)_{n=1}^{\infty}$ such that such that $f(x_n) \to \infty$ or $f(x_n) \to -\infty$. In either case, one may use the dichotomy method to select a convergent subsequence $(x_{n'_k})_{k=1}^{\infty}$ with limit x. By the continuity of f, this implies

$$f(x) = \lim_{k \to \infty} f(x_{n'_k}) = \infty$$
 or $f(x) = \lim_{k \to \infty} (x_{n'_k}) = -\infty$,

which is obviously a contradiction.

Definition 4.2. f has a *local maximum* or *relative maximum* at c if there exists $\delta > 0$ such that $f(x) \leq f(c)$ for $|x - c| < \delta$. f has a *local minimum* or *relative minimum* at c if there is $\delta > 0$ such that $f(x) \geq f(c)$ for $|x - c| < \delta$. Either case is called a *local extremum* of f.

Remark 4.1. f has a global (resp. local) maximum at c if and only if -f has a global (resp. local) minimum at c.

Remark 4.2. If f has a global extremum at c and f is defined in a neighborhood of c, then f has a local extremum at c.

Example 4.2. For $x \in \mathbb{R}$, let $f(x) = \sin x$ and $g(x) = x^3$. Then, f has global (local) maximum at $2n\pi$ for $n \in \mathbb{Z}$ with maximum value 1 and global (local) minimum at $(2n+1)\pi$ for $n \in \mathbb{Z}$ with minumum value -1. For g, there is no global (local) extremum at all.

Theorem 4.2 (Fermat's theorem). If f has a local extremum at c and f'(c) exists, then f'(c) = 0.

Proof. By Remark 4.1, it suffices to prove the case of local maximum. Suppose f has a local maximum at c and choose $\delta > 0$ such that $f(x) \leq f(c)$ for $|x - c| < \delta$. This implies

$$\frac{f(x) - f(c)}{x - c} \le 0, \quad \forall c < x < c + \delta, \quad \frac{f(x) - f(c)}{x - c} \ge 0 \quad \forall c - \delta < x < c.$$

Since f'(c) exists, we have

$$f'(c) = \lim_{x \to c^+} \frac{f(x) - f(c)}{x - c} \le 0, \quad f'(c) = \lim_{x \to c^-} \frac{f(x) - f(c)}{x - c} \ge 0.$$

0.

Hence, f'(c) = 0.

Remark 4.3. By Fermat's theorem, if f is differentiable, then f' = 0 is necessary for the existence of local extremum. However, the inverse statement is not necessarily true. See e.g. $f(x) = x^3$.

Definition 4.3. A *critical number* or *critical point* of a function f is a number c such that either f'(c) = 0 or f'(c) does not exist.

Theorem 4.3. If f has a local extremum at c, then c is a critical number of f.

Remark 4.4. The inverse statement of Theorem 4.3 is not necessarily true.

The closed interval method Let f be a function defined on [a, b]. The following is a scheme of finding the extremum values of f on [a, b].

- Step 1: Compute f(a), f(b) and those values of f at all critical numbers in (a, b).
- Step 2: The largest and smallest values in Step 1 are the extremum values of f.

Example 4.3. Let $f(x) = x^3 - 6x^2 + 9x - 1$ for $x \in [0, 4]$. Note that $f'(x) = 3(x^2 - 4x + 3) = 3(x - 1)(x - 3)$. Clearly, 1 and 3 are solutions to f'(x) = 0 with $x \in (0, 4)$. By the closed interval method, the extremum values of f on [0, 4] are

 $\max\{f(0), f(1), f(3), f(4)\} = 3, \quad \min\{f(0), f(1), f(3), f(4)\} = -1.$