4.6. Optimization problems. (Sec. 4.7 in the textbook)

Example 4.18. Consider the areas of rectangles inscribed in the circle $x^{2}+y^{2}=1$. Let (x, y) be the point of the intercept of a rectangle and the unit circle in the first quadrant. Then, the area of this rectangle is $A=4 x y$. To see the maximum of A, we write $x=\cos \theta$ and $y=\sin \theta$ with $\theta \in(0, \pi / 2)$. Clearly, A is a function of θ given by $A(\theta)=4 \sin \theta \cos \theta=2 \sin (2 \theta)$. Note that

$$
A^{\prime}(\theta)=4 \cos (2 \theta) \begin{cases}>0 & \text { for } \theta \in(0, \pi / 4) \\ <0 & \text { for } \theta \in(\pi / 4, \pi / 2)\end{cases}
$$

By the increasine/decreasin test, A is increasing on $(0, \pi / 4)$ and decreasing on $(\pi / 4, \pi / 2)$. This implies that $\theta=\pi / 4$ is the maximum of A on $(0, \pi / 2)$ with value $A(\pi / 4)=2$.
Example 4.19. The $\mathrm{R} \& \mathrm{D}$ department in a can factory plans to design an one-liter cylindrical can and want to know what dimensions minimize the usage of tin. Let h and r be the height and the radius of the bottom. Then, the dimensions satisfy $\pi r^{2} h=1000$ and the surface area of the can is $A(r)=2 \pi r^{2}+2 \pi r h=2 \pi r^{2}+\frac{2000}{r}$ with $r \in(0, \infty)$. Note that

$$
A^{\prime}(r)=4 \pi r-\frac{2000}{r^{2}}, \quad A^{\prime \prime}(r)=4 \pi+\frac{4000}{r^{3}}
$$

This implies that $A^{\prime}\left(r_{0}\right)=0$, where $r_{0}=(500 / \pi)^{1 / 3}$, and $A^{\prime \prime}>0$. By the increasing/decreasing test, $A^{\prime}<0$ on $\left(0, r_{0}\right)$ and $A^{\prime}>0$ on $\left(r_{0}, \infty\right)$. Consequently, A is decreasing on $\left(0, r_{0}\right)$ and increasing on $\left(r_{0}, \infty\right)$. Hence, r_{0} is the global minimum of A on $(0, \infty)$.
Example 4.20. A cellular phone is sold at price $\$ 350$ and the weekly sale volume is 200 units. The customer census shows that the weekly sale volume evolves linearly and increase 20 units if a rebate of $\$ 10$ is made. To see the price that maximizes the revenue, let x be the weekly sale volume, $p(x)$ be the corresponding price of a unit and $R(x)$ be the weekly revenue. Immediately, one has

$$
p(x)=350-\frac{10}{20}(x-200)=450-\frac{x}{2}, \quad R(x)=x p(x)=450 x-\frac{x^{2}}{2}
$$

Note that $R^{\prime}(x)=450-x$. By the first derivative test, R is increasing on $(0,450)$ and decreasing on $(450, \infty)$. This implies that R has its global maximum at $x=450$ and the corresponding price is $p(450)=225$.

