8.2. Area of a surface of revolution. (Sec. 8.2 in the textbook)

Note that the surface area of a corn of which cutting isosceles triangle has sides length ℓ and bottom length $2 r$ is $\left(\pi \ell^{2}\right) \cdot \frac{2 \pi r}{2 \pi \ell}=\pi r \ell$. If the cone of side length $\ell_{1}+\ell$ and bottom length $2 r_{2}$ is cut out the top part of which cutting isosceles triangle has side length ℓ_{1} and bottom length $2 r_{1}$, then the area of the remaining band is

$$
A=\pi r_{2}\left(\ell+\ell_{1}\right)-\pi r_{1} \ell_{1}=\pi r_{2} \ell+\pi\left(r_{2}-r_{1}\right) \cdot \frac{r_{1} \ell}{r_{2}-r_{1}}=\pi\left(r_{1}+r_{2}\right) \ell .
$$

Let f be a function which is nonnegative on $[a, b]$ and A be the area of the surface obtained by rotating the curve $y=f(x)$ on $[a, b]$ about the x-axis. By partitioning $[a, b]$ into n subintervals of equal width, one has

$$
A \approx \sum_{i=1}^{n} \pi\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right] \sqrt{(\Delta x)^{2}+\left[f\left(x_{i-1}\right)-f\left(x_{i}\right)\right]^{2}}
$$

where $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i \Delta x$. Assume that f is differentiable on $[a, b]$. By the mean value theorem, we may choose $x_{i}^{*} \in\left(x_{i-1}, x_{i}\right)$ such that $\sqrt{(\Delta x)^{2}+\left|f\left(x_{i-1}\right)-f\left(x_{i}\right)\right|^{2}}=$ $\sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x$. Note that $f\left(x_{i-1}\right) \approx f\left(x_{i}^{*}\right)$ and $f\left(x_{i}\right) \approx f\left(x_{i}^{*}\right)$. In addition with the continuity of f^{\prime} on $[a, b]$, we obtain

$$
A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \pi\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right] \sqrt{(\Delta x)^{2}+\left[f\left(x_{i-1}\right)-f\left(x_{i}\right)\right]^{2}}=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Theorem 8.2. If f is non-negative and has continuous derivative on $[a, b]$, then the area of the surface obtained by rotating the curve $y=f(x)$ with $x \in[a, b]$ about the x-axis is given by

$$
A=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x=\int_{a}^{b} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

Remark 8.2. If g is nonnegative and continuously differentiable on $[c, d]$, then the area of the surface obtained by rotating the curve $x=g(y)$ with $y \in[c, d]$ about the y-axis is given by

$$
A=\int_{c}^{d} 2 \pi g(y) \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y=\int_{c}^{d} 2 \pi x \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y .
$$

Remark 8.3. Let s be the arc length function of $f(x)$ or $g(y)$ and A_{x}, A_{y} be the areas of the surfaces obtained by rotating $y=f(x)$ and $x=g(y)$ about the x-axis and y-axis. Then, $A_{x}=\int 2 \pi y d s$ and $A_{y}=\int 2 \pi x d s$.
Example 8.3. Let A be the area of the surface obtained by rotating the curve $y=x^{2}$ with $x \in[1,2]$ about the y-axis. By rewriting $x=y^{1 / 2}$ with $y \in[1,4]$, we have

$$
A=\int 2 \pi x d s=\int_{1}^{4} 2 \pi y^{1 / 2} \sqrt{1+\frac{1}{4 y}} d y=\int_{1}^{2} 2 \pi x \sqrt{1+4 x^{2}} d x=\frac{\pi}{6}(17 \sqrt{17}-5 \sqrt{5})
$$

Example 8.4. To compute the area A of the surface of a ball with radius r, let $y=\sqrt{r^{2}-x^{2}}$ with $x \in[-r, r]$. Then,

$$
A=\int 2 \pi y d s=\int_{-r}^{r} 2 \pi \sqrt{r^{2}-x^{2}} \sqrt{1+\left(\frac{-x}{\sqrt{r^{2}-x^{2}}}\right)^{2}} d x=\int_{-r}^{r} 2 \pi r d x=4 \pi r^{2}
$$

