6.3. Volumes by cylindrical shells. (Sec. 6.3 in the textbook)

To compute the volume of the solid obtained by rotating the region $\{(x, y) \mid a \leq x \leq$ b, y between $f(x)$ and 0$\}$ about the y-axis, we may use the method of cylindrical shells. Suppose that we have a cylindrical shell of which inner and outer radii are r_{1} and r_{2} with height h. Then, its volume is

$$
V=\pi\left(r_{2}^{2}-r_{1}^{2}\right) h=2 \pi \frac{r_{1}+r_{2}}{2}\left(r_{2}-r_{1}\right) h .
$$

By setting $\Delta r=r_{2}-r_{1}$ and $r=\left(r_{1}+r_{2}\right) / 2$, the volume can be rewritten as $V=2 \pi r h \Delta r$.
Let S be the solid obtained by rotating the region enclosed by $y=f(x), x=a \geq 0, x=b$ and $y=0$ about the y-axis. By partitioning $[a, b]$ into n subintervals of equal width, we may approximate the volume V of S using those of the cylindrical shells and obtain

$$
V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi \bar{x}_{i}\left|f\left(\bar{x}_{i}\right)\right| \Delta x
$$

where $\bar{x}_{i}=\left(x_{i-1}+x_{i}\right) / 2$.
Theorem 6.2. Let f be a continuous function on $[a, b]$ with $a \geq 0$. The volume of the solid obtained by rotating the region bounded by $y=f(x), x=a, x=b$ and $y=0$ about the y-axis is equal to $2 \pi \int_{a}^{b} x|f(x)| d x$.
Example 6.8. Let S be the solid obtained by rotating the region enclosed by $y=2 x^{2}-x^{3}$ and $y=0$ about the y-axis. Note that $2 x^{2}-x^{3}=0$ if $x \in\{0,2\}$. Then, the volume of S equals

$$
2 \pi \int_{0}^{2} x\left|2 x^{2}-x^{3}\right| d x=2 \pi \int_{0}^{2}\left(2 x^{3}-x^{4}\right) d x=\left.2 \pi\left(\frac{x^{4}}{2}-\frac{x^{5}}{5}\right)\right|_{0} ^{2}=\frac{16 \pi}{5}
$$

Theorem 6.3. Let f, g be continuous functions on $[a, b]$ with $a \geq 0$. The solid obtained by rotating about the y-axis the region bounded by $y=f(x), y=g(x), x=a$ and $x=b$ is equal to $2 \pi \int_{a}^{b} x|f(x)-g(x)| d x$.
Example 6.9. Consider the solid S obtained by rotating about the x-axis the region $R=$ $\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq \sqrt{x}\}$. The volume of S can be computed in two ways. The first one is to consider the cross section of S, which is a disc. This implies

$$
V=\int_{0}^{1} \pi x d x=\left.\frac{\pi x^{2}}{2}\right|_{0} ^{1}=\frac{\pi}{2} .
$$

The second one is to write $R=\left\{(x, y) \mid 0 \leq y \leq 1, y^{2} \leq x \leq 1\right\}$. By the method of cylindrical shells, we have

$$
V=\int_{0}^{1} 2 \pi y\left(1-y^{2}\right) d y=\left.2 \pi\left(\frac{y^{2}}{2}-\frac{y^{4}}{4}\right)\right|_{0} ^{1}=\frac{\pi}{2} .
$$

Example 6.10. Let R be the region bounded by $y=x^{2}, x=0, x=1$ and the x-axis and let S be the solid obtained by rotating S about $x=2$. Note that the volume of S is the same as the volume of the solid obtained by rotating about the x-axis the region bounded by $y=(x-2)^{2}$, $x=1, x=2$ and $y=0$. This implies

$$
V=\int_{1}^{2} 2 \pi x(x-2)^{2} d x=\frac{5 \pi}{6}
$$

