4.7. Antiderivatives. (Sec. 4.9 in the textbook)

Definition 4.8. F is an antiderivative of f on an interval I if $F^{\prime}(x)=f(x)$ for all $x \in I$.
Theorem 4.13. If F and G are both antiderivatives of f on an interval I, then there is $c \in \mathbb{R}$ such that $G(x)=F(x)+c$ for all $x \in I$.
Remark 4.12. In general, when F is an antiderivative of f on an interval I, we shall write $F(x)+C$, where C is a constant, for any antiderivative of f on I.
Remark 4.13. If F, G are antiderivatives of f, g, then $c F$ and $F+G$ are antiderivatives of $c f$ and $f+g$.

Example 4.21. Let $f_{1}(x)=\cos x, f_{2}(x)=1 / x, f_{3}(x)=x^{r}$ with $r \neq-1$ and $f_{4}(x)=e^{x}$. Then, their antiderivatives are $F_{i}+C$, where

$$
F_{1}(x)=\sin x, \quad F_{2}(x)=\ln x, \quad F_{3}(x)=\frac{x^{r+1}}{r+1}, \quad F_{4}(x)=e^{x} .
$$

Example 4.22. Consider the antiderivative F of $f(x)=e^{x}+\frac{20}{1+x^{2}}$ satisfying $F(0)=-2$. Note that e^{x} and $\tan ^{-1} x$ are antiderivatives of e^{x} and $\frac{1}{1+x^{2}}$. This implies $F(x)=e^{x}+20 \tan ^{-1} x+C$ for some $C \in \mathbb{R}$. Letting $x=0$ implies $C=F(0)-e^{0}-20 \tan ^{-1} 0=-3$. Hence, $F(x)=$ $e^{x}+20 \tan ^{-1} x-3$.

Example 4.23. A car moves in a straight line with acceleration $a(t)=6 t+4$. Assume that the velocity at time 0 is $v(0)=-6$ and the position at time 1 is $s(1)=2$. Note that $s^{\prime}=v$ and $v^{\prime}=a$. By the second identity, one has $v(t)=3 t^{2}+4 t+C_{1}$. Letting $t=0$ implies $C_{1}=$ $v(0)=-6$, which yields $v(t)=3 t^{2}+4 t-6$. Similarly, we obtain $s(t)=t^{3}+2 t^{2}-6 t+C_{2}$. By applying $t=1$ to the equation, we obtain $C_{2}=s(1)+3=5$ and, hence, $s(t)=t^{3}+2 t^{2}-6 t+5$.
Example 4.24. Consider a ball thrown upward at the speed of $15 \mathrm{~m} / \mathrm{s}$ from the edge of a cliff 140 m above the ground. To record the trajectory of the ball, let $a(t), v(t)$ and $s(t)$ be the functions of acceleration, velocity and position. Then, one has $s^{\prime}(t)=v(t), v^{\prime}(t)=a(t)$ and $a(t)=-9.8$ for $t \geq 0$. This implies $v(t)=-9.8 t+C_{1}$ and then $s(t)=-4.9 t^{2}+C_{1} t+C_{2}$. Along with the initial conditions, $s(0)=140$ and $v(0)=15$, we obtain $C_{1}=v(0)=15$ and $C_{2}=140$. Thus, $s(t)=-4.9 t^{2}+15 t+140$. By writing

$$
s(t)=-4.9\left(t-\frac{15}{9.8}\right)^{2}+140-\frac{225}{19.6}
$$

it is easy to see that the ball reaches the maximum height at time $15 / 9.8$ with height $225 / 19.6 \approx$ 151.48 m .

