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Abstract. We develop an unconditionally energy stable immersed boundary method,

and apply it to simulate 2D vesicle dynamics. We adopt a semi-implicit boundary forcing

approach, where the stretching factor used in the forcing term can be computed from

the derived evolutional equation. By using the projection method to solve the fluid

equations, the pressure is decoupled and we have a symmetric positive definite system

that can be solved efficiently. The method can be shown to be unconditionally stable, in

the sense that the total energy is decreasing. A resulting modification benefits from this

improved numerical stability, as the time step size can be significantly increased (the

severe time step restriction in an explicit boundary forcing scheme is avoided). As an

application, we use our scheme to simulate vesicle dynamics in Navier-Stokes flow.
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Key words: Immersed boundary method, unconditionally energy stable, inextensible vesicle, Navier-
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1. Introduction

The immersed boundary (IB) method proposed by Peskin [26] has been successfully

applied to many fluid-structure interaction problems — cf. the review [27]. The IB method

employs an Eulerian description for the fluid velocity and a Lagrangian description for the

configuration of the immersed elastic structure (immersed boundary or interface). The im-

mersed structure exerts some force into the fluid that drives the fluid flow, and at the same

time the fluid flow carries the immersed structure to a new configuration. This interaction

between the fluid and the immersed structure is linked through a force spreading and ve-

locity interpolating operator, on using a smoothed version of the Dirac delta function [27].

The IB method is easy to implement and efficient, simply because the immersed structure
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(no matter how complex) is regarded as a force generator to the fluid, so that the fluid

variables can be solved in a fixed Eulerian domain without generating any structure-fitting

grid. Many fast efficient fluid solvers can therefore be applied.

Despite substantial success with practical applications using the IB method, it still has

some drawbacks from the numerical point of view. Firstly, the method is only first-order

accurate, whereas second-order accurate fluid solvers are used. The immersed elastic struc-

ture is usually represented one-dimensionally lower than the fluid space so that the exerted

force is singular (delta function like), and smoothing the delta function in a regular finite

difference scheme causes the method to be first-order accurate only. Although there have

been several attempts to improve accuracy, even some including adaptive local mesh re-

finements near the immersed boundary, formally those methods still remain to be made

second-order accurate [6,7,17,22,28].

Another issue is numerical stability. As is well known, the IB method suffers a time step

restriction to maintain numerical stability [21, 27, 29, 30]. This restriction becomes more

stringent when the elastic force is stiff and the force spreading occurs at the beginning of

each time step (an explicit scheme). It is notable that such a time step restriction cannot be

alleviated even when the fluid solver is discretised in a semi-implicit manner — i.e. with

explicit differencing of the advection term and implicit differencing of the diffusion term.

Rather than performing the force spreading at the beginning of the time step, one might

consider doing so at an intermediate stage (a semi-implicit scheme) or even at the end of

the time step (an implicit scheme). In the past decade, there have been many attempts

to reduce the stiffness or to overcome this time step restriction [3, 4, 8, 10, 11, 23, 24].

However, there is always a trade-off between the stability and efficiency of the algorithms

involved. In this article, we propose a new semi-implicit scheme that can be solved quite

efficiently, where the resultant linear system is symmetric positive definite and the time

step size can be significantly increased.

In Section 2, we introduce the formulation for the incompressible Navier-Stokes equa-

tions with an immersed elastic interface. We then develop semi-implicit immersed bound-

ary schemes based on the projection method for the fluid solver in Section 3, and show

that these developed schemes are unconditionally energy stable. Then we modify these

semi-implicit schemes for efficient implementation, with the resultant linear system sym-

metric positive definite. Numerical results from simulations of vesicle dynamics are given

in Section 4, followed by our conclusions and discussion of future work in Section 5.

2. Governing Equations

We begin by stating the mathematical formulation of the Navier-Stokes flow with an

immersed boundary (or interface). We consider a moving, immersed, elastic boundary

Γ(t), which exerts forces into an incompressible fluid in a fixed fluid domain Ω. We assume

that the fluids inside and outside of the boundary are the same, so the governing equations

can be written as follows:

ρ

�
∂ u

∂ t
+ (u · ∇)u

�
+∇p = µ∆u+

∫

Γ

F(s, t)δ(x−X(s, t)) ds in Ω , (2.1)
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∇ · u = 0 in Ω , (2.2)

∂ X

∂ t
(s, t) = U(s, t) =

∫

Ω

u(x, t)δ(x−X(s, t)) dx on Γ . (2.3)

Here ρ and µ are constant fluid density and viscosity, u = (u, v) and p are the velocity

field and the pressure, both described in Cartesian coordinates. The immersed boundary

Γ is represented by a parametric form X(s, t) = (X (s, t), Y (s, t)), where s is the Lagrangian

parameter of the initial configuration. The unit tangent vector τ is defined as τ = Xs/|Xs|.
Eqs. (2.1) and (2.2) are the familiar incompressible Navier-Stokes equations, involving

a force from the immersed boundary Γ represented by the line integral. Eq. (2.3) defines

the position of the immersed boundary moving with the local fluid velocity (the interfacial

velocity). Thus the interfacial velocity U is simply an interpolation of the fluid velocity at

the immersed boundary, and the interaction between the fluid and the immersed boundary

is linked by the two-dimensional Dirac delta function δ(x) = δ(x)δ(y). We envisage that

the force arises from elastic tension according to Hooke’s law — i.e.

F(s, t) =
∂

∂ s
(στ) where σ = σ0(|Xs| − r0) , (2.4)

with σ0 is the elastic coefficient and r0 the rest length. Note that the rate of local stretching

can then be considered to satisfy the following equation [18]:

∂

∂ t
|Xs| =

�
∇s ·U

�
|Xs| =

∂U

∂ s
·τ . (2.5)

3. Numerical Discretization

We now proceed to discretise Eqs. (2.1)–(2.5) by the IB method, in a computational

rectangular domain Ω = [a, b ]× [c, d ] for simplicity. The fluid variables are defined on

the staggered marker-and-cell (MAC) grid introduced by Harlow & Welsh [9] — i.e. the

pressure is defined at the cell centre labelled

x = (x i, y j) = (a+ (i− 1/2)∆x , c+ ( j− 1/2)∆y) , i = 1,2, · · · , m , j = 1,2, · · · , n ,

while the velocity components u and v are defined at the cell edges

(x i−1/2, y j)=(a+(i−1)∆x , c+( j−1/2)∆y) , (x i, y j−1/2)=(a+(i−1/2)∆x , c+( j−1)∆y) .

We assume a uniform mesh width h=∆x =∆y in the fluid, although that is not necessary.

For the immersed boundary, we use a collection of discrete points sk = k∆s, k = 0,1, · · ·M
where the mesh width ∆s is chosen to be roughly half of the fluid mesh width h. The

Lagrangian markers are denoted by Xk = X(sk). We also assume the immersed boundary

is closed, so that X0 = XM . The elastic tension is written σk−1/2, since it is defined at

the "half-integer" points sk−1/2 = (k− 1/2)∆s. Without loss of generality, for any function
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Figure 1: The omputational domain Ωh with a staggered grid.
φ(s) defined on the immersed boundary, we approximate the partial derivative ∂ φ/∂ s by

central differences — i.e.

Dsφ =
φ(s+∆s/2)−φ(s−∆s/2)

∆s
.

The unit tangent approximated by τ = DsX/
��DsX

�� is consequently defined at the half-

integer points.

Let ∆t be the time step size, and the superscript index denote the time step level.

At the beginning of each time level n, the values of the boundary configuration Xn
k

and

the unit tangent τn
k−1/2

are all given. To simplify our notation, we define the discrete

spreading operator acting on the tension and discrete surface divergence operator acting

on the velocity as follows:

S m
h
[σ](x) = S m

h
[σ0(|Xs| − r0)](x) =

M∑

k=1

Ds

�
σ0(|Xs| − r0)τ

m
�

k δh(x−Xm
k
)∆s , (3.1)

T m
h [u](sk−1/2) =

Uk −Uk−1

∆s
·τm

k−1/2
Uk =

∑

x

u(x)δh(x−Xm
k )h

2 , (3.2)



Unconditionally Energy Stable IB Method 5

where the superscript m denotes values for the immersed boundary position at the time

level m∆t and the discrete operators are skew-adjoint as 〈S m
h
[σ],u〉Ωh

= 〈σ,−T m
h
[u]〉Γh

— cf. the derivation in Ref. [19]. The skew-adjointness property plays an important role

in our energy stability analysis later.

Our numerical discretisation and energy stability analysis are based on unsteady Stokes

equations in this article. The nonlinear advection term in the Navier-Stokes equation (2.1)

can be treated explicitly during the time evolution with a moderate CFL condition. How-

ever, the Navier-Stokes equations can also be split into an advection part and unsteady

Stokes part, where the advection part can be solved by an alternating direction implicit

(ADI) method to maintain the unconditionally numerical stability [11].

We introduce two time integrations, the backward Euler (BE) and Crank-Nicholson

(CN) scheme, in conjunction with the projection method as follows [5]:

• Backward Euler (BE) scheme

ρ
u∗ − un

∆t
= µ∆hu∗ +S n

h [σ0(|Xs|
n+1− r0)] , in Ωh ; (3.3)

∆hφ =
1

∆t
∇h · u

∗ , in Ωh ;
∂ φ

∂ n

���
∂Ωh

= 0 ; (3.4)

un+1 = u∗ −∆t∇hφ , in Ωh ; (3.5)

∇hpn+1 = ρ∇hφ −µ∇h(∇h · u
∗) , in Ωh ; (3.6)

|Xs|
n+1 − |Xs|

n

∆t
= T n

h [u
n+1] , on Γh ; (3.7)

Un+1
k
=
∑

x

u(x)n+1δh(x−Xn
k)h

2 ; (3.8)

Xn+1
k
= Xn

k +∆t Un+1
k

. (3.9)

• Crank-Nicholson (CN) scheme

ρ
u∗ − un

∆t
=
µ

2
∆h(u

∗ + un) +S n
h

�
σ0

�
|Xs|

n+1 + |Xs|
n

2
− r0

��
, in Ωh ; (3.10)

∆hφ =
1

∆t
∇h · u

∗ , in Ωh ;
∂ φ

∂ n

���
∂Ωh

= 0 ; (3.11)

un+1 = u∗ −∆t∇hφ , in Ωh ; (3.12)

∇hpn+1/2 = ρ∇hφ −µ∇h(∇h ·u
∗) , in Ωh ; (3.13)

|Xs|
n+1 − |Xs|

n

∆t
= T n

h
[(un+1 + bun)/2] , on Γh ; (3.14)

Un+1
k
=
∑

x

u(x)n+1δh(x−Xn
k)h

2 , bUn

k =
∑

x

u(x)nδh(x−Xn
k)h

2 ; (3.15)

Xn+1
k
= Xn

k
+∆t(Un+1

k
+ bUn

k)/2 . (3.16)
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The gradient and Laplacian spatial operators ∇h and ∆h above are represented in terms of

the standard second-order central difference approximations, and δh is a smoother version

of the discrete delta function developed in Ref. [32]. Unlike the explicit scheme, both of

these backward Euler and Crank-Nicholson schemes treat the stretching factor |Xs|
n+1 as

an unknown solution with closure via the discretisation of Eq. (2.5), so in the immersed

boundary force computation the two schemes are semi-implicit.

3.1. Energy stability analysis

We now perform the energy stability analysis for our present schemes in a similar

fashion to Refs. [11, 23], and show that both methods are unconditionally stable in the

sense that the total energy decreases. To proceed, we define the kinetic energy K and

potential energy P of the system as follows:

K =
ρ

2
‖u‖2Ωh

=
ρ

2
〈u,u〉Ωh

, P =
σ0

2
‖|Xs| − r0‖

2
Γh
=
σ0

2
〈|Xs| − r0, |Xs| − r0〉Γh

, (3.17)

where the associated discrete inner products are defined as

〈u,v〉Ωh
=
∑

x

u(x) · v(x)h2 , 〈φ,ψ〉Γh
=

M∑

k=1

φk−1/2ψk−1/2∆s , (3.18)

respectively. The total energy is E = K + P.

Theorem 3.1. The backward Euler (BE) scheme of Eqs. (3.3)–(3.9) is unconditionally energy

stable — i.e. the scheme satisfies En+1 ≤ En for each time step n.

Proof. We first consider stability analysis for the BE scheme. For convenience, let us

denote the singular force term in Eq. (3.3) by S n
h
[σn+1]. We first substitute u∗ from

Eq. (3.5) into Eq. (3.3) to get the equation for ρ(un+1 − un), and then take the discrete

inner product with un+1 + un to obtain the kinetic energy difference

Kn+1 − Kn =
ρ

2
〈un+1,un+1〉Ωh

−
ρ

2
〈un,un〉Ωh

=
ρ

2
〈un+1 + un,un+1 − un〉Ωh

=
ρ

2

�
−〈un+1 − un,un+1 − un〉Ωh

+ 2〈un+1,un+1 − un〉Ωh

�

= −
ρ

2
‖un+1 − un‖2Ωh

+ 〈un+1,ρ
�

un+1 − un
�
〉Ωh

= −
ρ

2
‖un+1 − un‖2Ωh

+∆t〈un+1,−ρ∇hφ +µ∆hun+1 +µ∆t∇h∆hφ +S
n

h [σ
n+1]〉Ωh

= −
ρ

2
‖un+1 − un‖2Ωh

−∆tρ〈un+1,∇hφ〉Ωh
+µ∆t〈un+1,∆hun+1〉Ωh

+µ∆t2〈un+1,∇h∆hφ〉Ωh
+∆t〈un+1,S n

h [σ
n+1]〉Ωh

.
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The potential energy difference is

Pn+1 − Pn =
σ0

2

�
〈|Xs|

n+1 − r0, |Xs|
n+1 − r0〉Γh

− 〈|Xs|
n− r0, |Xs|

n− r0〉Γh

�

=
σ0

2
〈|Xs|

n+1 + |Xs|
n− 2r0, |Xs|

n+1 − |Xs|
n〉Γh

=
σ0

2
〈2|Xs|

n+1− 2r0 −∆tT n
h
[un+1],∆tT n

h
[un+1]〉Γh

�
as |Xs|

n= |Xs|
n+1−∆tT n

h
[un+1]

�

= 〈σ0(|Xs|
n+1 − r0)−

σ0∆t

2
T n

h [u
n+1],∆tT n

h [u
n+1]〉Γh

=∆t〈σn+1,T n
h [u

n+1]〉Γh
−
σ0∆t2

2
‖T n

h [u
n+1]‖2Γh

.

Thus the total energy difference between two successive time steps is

En+1 − En

=−
ρ

2
‖un+1− un‖2Ωh

−∆tρ〈un+1,∇hφ〉Ωh
+µ∆t〈un+1,∆hun+1〉Ωh

+µ∆t2〈un+1,∇h∆hφ〉Ωh

+∆t〈S n
h [σ

n+1],un+1〉Ωh
+∆t〈σn+1,T n

h [u
n+1]〉Γh

−
σ0∆t2

2
‖T n

h [u
n+1]‖2Γh

.

The second and fourth terms vanish due to the orthogonality of the discrete divergence-free

velocity and the gradient, and the commutativity of ∇h and ∆h. The fifth and sixth terms

cancel out since both discrete operators are skew-adjoint as 〈S n
h
[σ],u〉Ωh

=〈σ,−T n
h
[u]〉Γh

.

The third term is always negative since the Laplace operator is negative definite. Thus

En+1 − En = −
ρ

2
‖un+1 −un‖2Ωh

−µ∆t‖∇hun+1‖2Ωh
−
σ0∆t2

2
‖T n

h [u
n+1]‖2Γh

,

so the total energy is decreasing such that the present BE scheme is unconditionally energy

stable.

Theorem 3.2. The Crank-Nicholson (CN) scheme of Eqs. (3.10)-(3.16) is unconditionally

energy stable — i.e. the scheme satisfies En+1 ≤ En for each time step n.

Proof. The proof is similar to that for Theorem 3.1. Let us again denote the singular

force term in Eq. (3.10) by S n
h
[(σn+1+σn)/2], substitute u∗ in Eq. (3.12) into Eq. (3.10)

to get ρ(un+1−un), and then take the discrete inner product with un+1+un to obtain the

kinetic energy difference

Kn+1 − Kn =
ρ

2
〈un+1,un+1〉Ωh

−
ρ

2
〈un,un〉Ωh

=
ρ

2
〈un+1 + un,un+1 − un〉Ωh

=
∆t

2
〈un+1 + un,−ρ∇hφ +

µ

2
∆h(u

n+1 + un) +
µ∆t

2
∇h∆hφ +S

n
h
[(σn+1 +σn)/2]〉Ωh

.
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The potential energy difference is

Pn+1 − Pn =
σ0

2

�
〈|Xs|

n+1 − r0, |Xs|
n+1 − r0〉Γh

− 〈|Xs|
n− r0, |Xs|

n− r0〉Γh

�

=
σ0

2
〈|Xs|

n+1 + |Xs|
n− 2r0, |Xs|

n+1 − |Xs|
n〉Γh

=
∆t

4
〈σ0(|Xs|

n+1− r0 + |Xs|
n− r0),T

n
h [u

n+1 + bun
]〉Γh

�
using Eq. (3.14)

�

=
∆t

4
〈σn+1 +σn,T n

h [u
n+1 + bun

]〉Γh
.

Thus the total energy difference between two successive time steps is

En+1 − En =
−ρ∆t

2
〈un+1 + un,∇hφ〉Ωh

+
µ∆t

4
〈un+1 + un,∆h(u

n+1 + un)〉Ωh

+
µ∆t2

4
〈un+1 + un,∇h∆hφ〉Ωh

+
∆t

4
〈un+1 + un,S n

h [σ
n+1 +σn]〉Ωh

+
∆t

4
〈σn+1 +σn,T n

h
[un+1 + bun]〉Γh

= −
µ∆t

4
‖∇h(u

n+1 + un)‖2Ωh
,

The first and third terms vanish due to the orthogonality of discrete divergence-free velocity

and the gradient, and the commutativity of ∇h and ∆h. The fourth and last terms cancel

out, since both discrete operators are skew-adjoint. The third term is always negative

because the discrete Laplace operator is negative definite. Consequently, the total energy

decreases such that the scheme is unconditionally energy stable.

3.2. Modified projection method

To avoid the necessity to solve a coupled linear system of equations in dealing with

Eqs. (3.3)–(3.7) or Eqs. (3.10)–(3.14), we can modify the BE and CN schemes slightly. The

key idea is to march the time integration of the stretching factor |Xs|
n+1 by the intermediate

velocity u∗ rather than un+1, and substitute it into the discrete spreading operator S n
h

suxh

that |Xs|
n+1 is no longer among the unknowns in the following schemes..

• Modified BE scheme

ρ
u∗ − un

∆t
= µ∆hu∗ +S n

h [σ
n] +σ0∆tS n

h T
n

h [u
∗] , in Ωh ; (3.19)

∆hφ =
1

∆t
∇h · u

∗ , in Ωh ;
∂ φ

∂ n

���
∂Ωh

= 0 ; (3.20)

un+1 = u∗ −∆t∇hφ , in Ωh ; (3.21)

∇hpn+1 = ρ∇hφ −µ∇h(∇h · u
∗)−σ0∆t2S n

h
T n

h
[∇hφ] , in Ωh ; (3.22)

Un+1
k
=
∑

x

u(x)n+1δh(x−Xn
k)h

2 , on Γh ; (3.23)

Xn+1
k
= Xn

k
+∆t Un+1

k
, on Γh . (3.24)
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• Modified CN scheme

ρ
u∗ − un

∆t
=
µ

2
∆h(u

∗+ un) +S n
h
[σn]

+
σ0∆t

4
S n

h T
n

h [bu
n
] +

σ0∆t

4
S n

h T
n

h [u
∗] , in Ωh ; (3.25)

∆hφ =
1

∆t
∇h · u

∗ , in Ωh ;
∂ φ

∂ n

���
∂Ωh

= 0 ; (3.26)

un+1 = u∗ −∆t∇hφ , in Ωh ; (3.27)

∇hpn+1/2 = ρ∇hφ −
µ

2
∇h(∇h · u

∗)−
σ0∆t2

4
S n

h T
n

h [∇hφ] , in Ωh ; (3.28)

Un+1
k
=
∑

x

u(x)n+1δh(x−Xn
k)h

2, bUn

k =
∑

x

u(x)nδh(x−Xn
k)h

2 , on Γh ; (3.29)

Xn+1
k
= Xn

k +∆t(Un+1
k
+ bUn

k)/2 , on Γh . (3.30)

The lower computational cost of the above numerical schemes is of interest. As we

mentioned before, the discrete operators S n
h

and T n
h

are skew-adjoint with matrix forms

related by T n
h
= −(h2/∆s)(S n

h
)T . Thus the resultant matrix equations for u∗ in Eq. (3.19)

and Eq. (3.25) are both symmetric and positive definite, and we can solve efficiently using

the aggregation-based multigrid (AGMG) method recently developed by Notay [25]. In

Eqs. (3.20) and (3.26), the Poisson equation for pressure increment φ can be solved by

the public software package FISHPACK [1]. Despite the fact that these modified BE and

CN schemes are not exactly unconditionally energy stable (unlike the original schemes),

it is notable that they benefit from the stability such that the time step size ∆t can be

tremendously alleviated, as our numerical results below show.

4. Application to Simulating Vesicle Dynamics

Kim & Lai [13] developed a penalty IB method to study the dynamics of inextensible

vesicles by introducing a dual representation X(s, t) and Y(s, t) of the immersed boundary,

where the first representation X(s, t) interacts with the fluid directly as in traditional IB

computation and the second Y(s, t) follows the equations of vesicle dynamics (including

the inextensibility constraint) without direct interaction with the fluid dynamics. Both IB

representations are linked by stiff springs. The advantage of this penalty idea is that the

solution of fluid and vesicle dynamics is decoupled at each time step, so the traditional IB

implementation can be applied without much extra effort. Nevertheless, the tension must

be solved in this approach, so the penalty numbers has to be chosen sufficiently large to

keep the two IB representations close enough, and the time step size must also be small in

their explicit forcing computation. Recently, we simplified the penalty approach by intro-

ducing a spring-like tension to keep the vesicle boundary nearly inextensible. As a result,

the tension (Lagrange multiplier for inextensibility) no longer needs to be found as part of

the solution, and we applied this simplified penalty approach to simulate the dynamics of
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three-dimensional axisymmetric vesicles in Navier-Stokes flows [12], but the time step size

had to be sufficiently small because the IB force was computed at the beginning of each

time step. Here we use our two semi-implicit modified schemes given above that permit

much larger time steps, to simulate the vesicle dynamics in Navier-Stokes flows.

Vesicles are closed lipid membranes suspended in a viscous fluid. The membrane force

consists of elastic and bending parts, according to

F(s, t) =
∂

∂ s
(στ)− cb

∂ 4X

∂ s4
, (4.1)

where cb is the bending rigidity. The tension σ introduced here is an unknown function,

acting as the Lagrange multiplier for enforcing the local inextensibility of the membrane

given by

∇s ·U=
∂U

∂ τ
·τ = 0 , on Γ . (4.2)

As in Refs. [2,12], we replace the unknown tension σ by

σ = σ0

�
|Xs| − |Xs|

0
�

, (4.3)

where the elastic coefficient σ0 ≫ 1 and |Xs|
0 is the local stretching factor of the initial

vesicle configuration. This spring-like tension is intended to keep the stretching factor |Xs|
close to its initial counterpart |Xs|

0. (Note that exact inextensibility means |Xs| = |Xs|
0 for

all time.) The numerical schemes presented in Section 3 can be extended straightforwardly

to handle the tension computation, by replacing the constant rest length r0 with the initial

stretching factor |Xs|
0. We leave the computational detail for the bending force to the

Appendix.

Unless otherwise stated, throughout this section we set the fluid density ρ = 1, the

viscosity µ = 1, and the computational domain Ω = [−1,1] × [−1,1]. The stopping

tolerance of the iterative method AGMG is 10−6. All numerical runs were carried out on a

PC with 16G RAM using double precision arithmetic.

4.1. Convergence study

The convergence of our modified BE and CN schemes is first investigated. We put a

vesicle with an elliptical shape X(s, 0) = (0.2 cos(s), 0.5 sin(s)) in quiescent flow initially.

The elastic coefficient is chosen to be σ0 = 105, and the bending coefficient cb = 0.01.

We use different mesh sizes where m = n = 64,128,256,512 with the corresponding

mesh h = 2/m. We also set the Lagrangian mesh width as ∆s ≈ h/2, and the time step

∆t = h/4. Since the fluid is incompressible and the vesicle boundary is inextensible, the

enclosed area and the total perimeter of the vesicle should be conserved as time evolves.

For the fluid variables, we choose the result obtained from the finest mesh m = 512 as our

reference solution, and compute the maximal error between this reference solution and

the numerical solution. All numerical solutions were computed up to time T = 0.125.

We list the results obtained by modified BE and CN schemes in Table 1, showing the

relative errors of the vesicle area and the perimeter, the maximum errors of the vesicle



Unconditionally Energy Stable IB Method 11Table 1: The mesh re�nement results for the vesile area Ah, vesile perimeter Lh, boundary on�guration
Xh, and veloity omponents uh and vh.

BE m = n= 64 m = n= 128 rate m= n= 256 rate

|Ah− A0|/A0 1.470e-3 1.252e-3 0.23 7.162e-4 0.81

|Lh− L0|/L0 7.444e-3 2.684e-3 1.47 1.154e-4 1.22

‖Xh−Xref‖∞ 4.209e-3 8.477e-4 2.31 4.762e-4 0.83

‖uh− uref‖∞ 5.453e-2 8.110e-3 2.75 1.578e-3 2.36

‖vh− vref‖∞ 5.628e-2 1.098e-2 2.36 3.203e-3 1.78

CN m = n= 64 m = n= 128 rate m= n= 256 rate

|Ah− A0|/A0 2.688e-3 2.082e-3 0.37 1.148e-4 0.86

|Lh− L0|/L0 6.899e-3 2.447e-3 1.50 1.052e-4 1.22

‖Xh−Xref‖∞ 3.296e-3 9.643e-4 1.77 6.821e-4 0.50

‖uh− uref‖∞ 7.318e-2 4.919e-2 0.57 2.744e-2 0.84

‖vh− vref‖∞ 7.561e-2 5.790e-2 0.39 1.935e-2 1.58

boundary configuration, and the fluid velocity field. Since the fluid variables are defined

at the staggered grid, the numerical solution on a refined mesh does not coincide with the

one obtained from a coarser mesh, and we simply used linear interpolation to compute

the solutions at the same grid locations. From Table 1, we note that the numerical results

show roughly first-order convergence for all solution variables.

4.2. Maximal time step comparison

Let us now investigate the numerical stability of the present schemes, by testing the

maximal time steps for the earlier explicit scheme (EP) versus our modified BE and CN

schemes. We used three different elastic coefficients σ0 = 107, 108, 109 to study the nu-

merical stability, by comparing the maximal time step that can be used in each scheme.

To determine the maximal time step, we ensured the vesicle boundary behaviours are rea-

sonable, by requiring the relative errors of both the area and perimeter to be within 1%

and that there is no numerical instability. The numerical parameters were the same as

those in the previous convergence study, except that the initial vesicle configuration was

chosen to be X(s) = (0.1 sin(s), 0.5 cos(s)). Table 2 shows the maximal time steps for the

three schemes, and it can be seen that the time step for both of the modified BE and CN

schemes can be chosen to be 3 to 4 orders larger than the time step in the explicit scheme.

Moreover, as the grid becomes finer or the elastic coefficient σ0 becomes larger, the time

step must become smaller to maintain numerical stability in the explicit scheme. However,

for both BE or CN schemes we can always set∆t = O(h) to maintain the desired numerical

stability.

Table 3 shows the average CPU time (in seconds) for each time step, and the total

CPU time for the computation up to T = 1. The modified BE and CN schemes clearly

outperform the explicit scheme in terms of the total CPU time.



12 W.-F. Hu and M.-C. LaiTable 2: Maximum time steps for the expliit(EP) and the modi�ed BE and CN shemes, for variouselasti oe�ients σ0.
σ0 = 107 σ0 = 108 σ0 = 109

m, n EP BE CN EP BE CN EP BE CN

128 2.22e-5 1.56e-2 1.56e-2 4.36e-6 1.56e-2 1.56e-2 1.02e-6 1.56e-2 1.56e-2

256 1.03e-5 7.81e-3 7.81e-3 1.74e-6 7.81e-3 7.81e-3 3.81e-7 7.81e-3 7.81e-3

512 4.74e-6 3.91e-3 3.91e-3 7.44e-7 3.91e-3 3.91e-3 1.53e-7 3.91e-3 3.91e-3Table 3: The average CPU time (in seonds) of eah time step for di�erent shemes. The total timewith "*" means the estimated value.
EP BE CN

m, n ∆t Average Total ∆t Average Total ∆t Average Total

128 1.02e-6 0.07 68627 1.56e-2 0.13 8 1.56e-2 0.13 8

256 3.81e-7 0.16 419947∗ 7.81e-3 0.39 50 7.81e-3 0.43 55

512 1.53e-7 0.45 2941176∗ 3.91e-3 1.25 320 3.91e-3 1.45 371

4.3. Tank-treading motion under shear flow

In a more physically realistic application, we consider the transient motion of a vesicle

with the initial configuration X(s) = (0.1 sin(s), 0.5 cos(s)) under shear flow u = (γy, 0).

The elastic coefficient is chosen to be σ0 = 105, and the bending coefficient cb = 0.01. It is

well-known that the equilibrium dynamics of a vesicle under a simple shear flow undergoes

tanking-treading motion if the viscosity contrast is under a certain threshold [14], where

by tank-treading motion we mean that the configuration of the vesicle remains stationary

while there is a tangential motion along the vesicle boundary. Fig. 2 shows the evolutional

motion of the vesicle at different times. One can see that after some time the vesicle shape

does not change, although the Lagrangian point (marked by ∗) along the interface moves

with its tangential velocity. This tank-treading motion shown is in good agreement with

previous studies [13,20,31,33].

As discussed elsewhere [13,15,16,31,33], the motion of a steady vesicle under shear

flow can be characterised by the inclination angle θ between the long axis of the vesicle

and the flow direction and the tank-treading frequency f = 2π/
∫
Γ

dl/uτ, where uτ is the

tangential velocity component. The inclination angle has been found to depend strongly on

the reduced area V = 4πA0/L2
0 , where A0 is the vesicle area and L0 is the total perimeter

of vesicle. (Under this definition, a circle has the reduced area V = 1, while an ellipse

with larger aspect ratio has a smaller reduced area.) As the reduced area increases the

inclination angle also increases, but the angle is independent of the shear rate γ. This

behaviour is verified in the left panel of Fig. 3, which shows the steady inclination angle

(θ/π) versus the reduced area (V ) with different shear rates γ = 1,5,10. Our numerical

results are again in good agreement with those obtained in previous studies [13,31].

The right panel of Fig. 3 shows the tank-treading frequency f versus the reduced area

V for different shear rates. It is evident that as the shear rate increases the tangential
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T = 0.125 T = 0.375 T = 0.625 T = 0.875

T = 13.5 T = 16.5 T = 19.5 T = 22.5

T = 25.5 T = 28.5 T = 31.5 T = 34.5

Figure 2: The tank-treading motion of a vesile under shear �ow.
motion becomes stronger, so the frequency becomes larger. Moreover, on fixing the shear

rate, if the vesicle has larger reduced area then it has larger frequency as well. Again, our

numerical results are in good agreement with those obtained in previous studies [13,31].

5. Conclusions and Future Work

We have introduced a semi-implicit boundary forcing approach, where the updated

stretching factor is used in the forcing term so that the developed backward Euler and

Crank-Nicholson schemes are unconditionally energy stable. By using the projection method

to solve the fluid equations, our method decouples the pressure and produces a symmet-

ric positive definite system that can be solved efficiently. The resulting modified method

therefore benefits from improved numerical stability, so that the time step size can be sig-

nificantly increased in contrast to the severe time step restriction for explicit boundary

forcing schemes. As an application, we use the developed schemes to simulate vesicle dy-

namics in Navier-Stokes flow. The extension of our new method to axisymmetric 3D and

other 3D immersed boundary problems is currently under investigation.
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Appendix

This appendix provides the numerical detail on how we compute the bending force

in Eq. (4.1). We first define the discrete force spreading operator F n
h

and the velocity

interpolating operator I n
h

by

F n
h [F](x) =

M∑

k=1

F(sk)δh(x−Xn
k)∆s , I n

h [u](sk) =
∑

x

u(x)δh(x−Xn
k)h

2 , (A.1)

respectively. It is well-known [23,27] that the above both operators are adjoint with each

other — i.e.

〈F n
h
[F],u〉Ωh

=
∑

x

 
M∑

k=1

F(sk)δh(x−Xn
k
)∆s

!
· u(x)h2

=

M∑

k=1

F(sk) ·

�∑

x

u(x)δh(x−Xn
k)h

2

�
∆s = 〈F,I n

h [u]〉Γh
.

The singular immersed boundary force arising from the bending is written as

fb(x) = −cb

∫

Γ

∂ 4X

∂ s4
δ(x−X(s, t)) ds . (A.2)

To simplify our notation, we define the discrete fourth-order centred difference opera-

torAh as an approximation to the fourth-order derivative. The discretisation for Eq. (A.2)

can thus be written as

fn+1
b
(x) = −cbF

n
h
[AhXn+1](x) .
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By substituting Xn+1 = Xn+∆tI n
h
[un+1] into the above equation, we have

fn+1
b
(x) = −cbF

n
h [AhXn+∆tAhI

n
h [u

n+1]](x)

= −cbF
n
h [AhXn](x)− cb∆tF n

hAhI
n

h [u
n+1](x) . (A.3)

Since the discrete operators F n
h

and I n
h

are self-adjoint and the discrete fourth differen-

tial operator Ah is symmetric positive definite, the above composite operator F n
h
AhI

n
h

is

also symmetric positive definite. Thus in our modified BE scheme we need only add the

additional singular force

f∗b(x) = −cbF
n
h [AhXn](x)− cb∆tF n

hAhI
n
h [u
∗](x) . (A.4)

It is notable that the symmetric positive definite matrix structure for u∗ in Eq. (3.19) does

not change at all, even when we add this extra bending force term. The bending term for

modified CN scheme can be derived similarly, so we omit that detail.
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