5.2. The definite integral. (Sec. 5.2 in the textbook)

Definition 5.2. Let f be a function defined on $[a, b]$. Set $\Delta x=\frac{b-a}{n}, x_{i}=a+i \Delta x$ and let $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$ for $1 \leq i \leq n$. The definite integral of f from a to b is denoted and defined by

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x \tag{5.1}
\end{equation*}
$$

provided the limit exists and is independent of the choice of sample points. In this case, we say that f is integrable on $[a, b]$.

Remark 5.1. The symbol of \int is introduced by Leibniz and called the integral sign. In the notation $\int_{a}^{b} f(x) d x, f$ is called the integrand and a, b are called the limits of integration, whereas a refers to the lower limit and b refers to the upper limit. The procedure of calculating an integral is called integration.
Remark 5.2. The summation in the right hand side of (5.1) is called the Riemann sum.
Remark 5.3. Among all choices of sample points, the Riemann sum with midpoints,

$$
\Delta x \sum_{i=1}^{n} f\left(\frac{x_{i-1}+x_{i}}{2}\right)
$$

is generally closer to the desired integral than those with left or right endpoints.
Remark 5.4. In fact, one may consider non-uniform partitions of $[a, b]$ in Definition 5.2. In detail, let $x_{0}=a<x_{1}<\cdots<x_{n}=b$ be a partition of $[a, b]$, set $\Delta x_{i}=x_{i}-x_{i-1}$ and select $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$. More rigorously, we say that f is integrable on $[a, b]$ if the following limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i} \tag{5.2}
\end{equation*}
$$

exists and independent of the choice of x_{0}, \ldots, x_{n} satisfying $\max \left\{\Delta x_{i} \mid 1 \leq i \leq n\right\} \rightarrow 0$ and independent of the selection of sample points. Actually, the definition in (5.2) is consistent with the definition in (5.1).

Example 5.2. Let f, g be functions defined by

$$
f(x)=\left\{\begin{array}{ll}
1 & \text { for } x \in \mathbb{Q} \\
0 & \text { for } x \notin \mathbb{Q}
\end{array}, \quad g(x)= \begin{cases}1 & \text { if } x \neq 1 / 2 \\
0 & \text { if } x=1 / 2\end{cases}\right.
$$

Then, f is not integrable but g is integrable.
Theorem 5.1. Let $\Delta x, x_{i}$ be as in Definition 5.2. If f is integrable on $[a, b]$, then

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} f\left(x_{i}\right) \Delta x \tag{5.3}
\end{equation*}
$$

Theorem 5.2. If f is continuous on $[a, b]$ or has only finitely many jump discontinuities, then f is integrable on $[a, b]$.
Example 5.3. Let $f(x)=x^{3}+x \sin x$. Since f is continuous on $[0, \pi]$,

$$
\int_{0}^{\pi} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(x_{i}^{3}+x_{i} \sin x_{i}\right) \Delta x, \quad x_{i}=\frac{i \pi}{n}, \quad \Delta x=\frac{\pi}{n}
$$

Some formulas on the evaluation of integrals

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}, \quad \sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4} .
$$

and

$$
\sum_{i=1}^{n} c=n c, \quad \sum_{i=1}^{n} c a_{i}=c \sum_{i=1}^{n} a_{i}, \quad \sum_{i=1}^{n}\left(a_{i} \pm b_{i}\right)=\sum_{i=1}^{n} a_{i} \pm \sum_{i=1}^{n} b_{i} .
$$

Example 5.4. Let $f(x)=x^{3}-6 x$ and set $R_{n}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$, where $\Delta x=3 / n$ and $x_{i}=3 i / n$. Note that

$$
R_{n}=\frac{3}{n} \sum_{i=1}^{n}\left[\left(\frac{3 i}{n}\right)^{3}-6 \cdot \frac{3 i}{n}\right]=\frac{3}{n}\left[\frac{27}{n^{3}} \sum_{i=1}^{n} i^{3}-\frac{18}{n} \sum_{i=1}^{n} i\right]=\frac{81}{4}\left(1+\frac{1}{n}\right)^{2}-27\left(1+\frac{1}{n}\right) .
$$

By Theorem 5.2, $\int_{0}^{3}\left(x^{3}-6 x\right) d x=-27 / 4$.
Example 5.5. To compute $\int_{1}^{2} e^{x} d x$, we need to estimate its Riemann sum. Note that

$$
R_{n}=\frac{1}{n} \sum_{i=1}^{n} e^{1+i / n}=\frac{e}{n} \sum_{i=1}^{n}\left(e^{1 / n}\right)^{i}=\frac{e}{n} \cdot \frac{e^{1 / n}\left[e^{n / n}-1\right]}{e^{1 / n}-1}=\left(e^{2}-e\right) \frac{1 / n}{1-e^{-1 / n}} .
$$

By L'Hôpital's rule, this implies

$$
\int_{1}^{2} e^{x} d x=\lim _{n \rightarrow \infty} R_{n}=\left(e^{2}-e\right) \lim _{x \rightarrow 0^{+}} \frac{x}{1-e^{-x}}=\left(e^{2}-e\right) \lim _{x \rightarrow 0^{+}} \frac{1}{e^{-x}}=e^{2}-e
$$

Example 5.6. To evaluate the integrals of $\int_{0}^{1} \sqrt{1-x^{2}} d x$ and $\int_{0}^{1}(x-1) d x$, one may interpret them as the areas of some regions and obtain the results of $\pi / 4$ and $-1 / 2$.

Properties of definite integrals Let f, g be integrable functions and $a, b, c, A, m, M \in \mathbb{R}$.
(1) $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x, \quad \forall a<b ;$
(2) $\int_{a}^{a} f(x) d x=0$;
(3) $\int_{a}^{b} A d x=A(b-a)$;
(4) $\int_{a}^{b}[f(x) \pm g(x)] d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x ;$
(5) $\int_{a}^{b} A f(x) d x=A \int_{a}^{b} f(x) d x$;
(6) $\int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x$;
(7) $f(x) \geq g(x), \forall a \leq x \leq b, \quad \Rightarrow \quad \int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$;
(8) $m \leq f(x) \leq M, \forall a \leq x \leq b, \quad \Rightarrow \quad m(b-a) \leq \int_{a}^{b} f(x) d x \leq \int M(b-a)$.

The above properties follows immediately from the definition of integration and the limit laws, whereas the details are omitted.

