5. Integrals

5.1. Areas and distances. (Sec. 5.1 in the textbook)

Let $f(x)=x^{2}$ and $S=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq f(x)\}$. To see the area A of S, let's partition $[0,1]$ into $[0,1 / n],[1 / n, 2 / n], \ldots,[1-1 / n, 1]$ and set

$$
R_{n}=\sum_{i=1}^{n} f\left(\frac{i}{n}\right) \times \frac{1}{n}, \quad L_{n}=\sum_{i=0}^{n-1} f\left(\frac{i}{n}\right) \times \frac{1}{n}
$$

Since f is increasing on $[0,1]$, one has $L_{n}<A<R_{n}$. Note that $L_{n}=R_{n}-1 / n$ and

$$
R_{n}=\frac{(n+1)(2 n+1)}{6 n^{2}} \rightarrow \frac{1}{3}, \quad \text { as } n \rightarrow \infty
$$

By the squeeze theorem, we obtain $A=1 / 3$.
In the same spirit, for any continuous function f on $[a, b]$, we set $\Delta x=(b-a) / n, x_{i}=a+i \Delta x$ and

$$
L_{n}=\Delta x \sum_{i=0}^{n-1} f\left(x_{i}\right), \quad R_{n}=\Delta x \sum_{i=1}^{n} f\left(x_{i}\right)
$$

By the (uniform) continuity of f on $[a, b], L_{n}-R_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Definition 5.1. Let f be a nonnegative continuous function on $[a, b]$. Then, the area of the region $\{(x, y) \mid a \leq x \leq b, 0 \leq y \leq f(x)\}$ is defined to be the limit of R_{n}.

In the above definition, if the endpoints are replaced with any point in $\left[x_{i-1}, x_{i}\right]$, say x_{i}^{*}, then one obtains a new sequence to approximate the area. In this case, we call $x_{1}^{*}, \ldots, x_{n}^{*}$ sample points. Particularly, if f has its maximum and minimum over $\left[x_{i-1}, x_{i}\right]$ at x_{i}^{*} and y_{i}^{*} (by the extremum value theorem), then the continuity of f on $[a, b]$ implies $\Delta x \sum_{i=1}^{n}\left[f\left(x_{i}^{*}\right)-f\left(y_{i}^{*}\right)\right] \rightarrow 0$ as $n \rightarrow \infty$. This implies that, for any sample point $x_{i}^{*}, \Delta x \sum_{i=1}^{n} f\left(x_{i}^{*}\right)$ has the same limit, which equals to the limit of R_{n} and L_{n}.

Example 5.1. Consider a car of which odometer is broken. To estimate the driven distance over a period of 30 seconds, the driver reads the speedometer every 5 seconds and the record is as follows.

Time (seconds)	0	5	10	15	20	25	30
Velocity $(\mathrm{km} / \mathrm{h})$	27	34	38	46	51	50	45

Through the equality $1 \mathrm{~km} / \mathrm{h}=1 / 3.6 \mathrm{~m} / \mathrm{s}$, the above table turns out the following one.

Time (seconds)	0	5	10	15	20	25	30
Velocity (m/s)	7.5	9.4	10.6	12.8	14.2	13.9	12.5

Using the velocity at the beginning of each 5 -second period as the average velocity, the travelling distance is given by

$$
7.5 \cdot 5+9.4 \cdot 5+10.6 \cdot 5+12.8 \cdot 5+14.2 \cdot 5+13.9 \cdot 5=342
$$

Similarly, if the velocity at the end of each 5 -second period is regarded as the average velocity, then the travelling distance becomes

$$
9.4 \cdot 5+10.6 \cdot 5+12.8 \cdot 5+14.2 \cdot 5+13.9 \cdot 5+12.5 \cdot 5=367
$$

