4.4. Indeterminate forms and L'Hôpital's rule. (Sec. 4.4 in the textbook.)

Definition 4.6. Let f, g be functions defined in a neighborhood of a. The limit $\lim_{x \to a} \frac{f(x)}{g(x)}$ has an indeterminate form of

- (1) type $\frac{0}{0}$ if $f(x) \to 0$ and $g(x) \to 0$ as $x \to a$, (2) type $\frac{\infty}{\infty}$ if $f(x) \to \pm \infty$ and $g(x) \to \pm \infty$ as $x \to a$.

Theorem 4.11 (L'Hôpital's rule). Let I be an open interval and $a \in I$. Assume that f, g are differentiable on $I \setminus \{a\}$ with $g' \neq 0$ and the limit of f/g at a has an indeterminate form of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$. If the limit of f'/g' at a exists or equals ∞ or $-\infty$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Remark 4.8. L'Hôpital's rule also holds for one sided limits and limits at infinity.

Example 4.10. Let $f(x) = e^x/x^3$. Clearly, the limit of f at ∞ has an indeterminate form of type $\frac{\infty}{\infty}$. By L'Hôpital's rule, one has

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{e^x}{3x^2} = \lim_{x \to \infty} \frac{e^x}{6x} = \lim_{x \to \infty} \frac{e^x}{6} = \infty$$

Similarly, let a > 0 and $n \in \mathbb{N}$ be such that $n - 1 < a \leq n$. By L'Hôpital rule, we obtain

$$\lim_{x \to \infty} \frac{e^x}{x^a} = \lim_{x \to \infty} \frac{e^x}{a \times (a-1) \times \dots \times (a-n+1)x^{a-n}} = \infty.$$

Example 4.11. Let a > 0 and $f(x) = x^a / \ln x$. By L'Hôpital's rule, we have

$$\lim_{x \to \infty} \frac{x^a}{\ln x} = \lim_{x \to \infty} \frac{ax^{a-1}}{1/x} = \infty$$

Remark 4.9. Note that L'Hôpital's rule can fail if a limit is not of indeterminate forms. For instance, applying the rule blindly yields

$$\lim_{x \to \pi^+} \frac{\sin x}{1 - \cos x} = \lim_{x \to \pi^+} \frac{(\sin x)'}{(1 - \cos x)'} = \lim_{x \to \pi^+} \frac{\cos x}{\sin x} = \infty,$$

which is wrong. In fact, by the limit laws, $\sin x/(1 - \cos x) \to 0$ as $x \to \pi^+$.

Example 4.12 (Indeterminate difference $\infty - \infty$). To compute the right limit of $\sec x - \tan x$ at $\pi/2$, we write $\sec x - \tan x = \frac{1}{\cos x} - \frac{\sin x}{\cos x} = \frac{1 - \sin x}{\cos x}$. By L'Hôpital's rule, this implies

$$\lim_{x \to (\pi/2)^+} (\sec x - \tan x) = \lim_{x \to (\pi/2)^+} \frac{-\cos x}{-\sin x} = 0.$$

Example 4.13 (Indeterminate product $0 \cdot \infty$). To see the right limit of $x \ln x$ at 0, we write $x\ln x = \ln x/(1/x).$ This is exactly an indeterminate form of $\frac{\infty}{\infty}$ and, by L'Hôpital's rule,

$$\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = 0.$$

Example 4.14 (Indeterminate powers $0^0, \infty^0, 1^\infty$). Consider the right limit of x^x at 0 and the limit of $(1+cx)^{1/x}$ at 0. For the first one, we write $x^x = \exp\{x \ln x\}$. As exponential functions are continuous, this implies

$$\lim_{x \to 0^+} x^x = \exp\left\{\lim_{\substack{x \to 0^+ \\ 34}} x \ln x\right\} = 1$$

Similarly, the second one is given by

$$\lim_{x \to 0} (1+cx)^{1/x} = \exp\left\{\lim_{x \to 0} \frac{\ln(1+cx)}{x}\right\} = \exp\left\{\lim_{x \to 0} \frac{c}{1+cx}\right\} = e^c.$$

In particular, one has

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x, \quad \forall x \in \mathbb{R}.$$

To prove L'Hôpital's rule, we need Cauchy's mean value theorem.

Lemma 4.12 (Cauchy's mean value theorem). Let f, g be functions continuous on [a, b] and differentiable on (a, b). Assume that $g'(x) \neq 0$ on (a, b). Then, there is $c \in (a, b)$ such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Proof. The proof of Cauchy's mean value theorem is an application of Rolle's theorem to h(x) = [f(b) - f(a)][g(x) - g(a)] - [g(b) - g(a)][f(x) - f(a)], of which details are omitted. \Box *Proof of L'Hôpital's rule.* It suffices to consider the indeterminate forms of one-sided limits. First, assume that $f(x) \to 0$ and $g(x) \to 0$ as $x \to a^+$. Set

$$L = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}, \quad F(x) = \begin{cases} f(x) & \text{if } x > a \\ 0 & \text{if } x = a \end{cases}, \quad G(x) = \begin{cases} g(x) & \text{if } x > a \\ 0 & \text{if } x = a \end{cases}$$

Clearly, F and G are right-continuous at a and the right-limits of f/g and F/G at a coincide.

Let $\delta > 0$ be such that $(a, a + \delta) \subset I$. Note that, for $x \in (a, a + \delta)$, F and G are continuous on [a, x] and differentiable on (a, x) with $G'(x) \neq 0$. By Cauchy's mean value theorem, there is $y \in (a, x)$ such that

$$\left(\frac{f'(y)}{g'(y)}\right) = \frac{F'(y)}{G'(y)} = \frac{F(x) - F(a)}{G(x) - G(a)} = \frac{F(x)}{G(x)} \left(=\frac{f(x)}{g(x)}\right).$$

As $x \to a^+$ implies $y \to a^+$, the above identities leads to $f(x)/g(x) \to L$ as $x \to a^+$.

Next, assume that $f(x) \to \infty$, $g(x) \to \infty$ and $f'(x)/g'(x) \to L$ as $x \to a^+$. We treat the case of $L \in \mathbb{R}$, while the other case can be proved similarly and omitted. Let $\epsilon > 0$. Since $f'(x)/g'(x) \to L$ as $x \to a^+$, we may choose $\delta_1 > 0$ such that $|f'(x)/g'(x) - L| < \epsilon/6$ for $a < x < a + \delta_1$. Set $x_0 = a + \delta_1/2$ and let $x \in (a, x_0)$. Note that f, g are continuous on $[x, x_0]$, differentiable on (x, x_0) and $g' \neq 0$ on (x, x_0) . By Cauchy's mean value theorem, there is $y \in (x, x_0)$ such that

$$\frac{f'(y)}{g'(y)} = \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f(x)/g(x) - f(x_0)/g(x)}{1 - g(x_0)/g(x)}$$

As $y \in (x, x_0) \subset (a, a + \delta_1)$, we have, for $a < x < x_0$,

$$\left|\frac{f(x)/g(x) - L}{1 - g(x_0)/g(x)}\right| - \left|\frac{g(x_0)L - f(x_0)}{g(x) - g(x_0)}\right| \le \left|\frac{f(x)/g(x) - f(x_0)/g(x)}{1 - g(x_0)/g(x)} - L\right| < \frac{\epsilon}{6}.$$

Since $g(x) \to \infty$ as $x \to a^+$, one may select $0 < \delta_2 < \delta_1/2$ such that

$$\left|\frac{g(x_0)L - f(x_0)}{g(x) - g(x_0)}\right| < \frac{\epsilon}{3}, \quad 0 < \left|1 - \frac{g(x_0)}{g(x)}\right| < 2, \quad \forall a < x < a + \delta_2.$$

Consequently, we obtain $|f(x)/g(x) - L| < \epsilon$ for $a < x < a + \delta_2$.