### 5.3. The fundamental theorem of calculus. (Sec. 5.3 in the textbook)

Theorem 5.3 (The first part of the fundamental theorem of calculus). Let $f$ be continuous on $[a, b]$ and set

$$
g(x)=\int_{a}^{x} f(t) d t \quad \forall x \in[a, b] .
$$

Then, $g$ is continuous on $[a, b]$, differentiable on $(a, b)$ and $g^{\prime}(x)=f(x)$ for $x \in(a, b)$.
Proof. Let $x \in(a, b)$ and $h>0$ such that $x+h \in[a, b]$. Write

$$
g(x+h)-g(x)=\int_{a}^{x+h} f(t) d t-\int_{a}^{x} f(t) d t=\int_{x}^{x+h} f(t) d t .
$$

Since $f$ is continuous on $[x, x+h]$, we may choose (by the extremum value theorem) $u, v \in$ $[x, x+h]$ such that $f(u) \leq f(t) \leq f(v)$ for $t \in[x, x+h]$. This implies

$$
f(u) \leq \frac{g(x+h)-g(x)}{h} \leq f(v) .
$$

Note that $u, v \rightarrow x$, when $h \rightarrow 0$. By the continuity of $f$ and the Squeeze theorem, we obtain

$$
\lim _{h \rightarrow 0^{+}} \frac{g(x+h)-g(x)}{h}=f(x), \quad \forall x \in[a, b), \quad \lim _{h \rightarrow 0^{+}} g(a+h)=g(a) .
$$

A similar statement as before yields

$$
\lim _{h \rightarrow 0^{-}} \frac{g(x+h)-g(x)}{h}=f(x), \quad \forall x \in(a, b], \quad \lim _{h \rightarrow 0^{-}} g(b+h)=g(b) .
$$

As a consequence, $g^{\prime}(x)=f(x)$ for $x \in(a, b)$ and $g$ is continuous on $[a, b]$.
Remark 5.5. If $f$ is continuous on $[a, b]$, then

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=\frac{d}{d x} \int_{b}^{x} f(t) d t=f(x), \quad \forall a<x<b
$$

Example 5.7. To differentiate $\int_{0}^{x} \sin t^{2} d t$ and $\int_{0}^{x^{2}} \sin t^{2} d t$, we set $f(t)=\sin t^{2}$ and $g(x)=$ $\int_{0}^{x} f(t) d t$. By the fundamental theorem of calculus, this implies

$$
g^{\prime}(x)=\frac{d}{d x} \int_{0}^{x} \sin t^{2} d t=f(x)=\sin x^{2}
$$

and

$$
\frac{d}{d x} \int_{0}^{x^{2}} \sin t^{2} d t=\frac{d}{d x} g\left(x^{2}\right)=g^{\prime}\left(x^{2}\right) \times 2 x=2 x \sin x^{4}
$$

Theorem 5.4 (The second part of the fundamental theorem of calculus). Suppose $f$ is continuous on $[a, b]$ and let $F$ be an antiderivative of $f$ on $(a, b)$, which is continuous on $[a, b]$. Then,

$$
\int_{a}^{b} f(t) d t=\left.F(x)\right|_{a} ^{b}:=F(b)-F(a)
$$

Proof. Set $g(x)=\int_{a}^{x} f(t) d t$. By the first part of the fundamental theorem of calculus, $g^{\prime}=f$ on ( $a, b$ ). Since $F^{\prime}=f$ on $(a, b)$, there is $C \in \mathbb{R}$ such that $g=F+C$ on $(a, b)$. As $g$ and $F$ are continuous on $[a, b]$, one has $g=F+C$ on $[a, b]$. Consequently, this implies

$$
0=\int_{a}^{a} f(t) d t=g(a)=F(a)+C, \quad \int_{a}^{b} f(t) d t=g(b)=F(b)+C .
$$

Example 5.8. Consider the integrals of $\int_{1}^{2} e^{x} d x, \int_{a}^{b} \frac{1}{\sqrt{1-x^{2}}} d x$ and $\int_{1}^{2} \frac{d x}{x}$. Note that the antiderivatives of $e^{x}, \frac{1}{\sqrt{1-x^{2}}}$ and $\frac{1}{x}$ are $e^{x}, \sin ^{-1} x$ and $\ln x$. By the second part of the fundamental theorem of calculus, we have $\int_{1}^{2} e^{x} d x=e^{2}-e, \int_{a}^{b} \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} b-\sin ^{-1} a$ for $-1<a<b<1$ and $\int_{1}^{2} \frac{d x}{x}=\ln 2-\ln 1=\ln 2$.

Both parts of the fundamental theorem of calculus can be summarized as follows.
Theorem 5.5 (The fundamental theorem of calculus). Let $f$ be a continuous function on $[a, b]$ and $F$ be an antiderivative of $f$ on $(a, b)$ which is continuous on $[a, b]$. Then,

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x), \quad \forall x \in(a, b), \quad \int_{a}^{b} f(t) d t=\left.F(x)\right|_{a} ^{b}=F(b)-F(a) .
$$

Remark 5.6. It is remarkable that if $f$ is continuous on $[a, b]$, then there is always an antiderivative of $f$ on $(a, b)$ that is continuous on $[a, b]$.

