7.5. Approximating integrals. (Sec. 7.7 in the textbook)

Note that the following two integrals,

$$\int_0^1 e^{x^2} dx, \quad \int_{-1}^1 \sqrt{1+x^3} dx,$$

can not be precisely evaluated, because their indefinite integrals are not available. In this case, the only way to determine them is to follow the definition of integration,

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x,$$

and see how fast of the above convergence. Three typical ways of selecting sample points are right endpoints, left endpoints and midpoints, which lead to

$$R_n = \sum_{i=1}^n f(x_i) \Delta x, \quad L_n = \sum_{i=1}^n f(x_{i-1}) \Delta x, \quad M_n = \sum_{i=1}^n f\left(\frac{x_{i-1} + x_i}{2}\right) \Delta x.$$

In the following, we introduce two other approximations of integrations. **Trapezoidal rule**

$$\int_{a}^{b} f(x)dx \approx T_{n} = \Delta x \sum_{i=1}^{n} \frac{f(x_{i-1}) + f(x_{i})}{2} = \frac{R_{n} + L_{n}}{2},$$

where $\Delta x = \frac{b-a}{n}$ and $x_i = a + i\Delta x$.

Remark 7.4. Note that

$$T_n = \frac{\Delta x}{2} [f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n)]$$

= $R_n + \frac{(b-a)[f(a) - f(b)]}{2n} = L_n + \frac{(b-a)[f(b) - f(a)]}{2n}.$

Example 7.15. Consider the integral $\int_{1}^{2} 1/x dx$. Note that the value of this integral equals $\ln 2$.

(1) Midpoint rule.

$$M_n = \frac{1}{n} \sum_{i=1}^n \frac{1}{1 + (2i-1)/(2n)} = \sum_{i=1}^n \frac{1}{n+i-1/2}.$$

(2) Trapezoidal rule.

$$T_n = \frac{1}{n} \sum_{i=1}^n \frac{1}{2} \left(\frac{1}{1 + (i-1)/n} + \frac{1}{1 + i/n} \right) = \frac{1}{4n} + \sum_{i=1}^n \frac{1}{n+i}.$$

The following are numerical results for n = 5, 10 and 15 with $\ln 2 \approx 0.6931$.

n	L_n	R_n	T_n	M_n	n	E_L	E_R	E_T	E_M
5	0.7456	0.6456	0.6956	0.6919	5	-0.0524	0.0475	-0.0024	0.0012
10	0.7187	0.6687	0.6937	0.6928	10	-0.0256	0.0243	-0.0006	0.0003
15	0.7058	0.6808	0.6933	0.6930	15	-0.0126	0.0123	-0.0001	0.000078

Based on the above outcomes, we can make the following conclusions.

(1) The trapezoidal and midpoint rules are much accurate than the endpoint rules.

- (2) The errors in the endpoint rules decrease by a multiple factor of 1/2.
- (3) The errors in the trapezoidal and midpoint rules decrease by a multiple factor of 1/4.

Theorem 7.1. Let E_T and E_M be the errors in the trapezoidal and midpoint rules. Assume that $|f''(x)| \leq K$ for $x \in [a, b]$. Then.

$$|E_T| \le \frac{K(b-a)^3}{12n^2}, \quad |E_M| \le \frac{K(b-a)^3}{24n^2}$$

Simpson's rule Let n = 2k and, for $1 \le j \le k$, consider the parabola passing

 $(x_{2j-2}, y_{2j-2}), (x_{2j-1}, y_{2j-1}), (x_{2j}, y_{2j}).$

To see the integral of the region bounded by these parabolas, let $y = Ax^2 + Bx + C$ be the parabola passing (x_0, y_0) , (x_1, y_1) and (x_2, y_2) . For simplicity, we may set $x_0 = -h$, $x_1 = 0$ and $x_2 = h$. This implies

$$y_0 = Ah^2 - Bh + C$$
, $y_1 = C$, $y_2 = Ah^2 + Bh + C$.

Note that

$$\int_{-h}^{h} (Ax^2 + Bx + C)dx = \frac{2Ah^3}{3} + 2Ch = \frac{h}{3}(2Ah^2 + 6C) = \frac{h}{3}(y_0 + 4y_1 + y_2).$$

As a result, Simpson's rule refers to the following sequence,

$$S_n = \frac{\Delta x}{3} (f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \dots + 4f(x_{2k-1}) + f(x_{2k})),$$

we $\Delta x = (b - a)/(2k)$

where $\Delta x = (b-a)/(2k)$.

Remark 7.5. Note that $S_{2k} = \frac{1}{3}T_k + \frac{2}{3}M_k$.

Example 7.16. Consider the integral $\int_1^2 1/x dx$. Simpson's rule with n = 10 gives

$$S_{10} = \frac{1}{30} [f(1) + 4f(1.1) + 2f(1.2) + \dots + 4f(1.9) + f(2)] \approx 0.693150$$

Actually, $\int_{1}^{2} 1/x dx = \ln 2 \approx 0.693147$ and $|S_{10} - \ln 2| \approx 0.000003$.

Theorem 7.2. Let E_S be the error induced by Simpson's rule. Assume that $|f^{(4)}(x)| \leq K$ for $x \in [a, b]$, then

$$|E_S| \le \frac{K(b-a)^5}{180n^4}.$$