4.3. How derivatives affect the shape of a graph. (Sec. 4.3 in the textbook.)
Recall that a function f is increasing on (a,b) if f(z) < f(y) for a < z < y < b and

decreasing on (a,b) if f(z) > f(y) fora <z <y <b.
Theorem 4.7 (Increasing/Decreasing test). Let f be a function defined on (a,b).

(1) If f'(z) > O for x € (a,b), then f is increasing on (a,b).

(2) If f'(z) <0 for x € (a,b), then f is decreasing on (a,b).
Proof. Tt loses no generality to assume that f’ > 0 on (a,b). Let a < < y < b. By the mean
value theorem, there is z € (z,y) such that f(y) — f(z) = f'(2)(y — ) > 0, which implies

fy) > f(z). O
Example 4.7. Let f(x) = 32* — 423 — 1222 + 1. Clearly, one may compute f'(z) = 12z(2% —
x —2) = 12z(x 4+ 1)(x — 2). This implies that f* > 0 for z € (—1,0) U (2,00) and f’ < 0 for
x € (—oo,—1) U (0,2). By the increasing/decreasing test, f is increasing on (—1,0) U (2, 00)
and decreasing on (—oo, —1) U (0, 2).

Theorem 4.8 (The first derivative test). Let f be continuous on I and c € I.

(1) If ' changes from positive to negative at ¢, then f has a local mazimum at c.
(2) If ' changes from negative to positive at ¢, then f has a local minimum at c.
(3) If ' does not change sign at ¢, then f has no local extremum at c.

Proof. For Case (1), assume that there is § > 0 such that f/(z) > 0 for z € (¢ — J,¢) and
f'(x) < 0 for © € (¢,c+ §). By the increasing/decreasing test, we have f(z) < f(y) for
c—d<z<y<cand f(x) < f(y) for c <y <z < ¢+ J. By the continuity of f at ¢, this
implies that, for c —d < x1 < c <22 < c+9,

Fe)= lim f(4) > f@r). F(0)= lim f(u) > ().

As a result, f has a local maximum at c¢. The proof of (2) is given by applying (1) at —f.
For (3), we treat the case f'(x) > 0 for 0 < |z — ¢| < ¢, while the other is an immediate
corollary. As before, the increasing/decreasing test yields f(z) < f(y) forc—d <z <y <c
and ¢ < x < y < ¢+ 9. By the continuity of f at ¢, we obtain, for c—d < 1 < ¢ < 22 < ¢+,

f(z1) < lim f(y) = f(e) = lim f(y) < f(z2).
y—rc y—c
O
Remark 4.6. Note that the differentiability of f at ¢ is not required in the first derivative test.
Ezample 4.8. For f(z) = 3z* — 423 — 1222 + 1, it has been proved before that f’ > 0 for
z € (—=1,0)U(2,00) and f" < 0 for x € (—o0, —1) U (0,2). By the first derivative test, f has a
local maximum at 0 and local minima at —1 and 2.

Definition 4.4. Let f be a function defined on an open interval I. f is called
(1) concave upward or convez if, for any x € I, there is M, € R such that

fy) > fl@)+ Ma(y — ), Vyel,y#a
(2) concave downward or concave if, for any = € I, there is M, € R such that
fly) < fl@)+Mu(y—2), Vyel,y#uz.

Remark 4.7. Let f be a function defined on an open interval I.

(1) f is concave upward if and only if — f is concave downward.
(2) If f is concave upward, then f(z) < f(z1) + (v — x1)[f(z2) — f(z1)]/(z2 — z1) for any
r1,T9 € I and any = between z1 and xo.
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(3) If f is concave upward or downward on I, then f is continuous on I.

(4) Suppose f is concave upward and differentiable at ¢. Let M, € R be the slope of the
supporting line at (¢, f(c)), i.e. f(z) > f(c) + (z —¢)M, for x € I and x # c. Then,
one has

F@ =10y ypse H@= 10
x—c r—c
Letting z tend to ¢ implies M. = f’(c). As a result, if f is differentiable on I, then
f is concave upward (resp. downward) if and only if the graph of f lies above (resp.
below) or on its tangent lines.

<M. Vz<ec.

Theorem 4.9 (The concavity test). Let f be a function defined on an open interval I and
assume that f" exists.

(1) If f"(x) > 0 for all x € I, then f is concave upward on I.
(2) If f"(x) <0 for all z € I, then f is concave downward on I.

Proof. We prove (1), while (2) is its simple corollary. For ¢ € I, the tangent line to the curve
y = f(x) at (¢, f(c)) is y = f(c) + (x — ¢)f'(¢). To finish the proof, it remains to show that
f(x) > fle)+ (x—c)f'(c) for all z € T and x # ¢. Fix z € I and = # c¢. By the mean value
theorem, one may select ¢, between = and ¢ such that f(z) — f(¢) = f'(cz)(x —¢). As f'is
differentiable on I, we may choose C,, between ¢, and ¢ such that f'(c;)—f'(¢) = f"(Cy)(cx—c).
Immediately, these two identities lead to f(x) — [f(c) + (z —¢)f'(¢)] = (x — ¢)(cz — ) f"(Cy).
Note that ¢, < Cp < ¢ when z < ¢ and ¢; > C, > ¢ when z > c¢. In addition with the
assumption of f” > 0, one has (x — ¢)(¢, — ¢) f"(Cy) > 0. O

Definition 4.5. A point P on a curve y = f(z) is called an inflection point if f is continuous
at P and the curve changes from concave upward to concave downward or from concave
downward to concave upward at P.

Example 4.9. Let f(z) = 2® — x. Note that f”(x) = 6z. By the concavity test, f is concave
upward on (0,00) and downward on (—o0,0). This implies that (0,0) is the inflection point
of y = f(x).

Theorem 4.10 (The second derivative test). Suppose f'(¢c) =0. If f" >0 (resp. f" <0) in
a neighborhood of ¢, then f has a local minimum (resp. local mazimum) at c.

Remark 4.8. Note that f'(¢) = 0 and f”(¢) # 0 is sufficient to conclude that the local
extremum of f at ¢. Consider the case that f”(c) > 0. Set e = f”(c¢)/2. Since f”(c) exists,
there is > 0 such that

f'(@) = f'(c)

r —cC

—f”(c)‘ <€, YO<|z—cl <6

By the triangle inequality, this implies

!/ 1
Fi(@) >f”(c)—e=m >0, Y0<|z—c¢| <§,
Tr—c 2
which leads to
>0 forc<x<c+d
f'(=) :
<0 forc—d<x<c
By the increasing/decreasing test, f is decreasing on (¢ — d,¢) and increasing on (c,c + 9).
Further, since f is differentiable at ¢, f is continuous at c¢. As a consequence, this implies
f(z) > f(e) for 0 < |z —¢| < 9.
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