4.2. The mean value theorem. (Sec. 4.2 in the textbook)

Theorem 4.4 (Rolle's theorem). Let f be a function defined on $[a, b]$. Suppose f is continuous on $[a, b]$, differentiable on (a, b) and $f(a)=f(b)$. Then, there is $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Proof. Obviously, this theorem holds for constant functions on $[a, b]$. For other cases, it loses no generality to assume that there is $x_{0} \in(a, b)$ such that $f\left(x_{0}\right)>f(a)$. Since f is continuous on $[a, b]$, the extremum value theorem implies the existence of $c \in[a, b]$ such that f has its global maximum at $c \in[a, b]$. As $f\left(x_{0}\right)>f(a)=f(b)$, it must be the case that $c \in(a, b)$. By the differentiability of f on (a, b), Fermat's theorem implies $f^{\prime}(c)=0$.

Example 4.4. Consider the roots of $f(x)=x^{5}+2 x-2$. As f is a polynomial, it is continuous and differentiable on \mathbb{R}. Note that $f(1)=1>0$ and $f(0)=-2<0$. By the intermediate value theorem, there is $c \in(0,1)$ such that $f(c)=0$. Observe that $f^{\prime}(x)=5 x^{4}+2>0$ for $x \in \mathbb{R}$. By Rolle's theorem, if $d \neq c$ is another root of f, then there is a constant x_{0} between c and d such that $f^{\prime}\left(x_{0}\right)=0$, which contradicts the fact $f^{\prime}>0$. This implies that c is the unique root of f.

Theorem 4.5 (The mean value theorem). Let f be a function on $[a, b]$. Assume that f is continuous on $[a, b]$ and differentiable on (a, b). Then, there is $c \in(a, b)$ such that $f^{\prime}(c)=$ $\frac{f(b)-f(a)}{b-a}$.

Example 4.5. Suppose f is a differentiable function on \mathbb{R} with $f(0)=-1$ and $f^{\prime}(x) \geq 2$ for all x. To examine how large $f(10)$ can be, we may use the mean value theorem to compute $\frac{f(10)-f(0)}{10-0}=f^{\prime}(c)$ for some $c \in(0,10)$. This implies $f(10)=f(0)+10 f^{\prime}(c) \geq-1+10 \cdot 2=19$.
Remark 4.5. The mean value theorem can fail without the differentiability of f on (a, b) (see e.g. $f(x)=|x|$ with $a=-1, b=1$) or the continuity of f at a, b (see e.g. $f(x)=x$ for $x \in(-1,1]$ and $f(-1)=1)$.

Corollary 4.6. If $f^{\prime}(x)=0$ for $x \in(a, b)$, then f is a constant function. In particular, if g, h are differentiable on (a, b) and $g^{\prime}=h^{\prime}$, then there is $c \in \mathbb{R}$ such that $g=h+c$ on (a, b).

Proof. The second part is a simple corollary of the first part through the identity $f=g-h$. For the first part, assume that $f^{\prime}=0$ on (a, b). Fix $x_{0} \in(a, b)$. When $x \in\left(a, x_{0}\right)$, one may apply the mean value theorem to find $y \in\left(x, x_{0}\right)$ such that $f\left(x_{0}\right)-f(x)=f^{\prime}(y)\left(x_{0}-x\right)$ or equivalently $f(x)=f\left(x_{0}\right)$. Similarly, we can show that $f(x)=f\left(x_{0}\right)$ for $x \in\left(x_{0}, b\right)$.
Example 4.6. Let $f(x)=\sin ^{-1} x+\cos ^{-1} x$ for $x \in[-1,1]$. Note that

$$
f\left(\frac{1}{\sqrt{2}}\right)=\sin ^{-1} \frac{1}{\sqrt{2}}+\cos ^{-1} \frac{1}{\sqrt{2}}=\frac{\pi}{2}, \quad f^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-x^{2}}}=0, \quad \forall x \in(-1,1)
$$

By Corollary 4.6, $f(x)=\pi / 2$ for $x \in(-1,1)$. Since f is continuous on $[-1,1]$, we have

$$
f(-1)=\lim _{x \rightarrow(-1)^{+}} f(x)=\frac{\pi}{2}, \quad f(1)=\lim _{x \rightarrow 1^{-}} f(x)=\frac{\pi}{2}
$$

Thus, $f=\pi / 2$ on $[-1,1]$.

