4.4. Indeterminate forms and L’Hopital’s rule. (Sec. 4.4 in the textbook.)

Definition 4.6. Let f, g be functions defined in a neighborhood of a. The limit lim % has

r—ra
an indeterminate form of

(1) type § if f(z) — 0 and g(z) — 0 as z — a,
(2) type 2 if f(x) — o0 and g(z) — £o0 as  — a.

Theorem 4.11 (L’Hépital’s rule). Let I be an open interval and a € I. Assume that f,q are
differentiable on I\ {a} with ¢" # 0 and the limit of f/g at a has an indeterminate form of
type 8 or 2. If the limit of f'/g' at a exists or equals oo or —oo, then

lim f(@) = lim f(z)

roa g(z)  woe gz)

Remark 4.8. L’Hopital’s rule also holds for one sided limits and limits at infinity.

Example 4.10. Let f(x) = e*/23. Clearly, the limit of f at oo has an indeterminate form of
type 5. By L’Hopital’s rule, one has
. et et e’
) = i = M e =T
Similarly, let @ > 0 and n € N be such that n — 1 < a <n. By L’Hopital rule, we obtain
X

00 2 xlﬁngoax(a—1)><~-><(a—n—i—1)xa_”

eJ?

Ezample 4.11. Let a > 0 and f(z) = 2%/Ilnz. By L’Hopital’s rule, we have

a axa—l

lim = lim =00
z—oo Inxr  z—oo 1/$

Remark 4.9. Note that L’Hopital’s rule can fail if a limit is not of indeterminate forms. For
instance, applying the rule blindly yields
sin x . (sinzx) . COST

lim — = gim o gy S5
z—at 1 —cosx Tt (1 — COS CE) z—t SIN X

which is wrong. In fact, by the limit laws, sinz/(1 — cosz) — 0 as x — 7.

Ezample 4.12 (Indeterminate difference oo — 00). To compute the right limit of sec z — tan z

at 7/2, we write secx — tanx = —— — She _ l=sinz By 1 fepital’s rule, this implies
COos T CcosS T Ccos T
. . —cosx
lim (secz —tanz)= lim — =
x—(m/2)* z—(r/2)t —sInT

Ezample 4.13 (Indeterminate product 0 - 00). To see the right limit of zlnz at 0, we write
rlnz =Inz/(1/z). This is exactly an indeterminate form of %2 and, by L’Hopital’s rule,

1
lim zlnx = lim i
z—0+t z—0t *1/552

=0.

Example 4.14 (Indeterminate powers 0%, oc?, 1°°). Consider the right limit of 2% at 0 and the
limit of (1+cx)/* at 0. For the first one, we write 2° = exp{zInz}. As exponential functions
are continuous, this implies

lim 2 =expq lim zlnxp =1
z—0t z—0t
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Similarly, the second one is given by

In(1
lin})(l + cx)V/® = exp{lim n(+cx)} = exp{lim ¢ } = e".
T—>

z—0 T z—=0 1+ cx
In particular, one has
n
lim (1+2)" =e, VzeR.

n— 00 n
To prove L’Hopital’s rule, we need Cauchy’s mean value theorem.

Lemma 4.12 (Cauchy’s mean value theorem). Let f, g be functions continuous on |a,b] and
differentiable on (a,b). Assume that ¢'(x) # 0 on (a,b). Then, there is ¢ € (a,b) such that

f'e) _ f(b) = f(a)

g'(c)  g(b) —gla)
Proof. The proof of Cauchy’s mean value theorem is an application of Rolle’s theorem to
h(z) = [f(b) — f(a)][g(x) — g(a)] — [g(b) — g(a)][f(x) — f(a)], of which details are omitted. O

Proof of L’Hépital’s rule. It suffices to consider the indeterminate forms of one-sided limits.
First, assume that f(z) — 0 and g(x) — 0 as z — a™. Set

L= tim L& F<x>:{f(x) o G {gm if >

a—at ¢ ()’ 0 ifr=a’ o ifr=a

Clearly, F' and G are right-continuous at a and the right-limits of f/g and F//G at a coincide.

Let § > 0 be such that (a,a+ ) C I. Note that, for x € (a,a+ ), F and G are continuous
on [a,z] and differentiable on (a,z) with G'(z) # 0. By Cauchy’s mean value theorem, there
is y € (a,z) such that

(f'(y) _> F'(y) _F(x)—F(a) _ F(x) (_ f(ﬂ«“))
g )Gy G)-Gla) G)\ glx)/)
As z — a™ implies y — a™, the above identities leads to f(z)/g(z) — L as x — a™.

Next, assume that f(z) — oo, g(z) — oo and f'(z)/¢'(z) — L as x — at. We treat the
case of L € R, while the other case can be proved similarly and omitted. Let ¢ > 0. Since
f'(x)/g'(x) — L as z — a™, we may choose §; > 0 such that |f'(x)/¢'(z) — L| < €/6 for
a <x<a+d. Set xy = a+ 01/2 and let € (a,x0). Note that f,g are continuous on
[z, xg], differentiable on (x,z0) and ¢’ # 0 on (z, (). By Cauchy’s mean value theorem, there
is y € (z,x0) such that

F'y) _ f@) = f(zo) _ f(z)/9(x) = [(z0)/g(x)

gy g(z) = g(zo) 1= g(x0)/9()
As y € (x,z9) C (a,a+ 1), we have, for a < z < zp,

f@)/g(a) —L| _|g(zo)L — f(zo)| _ ‘f(w)/g(x) — f@o)/g(x) ;| _ €
L—g(wo)/9(x)| | g(@)—g(wo) | 7| 1—g(z0)/g(x) 6
Since g(x) — oo as © — a™, one may select 0 < Jy < &1/2 such that
g(xo)L — f(zo)| € )
‘ o(z) = 9(x0) 3 0< |1 o(2) <2, Va<zxz<a+do.
Consequently, we obtain |f(z)/g(x) — L| < € for a < x < a + 0. O
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