4.3. How derivatives affect the shape of a graph. (Sec. 4.3 in the textbook.)

Recall that a function f is increasing on (a, b) if f(x) < f(y) for a < x < y < b and decreasing on (a, b) if f(x) > f(y) for a < x < y < b.

Theorem 4.7 (Increasing/Decreasing test). Let f be a function defined on (a, b).

- (1) If f'(x) > 0 for $x \in (a, b)$, then f is increasing on (a, b).
- (2) If f'(x) < 0 for $x \in (a, b)$, then f is decreasing on (a, b).

Proof. It loses no generality to assume that f' > 0 on (a, b). Let a < x < y < b. By the mean value theorem, there is $z \in (x, y)$ such that f(y) - f(x) = f'(z)(y - x) > 0, which implies f(y) > f(x).

Example 4.7. Let $f(x) = 3x^4 - 4x^3 - 12x^2 + 1$. Clearly, one may compute $f'(x) = 12x(x^2 - x - 2) = 12x(x+1)(x-2)$. This implies that f' > 0 for $x \in (-1,0) \cup (2,\infty)$ and f' < 0 for $x \in (-\infty, -1) \cup (0, 2)$. By the increasing/decreasing test, f is increasing on $(-1,0) \cup (2,\infty)$ and decreasing on $(-\infty, -1) \cup (0, 2)$.

Theorem 4.8 (The first derivative test). Let f be continuous on I and $c \in I$.

- (1) If f' changes from positive to negative at c, then f has a local maximum at c.
- (2) If f' changes from negative to positive at c, then f has a local minimum at c.
- (3) If f' does not change sign at c, then f has no local extremum at c.

Proof. For Case (1), assume that there is $\delta > 0$ such that f'(x) > 0 for $x \in (c - \delta, c)$ and f'(x) < 0 for $x \in (c, c + \delta)$. By the increasing/decreasing test, we have f(x) < f(y) for $c - \delta < x < y < c$ and f(x) < f(y) for $c < y < x < c + \delta$. By the continuity of f at c, this implies that, for $c - \delta < x_1 < c < x_2 < c + \delta$,

$$f(c) = \lim_{y \to c^{-}} f(y) > f(x_1), \quad f(c) = \lim_{y \to c^{+}} f(y) > f(x_2).$$

As a result, f has a local maximum at c. The proof of (2) is given by applying (1) at -f. For (3), we treat the case f'(x) > 0 for $0 < |x - c| < \delta$, while the other is an immediate corollary. As before, the increasing/decreasing test yields f(x) < f(y) for $c - \delta < x < y < c$ and $c < x < y < c + \delta$. By the continuity of f at c, we obtain, for $c - \delta < x_1 < c < x_2 < c + \delta$,

$$f(x_1) < \lim_{y \to c^-} f(y) = f(c) = \lim_{y \to c^+} f(y) < f(x_2).$$

Remark 4.6. Note that the differentiability of f at c is not required in the first derivative test.

Example 4.8. For $f(x) = 3x^4 - 4x^3 - 12x^2 + 1$, it has been proved before that f' > 0 for $x \in (-1, 0) \cup (2, \infty)$ and f' < 0 for $x \in (-\infty, -1) \cup (0, 2)$. By the first derivative test, f has a local maximum at 0 and local minima at -1 and 2.

Definition 4.4. Let f be a function defined on an open interval I. f is called

(1) concave upward or convex if, for any $x \in I$, there is $M_x \in \mathbb{R}$ such that

$$f(y) > f(x) + M_x(y-x), \quad \forall y \in I, \ y \neq x;$$

(2) concave downward or concave if, for any $x \in I$, there is $M_x \in \mathbb{R}$ such that

$$f(y) < f(x) + M_x(y-x), \quad \forall y \in I, \ y \neq x.$$

Remark 4.7. Let f be a function defined on an open interval I.

- (1) f is concave upward if and only if -f is concave downward.
- (2) If f is concave upward, then $f(x) < f(x_1) + (x x_1)[f(x_2) f(x_1)]/(x_2 x_1)$ for any $x_1, x_2 \in I$ and any x between x_1 and x_2 .

- (3) If f is concave upward or downward on I, then f is continuous on I.
- (4) Suppose f is concave upward and differentiable at c. Let $M_c \in \mathbb{R}$ be the slope of the supporting line at (c, f(c)), i.e. $f(x) > f(c) + (x c)M_c$ for $x \in I$ and $x \neq c$. Then, one has

$$\frac{f(x) - f(c)}{x - c} > M_c, \quad \forall x > c, \quad \frac{f(x) - f(c)}{x - c} < M_c, \quad \forall x < c.$$

Letting x tend to c implies $M_c = f'(c)$. As a result, if f is differentiable on I, then f is concave upward (resp. downward) if and only if the graph of f lies above (resp. below) or on its tangent lines.

Theorem 4.9 (The concavity test). Let f be a function defined on an open interval I and assume that f'' exists.

- (1) If f''(x) > 0 for all $x \in I$, then f is concave upward on I.
- (2) If f''(x) < 0 for all $x \in I$, then f is concave downward on I.

Proof. We prove (1), while (2) is its simple corollary. For $c \in I$, the tangent line to the curve y = f(x) at (c, f(c)) is y = f(c) + (x - c)f'(c). To finish the proof, it remains to show that f(x) > f(c) + (x - c)f'(c) for all $x \in I$ and $x \neq c$. Fix $x \in I$ and $x \neq c$. By the mean value theorem, one may select c_x between x and c such that $f(x) - f(c) = f'(c_x)(x - c)$. As f' is differentiable on I, we may choose C_x between c_x and c such that $f'(c_x) - f'(c) = f''(C_x)(c_x - c)$. Immediately, these two identities lead to $f(x) - [f(c) + (x - c)f'(c)] = (x - c)(c_x - c)f''(C_x)$. Note that $c_x < C_x < c$ when x < c and $c_x > C_x > c$ when x > c. In addition with the assumption of f'' > 0, one has $(x - c)(c_x - c)f''(C_x) > 0$.

Definition 4.5. A point P on a curve y = f(x) is called an *inflection point* if f is continuous at P and the curve changes from concave upward to concave downward or from concave downward to concave upward at P.

Example 4.9. Let $f(x) = x^3 - x$. Note that f''(x) = 6x. By the concavity test, f is concave upward on $(0, \infty)$ and downward on $(-\infty, 0)$. This implies that (0, 0) is the inflection point of y = f(x).

Theorem 4.10 (The second derivative test). Suppose f'(c) = 0. If f'' > 0 (resp. f'' < 0) in a neighborhood of c, then f has a local minimum (resp. local maximum) at c.

Remark 4.8. Note that f'(c) = 0 and $f''(c) \neq 0$ is sufficient to conclude that the local extremum of f at c. Consider the case that f''(c) > 0. Set $\epsilon = f''(c)/2$. Since f''(c) exists, there is $\delta > 0$ such that

$$\left|\frac{f'(x) - f'(c)}{x - c} - f''(c)\right| < \epsilon, \quad \forall 0 < |x - c| < \delta.$$

By the triangle inequality, this implies

$$\frac{f'(x)}{x-c} > f''(c) - \epsilon = \frac{f''(c)}{2} > 0, \quad \forall 0 < |x-c| < \delta,$$

which leads to

$$f'(x) \begin{cases} > 0 & \text{for } c < x < c + \delta \\ < 0 & \text{for } c - \delta < x < c \end{cases}$$

By the increasing/decreasing test, f is decreasing on $(c - \delta, c)$ and increasing on $(c, c + \delta)$. Further, since f is differentiable at c, f is continuous at c. As a consequence, this implies f(x) > f(c) for $0 < |x - c| < \delta$.