6.4. Average value of a function. (Sec. 6.5 in the textbook.)

For numbers y_{1}, \ldots, y_{n}, their average is defined by

$$
\frac{y_{1}+\cdots+y_{n}}{n}=y_{1} \times \frac{1}{n}+\cdots+y_{n} \times \frac{1}{n} .
$$

For a function $f(x)$ defined on $[a, b]$, we partition $[a, b]$ into n subintervals of equal length, say $\left[x_{i-1}, x_{i}\right]$ for $1 \leq i \leq n$, and let x_{i}^{*} be a sample point in $\left[x_{i-1}, x_{i}\right]$. It is natural to define the average value of f to be the asymptotic average of $f\left(x_{1}^{*}\right), \ldots, f\left(x_{n}^{*}\right)$. Note that if f is integrable on $[a, b]$ and $\Delta x=(b-a) / n$, then

$$
\lim _{n \rightarrow \infty} \frac{f\left(x_{1}^{*}\right)+\cdots+f\left(x_{n}^{*}\right)}{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \frac{\Delta x}{b-a}=\frac{1}{b-a} \int_{a}^{b} f(x) d x .
$$

Definition 6.2. For any function f integrable on $[a, b]$, its average value on $[a, b]$ is defined to be $\frac{1}{b-a} \int_{a}^{b} f(x) d x$.
Example 6.11. Let $f(x)=x$ and $g(x)=x^{2}$. The average values of f, g on $[0,2]$ are

$$
\frac{1}{2} \int_{0}^{2} x d x=1=f(1), \quad \frac{1}{2} \int_{0}^{2} x^{2} d x=\frac{4}{3}=g\left(\frac{2}{\sqrt{3}}\right)
$$

Theorem 6.4 (The mean value theorem for integration). If f is continuous on $[a, b]$, then there is $c \in(a, b)$ such that

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x \quad \text { or equivalently } \quad \int_{a}^{b} f(x) d x=f(c)(b-a)
$$

Proof. Set $F(x)=\int_{a}^{x} f(t) d t$. By the first part of the fundamental theorem of calculus, F is continuous on $[a, b]$, differentiable on (a, b) and $F^{\prime}=f$. Applying the mean value theorem to F implies that there is $c \in(a, b)$ such that

$$
f(c)=F^{\prime}(c)=\frac{F(b)-F(a)}{b-a}=\frac{1}{b-a} \int_{a}^{b} f(t) d t
$$

