## 8. Further applications of integration

8.1. Arc length. (Sec. 8.1 in the textbook)

Let $f$ be a function on $[a, b]$ and $L$ be the length of the curve, $\{(x, f(x)) \mid a \leq x \leq b\}$. To determine $L$, we partition $[a, b]$ into $n$ subintervals of equal length and let $L_{i}$ be the length of the segment connecting $\left(x_{i-1}, f\left(x_{i-1}\right)\right)$ and $\left(x_{i}, f\left(x_{i}\right)\right)$. If $f$ is smooth enough, then

$$
L \approx \sum_{i=1}^{n} L_{i}=\sum_{i=1}^{n} \sqrt{(\Delta x)^{2}+\left[f\left(x_{i}\right)-f\left(x_{i-1}\right)\right]^{2}},
$$

where $\Delta x=(b-a) / n$ and $x_{i}=a+i \Delta x$.
By the mean value theorem for differentiation, if $f$ is differentiable, then there is $x_{i}^{*} \in$ $\left(x_{i-1}, x_{i}\right)$ such that $f\left(x_{i}\right)-f\left(x_{i-1}\right)=\left(x_{i}-x_{i-1}\right) f^{\prime}\left(x_{i}^{*}\right)=\Delta x f^{\prime}\left(x_{i}^{*}\right)$. Further, if $f^{\prime}$ is continuous, we may identify $L$ with

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta x \sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}}=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x .
$$

Theorem 8.1 (The arc length formula). If $f^{\prime}$ is continuous on $[a, b]$, then the length $L$ of the curve $y=f(x)$ with $x \in[a, b]$ is given by

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Example 8.1. Let $L$ be the length of the curve $y=x^{2}$ with $x \in[0,1]$. By the arc length formula, $L=\int_{0}^{1} \sqrt{1+(2 x)^{2}} d x$. Set $x=\frac{1}{2} \tan \theta$ with $\theta \in(-\pi / 2, \pi / 2)$. This implies $d x=\frac{1}{2} \sec ^{2} \theta d \theta$ and $\int \sqrt{1+4 x^{2}} d x=\frac{1}{2} \int \sec ^{3} \theta d \theta$. By setting $u=\sin \theta$ and the following formula

$$
\frac{1}{\left(1-u^{2}\right)^{2}}=\frac{1}{4(1-u)^{2}}+\frac{1}{4(1+u)^{2}}+\frac{1}{4(1-u)}+\frac{1}{4(1+u)},
$$

we obtain

$$
\int \sqrt{1+4 x^{2}} d x=\frac{u}{4\left(1-u^{2}\right)}+\frac{1}{8} \ln \left|\frac{1+u}{1-u}\right|+C=\frac{2 x \sqrt{1+4 x^{2}}+\ln \left|2 x+\sqrt{1+4 x^{2}}\right|}{4}+C .
$$

This implies $L=\frac{\sqrt{5}}{2}+\frac{\ln (2+\sqrt{5})}{4}$.
Definition 8.1. For any continuously differentiable function $f$, the arc length function from $P(a, f(a))$ to $Q(x, f(x))$ with $x>a$ is defined by $s(x)=\int_{a}^{x} \sqrt{1+\left(f^{\prime}(t)\right)^{2}} d t$.
Remark 8.1. In the form of differential, we may write $d s=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$ or $(d s)^{2}=(d x)^{2}+$ $(d y)^{2}$. Thus, $L=\int d s$. If $g$ is a function of $y$, the arc length function becomes $d s=$ $\sqrt{1+\left(g^{\prime}\right)^{2}} d y=\sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y$.

Example 8.2. The arc length function of $f(x)=\frac{e^{x}+e^{-x}}{2}$ from $(0,1)$ is

$$
s(x)=\int_{0}^{x} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t=\int_{0}^{x} \sqrt{1+\left(\frac{e^{t}-e^{-t}}{2}\right)^{2}} d t=\frac{1}{2} \int_{0}^{x}\left(e^{t}+e^{-t}\right) d t=\frac{e^{x}-e^{-x}}{2} .
$$

