
4.4. Indeterminate forms and L’Hôpital’s rule. (Sec. 4.4 in the textbook.)

Definition 4.6. Let f, g be functions defined in a neighborhood of a. The limit lim
x→a

f(x)
g(x) has

an indeterminate form of

(1) type 0
0 if f(x) → 0 and g(x) → 0 as x → a,

(2) type ∞
∞ if f(x) → ±∞ and g(x) → ±∞ as x → a.

Theorem 4.11 (L’Hôpital’s rule). Let I be an open interval and a ∈ I. Assume that f, g are
differentiable on I \ {a} with g′ ̸= 0 and the limit of f/g at a has an indeterminate form of
type 0

0 or ∞
∞ . If the limit of f ′/g′ at a exists or equals ∞ or −∞, then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Remark 4.8. L’Hôpital’s rule also holds for one sided limits and limits at infinity.

Example 4.10. Let f(x) = ex/x3. Clearly, the limit of f at ∞ has an indeterminate form of
type ∞

∞ . By L’Hôpital’s rule, one has

lim
x→∞

f(x) = lim
x→∞

ex

3x2
= lim

x→∞

ex

6x
= lim

x→∞

ex

6
= ∞.

Similarly, let a > 0 and n ∈ N be such that n− 1 < a ≤ n. By L’Hôpital rule, we obtain

lim
x→∞

ex

xa
= lim

x→∞

ex

a× (a− 1)× · · · × (a− n+ 1)xa−n
= ∞.

Example 4.11. Let a > 0 and f(x) = xa/ lnx. By L’Hôpital’s rule, we have

lim
x→∞

xa

lnx
= lim

x→∞

axa−1

1/x
= ∞.

Remark 4.9. Note that L’Hôpital’s rule can fail if a limit is not of indeterminate forms. For
instance, applying the rule blindly yields

lim
x→π+

sinx

1− cosx
= lim

x→π+

(sinx)′

(1− cosx)′
= lim

x→π+

cosx

sinx
= ∞,

which is wrong. In fact, by the limit laws, sinx/(1− cosx) → 0 as x → π+.

Example 4.12 (Indeterminate difference ∞−∞). To compute the right limit of secx− tanx
at π/2, we write secx− tanx = 1

cosx − sinx
cosx = 1−sinx

cosx . By L’Hôpital’s rule, this implies

lim
x→(π/2)+

(secx− tanx) = lim
x→(π/2)+

− cosx

− sinx
= 0.

Example 4.13 (Indeterminate product 0 · ∞). To see the right limit of x lnx at 0, we write
x lnx = lnx/(1/x). This is exactly an indeterminate form of ∞

∞ and, by L’Hôpital’s rule,

lim
x→0+

x lnx = lim
x→0+

1/x

−1/x2
= 0.

Example 4.14 (Indeterminate powers 00, ∞0, 1∞). Consider the right limit of xx at 0 and the

limit of (1+cx)1/x at 0. For the first one, we write xx = exp{x lnx}. As exponential functions
are continuous, this implies

lim
x→0+

xx = exp

{
lim

x→0+
x lnx

}
= 1

34



Similarly, the second one is given by

lim
x→0

(1 + cx)1/x = exp

{
lim
x→0

ln(1 + cx)

x

}
= exp

{
lim
x→0

c

1 + cx

}
= ec.

In particular, one has

lim
n→∞

(
1 +

x

n

)n
= ex, ∀x ∈ R.

To prove L’Hôpital’s rule, we need Cauchy’s mean value theorem.

Lemma 4.12 (Cauchy’s mean value theorem). Let f, g be functions continuous on [a, b] and
differentiable on (a, b). Assume that g′(x) ̸= 0 on (a, b). Then, there is c ∈ (a, b) such that

f ′(c)

g′(c)
=

f(b)− f(a)

g(b)− g(a)
.

Proof. The proof of Cauchy’s mean value theorem is an application of Rolle’s theorem to
h(x) = [f(b)− f(a)][g(x)− g(a)]− [g(b)− g(a)][f(x)− f(a)], of which details are omitted. �
Proof of L’Hôpital’s rule. It suffices to consider the indeterminate forms of one-sided limits.
First, assume that f(x) → 0 and g(x) → 0 as x → a+. Set

L = lim
x→a+

f ′(x)

g′(x)
, F (x) =

{
f(x) if x > a

0 if x = a
, G(x) =

{
g(x) if x > a

0 if x = a

Clearly, F and G are right-continuous at a and the right-limits of f/g and F/G at a coincide.
Let δ > 0 be such that (a, a+ δ) ⊂ I. Note that, for x ∈ (a, a+ δ), F and G are continuous

on [a, x] and differentiable on (a, x) with G′(x) ̸= 0. By Cauchy’s mean value theorem, there
is y ∈ (a, x) such that(

f ′(y)

g′(y)
=

)
F ′(y)

G′(y)
=

F (x)− F (a)

G(x)−G(a)
=

F (x)

G(x)

(
=

f(x)

g(x)

)
.

As x → a+ implies y → a+, the above identities leads to f(x)/g(x) → L as x → a+.
Next, assume that f(x) → ∞, g(x) → ∞ and f ′(x)/g′(x) → L as x → a+. We treat the

case of L ∈ R, while the other case can be proved similarly and omitted. Let ϵ > 0. Since
f ′(x)/g′(x) → L as x → a+, we may choose δ1 > 0 such that |f ′(x)/g′(x) − L| < ϵ/6 for
a < x < a + δ1. Set x0 = a + δ1/2 and let x ∈ (a, x0). Note that f, g are continuous on
[x, x0], differentiable on (x, x0) and g′ ̸= 0 on (x, x0). By Cauchy’s mean value theorem, there
is y ∈ (x, x0) such that

f ′(y)

g′(y)
=

f(x)− f(x0)

g(x)− g(x0)
=

f(x)/g(x)− f(x0)/g(x)

1− g(x0)/g(x)
.

As y ∈ (x, x0) ⊂ (a, a+ δ1), we have, for a < x < x0,∣∣∣∣ f(x)/g(x)− L

1− g(x0)/g(x)

∣∣∣∣− ∣∣∣∣g(x0)L− f(x0)

g(x)− g(x0)

∣∣∣∣ ≤ ∣∣∣∣f(x)/g(x)− f(x0)/g(x)

1− g(x0)/g(x)
− L

∣∣∣∣ < ϵ

6
.

Since g(x) → ∞ as x → a+, one may select 0 < δ2 < δ1/2 such that∣∣∣∣g(x0)L− f(x0)

g(x)− g(x0)

∣∣∣∣ < ϵ

3
, 0 <

∣∣∣∣1− g(x0)

g(x)

∣∣∣∣ < 2, ∀a < x < a+ δ2.

Consequently, we obtain |f(x)/g(x)− L| < ϵ for a < x < a+ δ2. �

35


