
4.3. How derivatives affect the shape of a graph. (Sec. 4.3 in the textbook.)
Recall that a function f is increasing on (a, b) if f(x) < f(y) for a < x < y < b and

decreasing on (a, b) if f(x) > f(y) for a < x < y < b.

Theorem 4.7 (Increasing/Decreasing test). Let f be a function defined on (a, b).

(1) If f ′(x) > 0 for x ∈ (a, b), then f is increasing on (a, b).
(2) If f ′(x) < 0 for x ∈ (a, b), then f is decreasing on (a, b).

Proof. It loses no generality to assume that f ′ > 0 on (a, b). Let a < x < y < b. By the mean
value theorem, there is z ∈ (x, y) such that f(y) − f(x) = f ′(z)(y − x) > 0, which implies
f(y) > f(x). �
Example 4.7. Let f(x) = 3x4 − 4x3 − 12x2 + 1. Clearly, one may compute f ′(x) = 12x(x2 −
x − 2) = 12x(x + 1)(x − 2). This implies that f ′ > 0 for x ∈ (−1, 0) ∪ (2,∞) and f ′ < 0 for
x ∈ (−∞,−1) ∪ (0, 2). By the increasing/decreasing test, f is increasing on (−1, 0) ∪ (2,∞)
and decreasing on (−∞,−1) ∪ (0, 2).

Theorem 4.8 (The first derivative test). Let f be continuous on I and c ∈ I.

(1) If f ′ changes from positive to negative at c, then f has a local maximum at c.
(2) If f ′ changes from negative to positive at c, then f has a local minimum at c.
(3) If f ′ does not change sign at c, then f has no local extremum at c.

Proof. For Case (1), assume that there is δ > 0 such that f ′(x) > 0 for x ∈ (c − δ, c) and
f ′(x) < 0 for x ∈ (c, c + δ). By the increasing/decreasing test, we have f(x) < f(y) for
c − δ < x < y < c and f(x) < f(y) for c < y < x < c + δ. By the continuity of f at c, this
implies that, for c− δ < x1 < c < x2 < c+ δ,

f(c) = lim
y→c−

f(y) > f(x1), f(c) = lim
y→c+

f(y) > f(x2).

As a result, f has a local maximum at c. The proof of (2) is given by applying (1) at −f .
For (3), we treat the case f ′(x) > 0 for 0 < |x − c| < δ, while the other is an immediate
corollary. As before, the increasing/decreasing test yields f(x) < f(y) for c − δ < x < y < c
and c < x < y < c+ δ. By the continuity of f at c, we obtain, for c− δ < x1 < c < x2 < c+ δ,

f(x1) < lim
y→c−

f(y) = f(c) = lim
y→c+

f(y) < f(x2).

�
Remark 4.6. Note that the differentiability of f at c is not required in the first derivative test.

Example 4.8. For f(x) = 3x4 − 4x3 − 12x2 + 1, it has been proved before that f ′ > 0 for
x ∈ (−1, 0)∪ (2,∞) and f ′ < 0 for x ∈ (−∞,−1)∪ (0, 2). By the first derivative test, f has a
local maximum at 0 and local minima at −1 and 2.

Definition 4.4. Let f be a function defined on an open interval I. f is called

(1) concave upward or convex if, for any x ∈ I, there is Mx ∈ R such that

f(y) > f(x) +Mx(y − x), ∀y ∈ I, y 6= x;

(2) concave downward or concave if, for any x ∈ I, there is Mx ∈ R such that

f(y) < f(x) +Mx(y − x), ∀y ∈ I, y 6= x.

Remark 4.7. Let f be a function defined on an open interval I.

(1) f is concave upward if and only if −f is concave downward.
(2) If f is concave upward, then f(x) < f(x1) + (x− x1)[f(x2)− f(x1)]/(x2 − x1) for any

x1, x2 ∈ I and any x between x1 and x2.
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(3) If f is concave upward or downward on I, then f is continuous on I.
(4) Suppose f is concave upward and differentiable at c. Let Mc ∈ R be the slope of the

supporting line at (c, f(c)), i.e. f(x) > f(c) + (x − c)Mc for x ∈ I and x 6= c. Then,
one has

f(x)− f(c)

x− c
> Mc, ∀x > c,

f(x)− f(c)

x− c
< Mc, ∀x < c.

Letting x tend to c implies Mc = f ′(c). As a result, if f is differentiable on I, then
f is concave upward (resp. downward) if and only if the graph of f lies above (resp.
below) or on its tangent lines.

Theorem 4.9 (The concavity test). Let f be a function defined on an open interval I and
assume that f ′′ exists.

(1) If f ′′(x) > 0 for all x ∈ I, then f is concave upward on I.
(2) If f ′′(x) < 0 for all x ∈ I, then f is concave downward on I.

Proof. We prove (1), while (2) is its simple corollary. For c ∈ I, the tangent line to the curve
y = f(x) at (c, f(c)) is y = f(c) + (x − c)f ′(c). To finish the proof, it remains to show that
f(x) > f(c) + (x − c)f ′(c) for all x ∈ I and x 6= c. Fix x ∈ I and x 6= c. By the mean value
theorem, one may select cx between x and c such that f(x) − f(c) = f ′(cx)(x − c). As f ′ is
differentiable on I, we may choose Cx between cx and c such that f ′(cx)−f ′(c) = f ′′(Cx)(cx−c).
Immediately, these two identities lead to f(x)− [f(c) + (x− c)f ′(c)] = (x− c)(cx − c)f ′′(Cx).
Note that cx < Cx < c when x < c and cx > Cx > c when x > c. In addition with the
assumption of f ′′ > 0, one has (x− c)(cx − c)f ′′(Cx) > 0. �
Definition 4.5. A point P on a curve y = f(x) is called an inflection point if f is continuous
at P and the curve changes from concave upward to concave downward or from concave
downward to concave upward at P .

Example 4.9. Let f(x) = x3 − x. Note that f ′′(x) = 6x. By the concavity test, f is concave
upward on (0,∞) and downward on (−∞, 0). This implies that (0, 0) is the inflection point
of y = f(x).

Theorem 4.10 (The second derivative test). Suppose f ′(c) = 0. If f ′′ > 0 (resp. f ′′ < 0) in
a neighborhood of c, then f has a local minimum (resp. local maximum) at c.

Remark 4.8. Note that f ′(c) = 0 and f ′′(c) 6= 0 is sufficient to conclude that the local
extremum of f at c. Consider the case that f ′′(c) > 0. Set ϵ = f ′′(c)/2. Since f ′′(c) exists,
there is δ > 0 such that∣∣∣∣f ′(x)− f ′(c)

x− c
− f ′′(c)

∣∣∣∣ < ϵ, ∀0 < |x− c| < δ.

By the triangle inequality, this implies

f ′(x)

x− c
> f ′′(c)− ϵ =

f ′′(c)

2
> 0, ∀0 < |x− c| < δ,

which leads to

f ′(x)

{
> 0 for c < x < c+ δ

< 0 for c− δ < x < c
.

By the increasing/decreasing test, f is decreasing on (c − δ, c) and increasing on (c, c + δ).
Further, since f is differentiable at c, f is continuous at c. As a consequence, this implies
f(x) > f(c) for 0 < |x− c| < δ.
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