5.5. The substitution rules. (Sec. 5.5 in the textbook)

Let's start with the indefinite integral $\int 2 x \sqrt{x^{2}+1} d x$. It would not be easy to see an antiderivative of $2 x \sqrt{x^{2}+1}$ unless specific techniques are introduced. By writing $u=x^{2}+1$, one has $d u=2 x d x$. A formal replacement of the above notation leads to

$$
\int 2 x \sqrt{x^{2}+1} d x=\int \sqrt{u} d u=\frac{2}{3} u^{3 / 2}+C=\frac{2}{3}\left(x^{2}+1\right)^{3 / 2}+C .
$$

Theorem 5.6. If $u=g(x)$ is differentiable and f is continuous, then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

In particular, if F is an antiderivative of f, then

$$
\int f(g(x)) g^{\prime}(x) d x=F(g(x))+C
$$

Proof. Set $v=\int f(u) d u$. By the chain rule, $\frac{d v}{d x}=\frac{d v}{d u} \cdot \frac{d u}{d x}=f(u) g^{\prime}(x)=f(g(x)) g^{\prime}(x)$.
Example 5.13. To determine $\int \frac{1}{\sqrt{x+1}} d x$, we set $u=x+1$. Since $d u=d x$ and $\int u^{-1 / 2} d u=2 u^{1 / 2}$, Theorem 5.6 implies $\int \frac{1}{\sqrt{x+1}} d x=2 \sqrt{x+1}+C$.

Example 5.14. By Theorem 5.6, if $f(u)=1 / u$ and g is differentiable, then $\int \frac{g^{\prime}(x)}{g(x)} d x=$ $\ln |g(x)|+C$. In particular, $\int \tan x d x=-\ln |v|+C=-\ln |\cos x|+C=\ln |\sec x|+C$.
Theorem 5.7. If g^{\prime} is continuous on $[a, b]$ and f is continuous on $g([a, b])$, then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
$$

Proof. The continuity of f and g^{\prime} guarantees the integrability of $f(g(x)) g^{\prime}(x)$ over $[a, b]$. By the extremum value theorem, the maximum and minimum values, say M and m, of g on $[a, b]$ exist and belong to $g([a, b])$. By the first part of the fundamental theorem of calculus, f has an antiderivative, say F, on (m, M), which is continuous on $[m, M]$. By Theorem 5.6, $F(g(x))$ equals $\int f(g(x)) g^{\prime}(x) d x$ on (a, b) and is continuous on $[a, b]$. By the second part of the fundamental theorem of calculus, we obtain

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\left.F(g(x))\right|_{a} ^{b}=F(g(b))-F(g(a))=\int_{g(a)}^{g(b)} f(u) d u .
$$

Example 5.15. To estimate $\int_{1}^{e} \frac{\ln x}{x} d x$, let $u=\ln x$ and $f(u)=u$. By Theorem 5.7, this implies $\int_{1}^{e} \frac{\ln x}{x} d x=\int_{0}^{1} u d u=\left.\frac{u^{2}}{2}\right|_{0} ^{1}=\frac{1}{2}$.
Theorem 5.8 (Integrals of symmetric functions). Suppose that f is continuous on $[-a, a]$. If f is even, then $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$. If f is odd, then $\int_{-a}^{a} f(x) d x=0$.
Example 5.16. Since $\left(x^{2}+1\right) \sin x$ is odd, $\int_{-\pi}^{\pi}\left(x^{2}+1\right) \sin x d x=0$. In fact, the indefinite integral of $\left(x^{2}+1\right) \sin x$ can be complicated.

