4. Applications of differentiation

4.1. Maximum and minimum values. (Sec. 4.1 in the textbook)

Definition 4.1. Let f be a function with domain D and $c \in D$.
(1) f has an absolute maximum or global maximum at c if $f(x) \leq f(c)$ for $x \in D$. In this case, $f(c)$ is called the maximum value of f on D.
(2) f has an absolute minimum or a global minimum at c if $f(x) \geq f(c)$ for $x \in D$. In this case, $f(c)$ is called the minimum value of f on D.
(3) f has an absolute extremum or a global extremum at c if f has a global maximum at c or a global minimum at c. The value $f(c)$ is called an extremum value of f.
Example 4.1. Let f be functions defined by $f(x)=x^{2}$. Then,

- When $D=[-1,1], f$ has absolute maxima at ± 1 and an absolute minimum at 0 .
- When $D=(-1,1), f$ has no absolute maximum but has an absolute minimum at 0 .
- When $D=(-1,0) \cup(0,1), f$ has no absolute extremum.

Theorem 4.1 (The extremum value theorem). Let f be a continuous function defined on a closed interval $[a, b]$. Then, there exist $c, d \in[a, b]$ such that f has an absolute maximum and an absolute minimum at c and d.

Proof. Consider the following two cases.
Case 1: f is bounded on $[a, b]$, i.e. there is $M>0$ such that $|f(x)| \leq M$ for $a \leq x \leq b$. In this case, we may assume the existence of constants $\ell<L$ such that $\ell \leq f(x) \leq L$ for $a \leq x \leq b$ and, for any $n \in \mathbb{N}$, there are $x_{n}, y_{n} \in[a, b]$ such that $\ell \leq f\left(x_{n}\right)<\ell+1 / n$ and $L-1 / n<f\left(y_{n}\right) \leq L$. By the dichotomy method, one may select convergent subsequences, $\left(x_{n_{k}}\right)_{k=1}^{\infty}$ and $\left(y_{m_{k}}\right)_{k=1}^{\infty}$, with limit $x, y \in[a, b]$. By the continuity of f and the squeeze, we obtain

$$
f(x)=\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=\ell, \quad f(y)=\lim _{k \rightarrow \infty} f\left(y_{m_{k}}\right)=L
$$

Case 2: f is unbounded on $[a, b]$, i.e. there is a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ such that such that $f\left(x_{n}\right) \rightarrow \infty$ or $f\left(x_{n}\right) \rightarrow-\infty$. In either case, one may use the dichotomy method to select a convergent subsequence $\left(x_{n_{k}^{\prime}}\right)_{k=1}^{\infty}$ with limit x. By the continuity of f, this implies

$$
f(x)=\lim _{k \rightarrow \infty} f\left(x_{n_{k}^{\prime}}\right)=\infty \quad \text { or } \quad f(x)=\lim _{k \rightarrow \infty}\left(x_{n_{k}^{\prime}}\right)=-\infty
$$

which is obviously a contradiction.
Definition 4.2. f has a local maximum or relative maximum at c if there exists $\delta>0$ such that $f(x) \leq f(c)$ for $|x-c|<\delta$. f has a local minimum or relative minimum at c if there is $\delta>0$ such that $f(x) \geq f(c)$ for $|x-c|<\delta$. Either case is called a local extremum of f.

Remark 4.1. f has a global (resp. local) maximum at c if and only if $-f$ has a global (resp. local) minimum at c.

Remark 4.2. If f has a global extremum at c and f is defined in a neighborhood of c, then f has a local extremum at c.

Example 4.2. For $x \in \mathbb{R}$, let $f(x)=\sin x$ and $g(x)=x^{3}$. Then, f has global (local) maximum at $2 n \pi$ for $n \in \mathbb{Z}$ with maximum value 1 and global (local) minimum at $(2 n+1) \pi$ for $n \in \mathbb{Z}$ with minumum value -1 . For g, there is no global (local) extremum at all.

Theorem 4.2 (Fermat's theorem). If f has a local extremum at c and $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.

Proof. By Remark 4.1, it suffices to prove the case of local maximum. Suppose f has a local maximum at c and choose $\delta>0$ such that $f(x) \leq f(c)$ for $|x-c|<\delta$. This implies

$$
\frac{f(x)-f(c)}{x-c} \leq 0, \quad \forall c<x<c+\delta, \quad \frac{f(x)-f(c)}{x-c} \geq 0 \quad \forall c-\delta<x<c .
$$

Since $f^{\prime}(c)$ exists, we have

$$
f^{\prime}(c)=\lim _{x \rightarrow c^{+}} \frac{f(x)-f(c)}{x-c} \leq 0, \quad f^{\prime}(c)=\lim _{x \rightarrow c^{-}} \frac{f(x)-f(c)}{x-c} \geq 0 .
$$

Hence, $f^{\prime}(c)=0$.
Remark 4.3. By Fermat's theorem, if f is differentiable, then $f^{\prime}=0$ is necessary for the existence of local extremum. However, the inverse statement is not necessarily true. See e.g. $f(x)=x^{3}$.

Definition 4.3. A critical number or critical point of a function f is a number c such that either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.
Theorem 4.3. If f has a local extremum at c, then c is a critical number of f.
Remark 4.4. The inverse statement of Theorem 4.3 is not necessarily true.
The closed interval method Let f be a function defined on $[a, b]$. The following is a scheme of finding the extremum values of f on $[a, b]$.

- Step 1: Compute $f(a), f(b)$ and those values of f at all critical numbers in (a, b).
- Step 2: The largest and smallest values in Step 1 are the extremum values of f.

Example 4.3. Let $f(x)=x^{3}-6 x^{2}+9 x-1$ for $x \in[0,4]$. Note that $f^{\prime}(x)=3\left(x^{2}-4 x+3\right)=$ $3(x-1)(x-3)$. Clearly, 1 and 3 are solutions to $f^{\prime}(x)=0$ with $x \in(0,4)$. By the closed interval method, the extremum values of f on $[0,4]$ are

$$
\max \{f(0), f(1), f(3), f(4)\}=3, \quad \min \{f(0), f(1), f(3), f(4)\}=-1 .
$$

