
7.6. Improper integrals. (Sec. 7.8 in the textbook)
In this section, we extend the definition of integrals to functions either of which domain is

an infinite interval or with infinite discontinuity in [a,b]. In either case, the integral is called
an improper integral.

Definition 7.1 (Continuous integrands on unbounded domains). Let f be a function and
a, b ∈ R.

(1) When
∫ t
a f(x)dx exists for all t ≥ a and has a limit as t → ∞, define∫ ∞

a
f(x)dx = lim

t→∞

∫ t

a
f(x)dx.

(2) When
∫ b
s f(x)dx exists for all s ≤ b and has a limit as s → −∞, define∫ b

−∞
f(x)dx = lim

s→−∞

∫ b

s
f(x)dx.

(3) When
∫∞
a f(x)dx and

∫ a
−∞ f(x)dx exist for some a ∈ R, define∫ ∞

−∞
f(x)dx =

∫ a

−∞
f(x)dx+

∫ ∞

a
f(x)dx.

Remark 7.6.
∫∞
a f(x)dx and

∫ b
−∞ f(x)dx are called convergent if the corresponding limits exist

and called divergent otherwise. If limt→∞
∫ t
a f(x)dx = ±∞, we write

∫∞
a f(x)dx = ±∞; if

lims→−∞
∫ b
s f(x)dx = ±∞, we write

∫ b
−∞ f(x)dx = ±∞.

Remark 7.7. If f ≥ 0 on [a,∞), then the area of the region S = {(x, y)|x ≥ a, 0 ≤ y ≤ f(x)}
is defined to be

∫∞
a f(x)dx.

Example 7.17. To compute
∫ 0
−∞ xexdx, note that

∫
xexdx = (x− 1)ex + C. Then,

lim
t→−∞

∫ 0

t
xexdx = lim

t→−∞
[(1− t)et − 1] = −1.

Example 7.18. Consider the integral
∫∞
−∞

1
1+x2dx. Note that∫ 0

−∞

1

1 + x2
dx = lim

t→−∞

∫ 0

t

1

1 + x2
dx = lim

t→−∞
(− tan−1 t) =

π

2

and ∫ ∞

0

1

1 + x2
dx = lim

t→∞

∫ t

0

1

1 + x2
dx = lim

t→∞
tan−1 t =

π

2
.

This implies
∫∞
−∞

1
1+x2dx = π.

Example 7.19. Consider the integral
∫∞
1 xpdx. Note that∫

xpdx =
xp+1

p+ 1
+ C for p 6= −1,

∫
x−1dx = lnx+ C.

This implies

lim
t→∞

∫ t

1
xpdx = lim

t→∞

{
1

p+1(t
p+1 − 1) for p 6= −1,

ln t for p = −1.
=

{
−1/(1 + p) for p < −1,

∞ for p ≥ −1.

Definition 7.2 (Discontinuous integrands). Let f be a function.
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(1) If f is continuous on [a, b) but discontinuous at b, define∫ b

a
f(x)dx = lim

t→b−

∫ t

a
f(x)dx.

(2) If f is continuous on (a, b] but discontinuous at a, define∫ b

a
f(x)dx = lim

t→a+

∫ b

t
f(x)dx.

In (1) and (2), the improper integral is called convergent if the limit exists and divergent

otherwise. Write
∫ b
a f(x)dx = ±∞ if the limit diverges to ±∞.

(3) If f has discontinuity at c ∈ (a, b) and
∫ c
a f(x)dx and

∫ b
c f(x)dx are convergent, define∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx.

Example 7.20. To evaluate
∫ 5
2

1√
x−2

dx, since 1√
x−2

is continuous on (2, 5] and
∫

1√
x−2

dx =

2
√
x− 2 + C, we have∫ 5

2

1√
x− 2

dx = lim
t→2+

∫ 5

t

dx√
x− 2

dx = 2 lim
t→2+

(
√
3−

√
t− 2) = 2

√
3.

Example 7.21. To compute
∫ 1
0 lnxdx, note that lnx is continuous on (0, 1] and

∫
lnxdx =

x(lnx− 1) + C. This implies∫ 1

0
lnxdx = lim

t→0+

∫ 1

t
lnxdx = lim

t→0+
(−1− t ln t+ t) = −1.

Example 7.22. Consider
∫ 3
0

dx
x−1 . Clearly,

1
x−1 has a discontinuous at 1. Note that∫ 3

1

dx

x− 1
= lim

t→1+
(ln 2− ln(t− 1)) = ∞,

∫ 1

0

dx

x− 1
= lim

t→1−
ln |t− 1| = −∞.

This implies that
∫ 3
0

dx
x−1 does not exist.

Theorem 7.3 (Comparison test). Let f and g be functions continuous on [a,∞). Assume
that 0 ≤ f ≤ g.

(1) If
∫∞
a g(x)dx is convergent, then

∫∞
a f(x)dx is convergent.

(2) If
∫∞
a f(x)dx is divergent, then

∫∞
a g(x)dx is divergent.

Example 7.23. Consider the integrals
∫∞
0 e−x2

dx and
∫∞
0 xexdx. Note that

e−x2 ≤ e−x ∀x ≥ 1, xex ≥ x ∀x.
By the comparison test,

∫∞
0 e−x2

dx is convergent, while
∫∞
0 xexdx is divergent.

60


