8.2. Area of a surface of revolution. (Sec. 8.2 in the textbook)

Note that the surface area of a corn of which cutting isosceles triangle has sides length ℓ and bottom length 2r is $(\pi\ell^2) \cdot \frac{2\pi r}{2\pi\ell} = \pi r\ell$. If the cone of side length $\ell_1 + \ell$ and bottom length $2r_2$ is cut out the top part of which cutting isosceles triangle has side length ℓ_1 and bottom length $2r_1$, then the area of the remaining band is

$$A = \pi r_2(\ell + \ell_1) - \pi r_1\ell_1 = \pi r_2\ell + \pi (r_2 - r_1) \cdot \frac{r_1\ell}{r_2 - r_1} = \pi (r_1 + r_2)\ell$$

Let f be a function which is nonnegative on [a, b] and A be the area of the surface obtained by rotating the curve y = f(x) on [a, b] about the x-axis. By partitioning [a, b] into n subintervals of equal width, one has

$$A \approx \sum_{i=1}^{n} \pi [f(x_{i-1}) + f(x_i)] \sqrt{(\Delta x)^2 + [f(x_{i-1}) - f(x_i)]^2},$$

where $\Delta x = \frac{b-a}{n}$ and $x_i = a + i\Delta x$. Assume that f is differentiable on [a, b]. By the mean value theorem, we may choose $x_i^* \in (x_{i-1}, x_i)$ such that $\sqrt{(\Delta x)^2 + |f(x_{i-1}) - f(x_i)|^2} = \sqrt{1 + [f'(x_i^*)]^2}\Delta x$. Note that $f(x_{i-1}) \approx f(x_i^*)$ and $f(x_i) \approx f(x_i^*)$. In addition with the continuity of f' on [a, b], we obtain

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} \pi [f(x_{i-1}) + f(x_i)] \sqrt{(\Delta x)^2 + [f(x_{i-1}) - f(x_i)]^2} = \int_a^b 2\pi f(x) \sqrt{1 + [f'(x)]^2} dx.$$

Theorem 8.2. If f is non-negative and has continuous derivative on [a, b], then the area of the surface obtained by rotating the curve y = f(x) with $x \in [a, b]$ about the x-axis is given by

$$A = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx = \int_{a}^{b} 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx.$$

Remark 8.2. If g is nonnegative and continuously differentiable on [c, d], then the area of the surface obtained by rotating the curve x = g(y) with $y \in [c, d]$ about the y-axis is given by

$$A = \int_{c}^{d} 2\pi g(y) \sqrt{1 + [g'(y)]^{2}} dy = \int_{c}^{d} 2\pi x \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} dy.$$

Remark 8.3. Let s be the arc length function of f(x) or g(y) and A_x, A_y be the areas of the surfaces obtained by rotating y = f(x) and x = g(y) about the x-axis and y-axis. Then, $A_x = \int 2\pi y ds$ and $A_y = \int 2\pi x ds$.

Example 8.3. Let A be the area of the surface obtained by rotating the curve $y = x^2$ with $x \in [1, 2]$ about the y-axis. By rewriting $x = y^{1/2}$ with $y \in [1, 4]$, we have

$$A = \int 2\pi x ds = \int_{1}^{4} 2\pi y^{1/2} \sqrt{1 + \frac{1}{4y}} dy = \int_{1}^{2} 2\pi x \sqrt{1 + 4x^{2}} dx = \frac{\pi}{6} (17\sqrt{17} - 5\sqrt{5}).$$

Example 8.4. To compute the area A of the surface of a ball with radius r, let $y = \sqrt{r^2 - x^2}$ with $x \in [-r, r]$. Then,

$$A = \int 2\pi y ds = \int_{-r}^{r} 2\pi \sqrt{r^2 - x^2} \sqrt{1 + \left(\frac{-x}{\sqrt{r^2 - x^2}}\right)^2} dx = \int_{-r}^{r} 2\pi r dx = 4\pi r^2.$$