4.3. How derivatives affect the shape of a graph. (Sec. 4.3 in the textbook.)

Recall that a function f is increasing on (a, b) if $f(x)<f(y)$ for $a<x<y<b$ and decreasing on (a, b) if $f(x)>f(y)$ for $a<x<y<b$.

Theorem 4.7 (Increasing/Decreasing test). Let f be a function defined on (a, b).
(1) If $f^{\prime}(x)>0$ for $x \in(a, b)$, then f is increasing on (a, b).
(2) If $f^{\prime}(x)<0$ for $x \in(a, b)$, then f is decreasing on (a, b).

Proof. It loses no generality to assume that $f^{\prime}>0$ on (a, b). Let $a<x<y<b$. By the mean value theorem, there is $z \in(x, y)$ such that $f(y)-f(x)=f^{\prime}(z)(y-x)>0$, which implies $f(y)>f(x)$.
Example 4.7. Let $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+1$. Clearly, one may compute $f^{\prime}(x)=12 x\left(x^{2}-\right.$ $x-2)=12 x(x+1)(x-2)$. This implies that $f^{\prime}>0$ for $x \in(-1,0) \cup(2, \infty)$ and $f^{\prime}<0$ for $x \in(-\infty,-1) \cup(0,2)$. By the increasing/decreasing test, f is increasing on $(-1,0) \cup(2, \infty)$ and decreasing on $(-\infty,-1) \cup(0,2)$.

Theorem 4.8 (The first derivative test). Let f be continuous on I and $c \in I$.
(1) If f^{\prime} changes from positive to negative at c, then f has a local maximum at c.
(2) If f^{\prime} changes from negative to positive at c, then f has a local minimum at c.
(3) If f^{\prime} does not change sign at c, then f has no local extremum at c.

Proof. For Case (1), assume that there is $\delta>0$ such that $f^{\prime}(x)>0$ for $x \in(c-\delta, c)$ and $f^{\prime}(x)<0$ for $x \in(c, c+\delta)$. By the increasing/decreasing test, we have $f(x)<f(y)$ for $c-\delta<x<y<c$ and $f(x)<f(y)$ for $c<y<x<c+\delta$. By the continuity of f at c, this implies that, for $c-\delta<x_{1}<c<x_{2}<c+\delta$,

$$
f(c)=\lim _{y \rightarrow c^{-}} f(y)>f\left(x_{1}\right), \quad f(c)=\lim _{y \rightarrow c^{+}} f(y)>f\left(x_{2}\right)
$$

As a result, f has a local maximum at c. The proof of (2) is given by applying (1) at $-f$. For (3), we treat the case $f^{\prime}(x)>0$ for $0<|x-c|<\delta$, while the other is an immediate corollary. As before, the increasing/decreasing test yields $f(x)<f(y)$ for $c-\delta<x<y<c$ and $c<x<y<c+\delta$. By the continuity of f at c, we obtain, for $c-\delta<x_{1}<c<x_{2}<c+\delta$,

$$
f\left(x_{1}\right)<\lim _{y \rightarrow c^{-}} f(y)=f(c)=\lim _{y \rightarrow c^{+}} f(y)<f\left(x_{2}\right)
$$

Remark 4.6. Note that the differentiability of f at c is not required in the first derivative test.
Example 4.8. For $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+1$, it has been proved before that $f^{\prime}>0$ for $x \in(-1,0) \cup(2, \infty)$ and $f^{\prime}<0$ for $x \in(-\infty,-1) \cup(0,2)$. By the first derivative test, f has a local maximum at 0 and local minima at -1 and 2 .

Definition 4.4. Let f be a function defined on an open interval $I . f$ is called
(1) concave upward or convex if, for any $x \in I$, there is $M_{x} \in \mathbb{R}$ such that

$$
f(y)>f(x)+M_{x}(y-x), \quad \forall y \in I, y \neq x
$$

(2) concave downward or concave if, for any $x \in I$, there is $M_{x} \in \mathbb{R}$ such that

$$
f(y)<f(x)+M_{x}(y-x), \quad \forall y \in I, y \neq x
$$

Remark 4.7. Let f be a function defined on an open interval I.
(1) f is concave upward if and only if $-f$ is concave downward.
(2) If f is concave upward, then $f(x)<f\left(x_{1}\right)+\left(x-x_{1}\right)\left[f\left(x_{2}\right)-f\left(x_{1}\right)\right] /\left(x_{2}-x_{1}\right)$ for any $x_{1}, x_{2} \in I$ and any x between x_{1} and x_{2}.
(3) If f is concave upward or downward on I, then f is continuous on I.
(4) Suppose f is concave upward and differentiable at c. Let $M_{c} \in \mathbb{R}$ be the slope of the supporting line at $\left(c, f(c)\right.$), i.e. $f(x)>f(c)+(x-c) M_{c}$ for $x \in I$ and $x \neq c$. Then, one has

$$
\frac{f(x)-f(c)}{x-c}>M_{c}, \quad \forall x>c, \quad \frac{f(x)-f(c)}{x-c}<M_{c}, \quad \forall x<c .
$$

Letting x tend to c implies $M_{c}=f^{\prime}(c)$. As a result, if f is differentiable on I, then f is concave upward (resp. downward) if and only if the graph of f lies above (resp. below) or on its tangent lines.

Theorem 4.9 (The concavity test). Let f be a function defined on an open interval I and assume that $f^{\prime \prime}$ exists.
(1) If $f^{\prime \prime}(x)>0$ for all $x \in I$, then f is concave upward on I.
(2) If $f^{\prime \prime}(x)<0$ for all $x \in I$, then f is concave downward on I.

Proof. We prove (1), while (2) is its simple corollary. For $c \in I$, the tangent line to the curve $y=f(x)$ at $(c, f(c))$ is $y=f(c)+(x-c) f^{\prime}(c)$. To finish the proof, it remains to show that $f(x)>f(c)+(x-c) f^{\prime}(c)$ for all $x \in I$ and $x \neq c$. Fix $x \in I$ and $x \neq c$. By the mean value theorem, one may select c_{x} between x and c such that $f(x)-f(c)=f^{\prime}\left(c_{x}\right)(x-c)$. As f^{\prime} is differentiable on I, we may choose C_{x} between c_{x} and c such that $f^{\prime}\left(c_{x}\right)-f^{\prime}(c)=f^{\prime \prime}\left(C_{x}\right)\left(c_{x}-c\right)$. Immediately, these two identities lead to $f(x)-\left[f(c)+(x-c) f^{\prime}(c)\right]=(x-c)\left(c_{x}-c\right) f^{\prime \prime}\left(C_{x}\right)$. Note that $c_{x}<C_{x}<c$ when $x<c$ and $c_{x}>C_{x}>c$ when $x>c$. In addition with the assumption of $f^{\prime \prime}>0$, one has $(x-c)\left(c_{x}-c\right) f^{\prime \prime}\left(C_{x}\right)>0$.
Definition 4.5. A point P on a curve $y=f(x)$ is called an inflection point if f is continuous at P and the curve changes from concave upward to concave downward or from concave downward to concave upward at P.
Example 4.9. Let $f(x)=x^{3}-x$. Note that $f^{\prime \prime}(x)=6 x$. By the concavity test, f is concave upward on $(0, \infty)$ and downward on $(-\infty, 0)$. This implies that $(0,0)$ is the inflection point of $y=f(x)$.

Theorem 4.10 (The second derivative test). Suppose $f^{\prime}(c)=0$. If $f^{\prime \prime}>0\left(\right.$ resp. $\left.f^{\prime \prime}<0\right)$ in a neighborhood of c, then f has a local minimum (resp. local maximum) at c.

Remark 4.8. Note that $f^{\prime}(c)=0$ and $f^{\prime \prime}(c) \neq 0$ is sufficient to conclude that the local extremum of f at c. Consider the case that $f^{\prime \prime}(c)>0$. Set $\epsilon=f^{\prime \prime}(c) / 2$. Since $f^{\prime \prime}(c)$ exists, there is $\delta>0$ such that

$$
\left|\frac{f^{\prime}(x)-f^{\prime}(c)}{x-c}-f^{\prime \prime}(c)\right|<\epsilon, \quad \forall 0<|x-c|<\delta .
$$

By the triangle inequality, this implies

$$
\frac{f^{\prime}(x)}{x-c}>f^{\prime \prime}(c)-\epsilon=\frac{f^{\prime \prime}(c)}{2}>0, \quad \forall 0<|x-c|<\delta,
$$

which leads to

$$
f^{\prime}(x)\left\{\begin{array}{ll}
>0 & \text { for } c<x<c+\delta \\
<0 & \text { for } c-\delta<x<c
\end{array} .\right.
$$

By the increasing/decreasing test, f is decreasing on $(c-\delta, c)$ and increasing on $(c, c+\delta)$. Further, since f is differentiable at c, f is continuous at c. As a consequence, this implies $f(x)>f(c)$ for $0<|x-c|<\delta$.

