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In this paper, a new Discontinuity Capturing Shallow Neural Network (DCSNN) for 
approximating d-dimensional piecewise continuous functions and for solving elliptic 
interface problems is developed. There are three novel features in the present network; 
namely, (i) jump discontinuities are accurately captured, (ii) it is completely shallow, 
comprising only one hidden layer, (iii) it is completely mesh-free for solving partial 
differential equations. The crucial idea here is that a d-dimensional piecewise continuous 
function can be extended to a continuous function defined in (d + 1)-dimensional space, 
where the augmented coordinate variable labels the pieces of each sub-domain. We 
then construct a shallow neural network to express this new function. Since only one 
hidden layer is employed, the number of training parameters (weights and biases) scales 
linearly with the dimension and the neurons used in the hidden layer. For solving elliptic 
interface problems, the network is trained by minimizing the mean square error loss that 
consists of the residual of the governing equation, boundary condition, and the interface 
jump conditions. We perform a series of numerical tests to demonstrate the accuracy 
of the present network. Our DCSNN model is efficient due to only a moderate number of 
parameters needed to be trained (a few hundred parameters used throughout all numerical 
examples), and the results indicate good accuracy. Compared with the results obtained by 
the traditional grid-based immersed interface method (IIM), which is designed particularly 
for elliptic interface problems, our network model shows a better accuracy than IIM. We 
conclude by solving a six-dimensional problem to demonstrate the capability of the present 
network for high-dimensional applications.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

For the past decade, deep learning has gained great success in image recognition, natural language processing, computer 
vision, and other numerous practical applications in our daily life. Until very recently, it has begun to draw much attention 
to solve partial differential equations (PDEs) using deep neural networks (DNNs) in the scientific computing community. Part 
of the theoretical reason can be attributed to the various kinds of expressive power for function approximations using DNN, 
such as those described in [1–4], and the references therein. The usage of automatic differentiation in machine learning [5], 
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making derivatives evaluations through neural networks much easier, is probably another reason in practice. However, from 
the authors’ points of view, the most motivating reason could be when the PDEs become intractable to traditional numerical 
methods, such as finite difference, finite element, or spectral method. For instance, even with today’s growing computing 
power and resources, solving high-dimensional PDEs is still notoriously difficult to the above traditional numerical methods 
due to the “curse of dimensionality”. Some successful methods for solving high-dimensional PDEs using the deep learning 
approach can be found in [6–9], just to name a few.

As deep neural networks to solve PDEs become popular, there are mainly two different approaches; namely, the physics-
informed neural networks (PINNs) by Raissi et al. [10] (also termed as DGM in [7]), and the deep Ritz method by E and 
Yu [11]. Both methods use the neural network approximations for solutions of PDEs and share the mesh-free advantage 
which the popular traditional numerical methods are unlikely to have. The PINNs solve PDEs by minimizing the mean 
squared error loss of the equation residual, and the initial and boundary condition errors simultaneously. This kind of 
neural network approach can be dated back to Dissanayake and Phan-Thien [12], where the authors used a small number 
of training points and a two-hidden-layer network to solve the linear and nonlinear Poisson equations in a two-dimensional 
square domain. Shortly after, a superposition of the boundary condition and neural network approximation was developed 
by Lagaris et al. [13] to solve ordinary and partial differential equations in regular domains. The extension to solve boundary 
value problems in irregular domains by the synergy of a single hidden layer network and a radial basis function network 
(for exact satisfaction of the boundary condition) was also proposed in [14]. On the other hand, the deep Ritz method begins 
with solving the variational problem equivalent to the original PDE, so the natural loss function in this framework is simply 
the energy functional. Recently, a penalty-free Ritz method was proposed in [15] to solve a class of second-order boundary 
value problems in complex domains.

Despite the success of the deep learning approach in solving PDEs with smooth solutions, not much attention was 
paid to problems with non-smooth solutions, or problems where the solution is only smooth in a piecewise manner. A 
typical example is an elliptic interface problem, where the solution and its derivatives have jump discontinuities across the 
interface. The intrinsic difficulty might be because the activation functions in a deep neural network are in general smooth, 
such as the sigmoid function, or at least continuous, such as the rectified linear unit (ReLU). Along this line, a deep Ritz 
type approach to solve the elliptic interface problem with high-contrast discontinuous coefficients was developed in [16]. 
The network architecture is like the one proposed in [11] where two fully connected hidden layers compose a block, so the 
network consists of two blocks with an output linear layer. Each block is linked by a residual connection. However, there 
is a lack of intuitive explanation on why such a network is built. Another deep least squares method [17] was proposed 
to minimize the first-order system of least-squares functional, which is rewritten from the second-order elliptic problem. 
An accuracy comparison using different loss functions and activation functions is performed. However, the results are only 
given for one-dimensional problems. Notice that the solutions in both papers [16,17] are continuous, but the derivatives 
have jumps across the interface.

To the best of our knowledge, so far the most successful methodology for solving elliptic problems with discontinuous 
solution and derivatives across an interface is to use the piecewise deep neural network proposed by He et al. [18]. They 
approximate the solution by two neural networks corresponding to two disjoint sub-domains, so that in each sub-domain, 
the solution remains smooth. These two networks are linked by imposing the solution and its normal derivative jump 
conditions in the mean squared error loss. This way, the resulting error of the training solution can be significantly reduced. 
However, like most DNNs, as the network becomes deeper, the training process requires more computational effort. Not to 
mention that one has to train an individual neural network in each sub-domain.

In this paper, we propose a new discontinuity capturing shallow neural network (DCSNN) for solving elliptic interface 
problems. The novelty of the proposed network is three-fold. Firstly, the network captures the solution and its normal 
derivative jumps sharply across the interface. Secondly, the network is completely shallow, meaning that only one hidden 
layer is needed, so it significantly reduces the training cost in contrast to DNN. Lastly, it is totally mesh-free, thus it can be 
applied to solve problems with complex (or irregular) domains which the traditional accurate immersed interface method 
(IIM) [19] is hard to implement, especially in higher dimensions.

The rest of the paper is organized as follows. In Section 2, we show how a d-dimensional piecewise continuous function 
can be approximated by the present shallow network. It demonstrates the main underlying idea of the developed DCSNN 
by function approximation. Then an optimization algorithm to train the network is introduced, followed by an example to 
confirm the accuracy. The present network for solving elliptic interface problems is presented in Section 3, followed by a 
series of numerical accuracy tests and comparisons in Section 4. Some concluding remarks and future work are given in 
Section 5.

2. Discontinuity capturing shallow neural network

In this section, we start by constructing a neural network to approximate a d-dimensional, piecewise continuous, scalar 
function φ(x) in the domain � = �− ∪ �+ ∪ � (� ⊆Rd) defined by

φ(x) =
{

φ−(x) if x ∈ �−,

φ+(x) if x ∈ �+,
(1)
2
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Fig. 1. (a) The one-dimensional piecewise continuous function φ(x). (b) The two-dimensional augmented function φaug (x, z) at different z values. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

where x = (x1, x2, · · · , xd), φ− and φ+ are both smooth functions in their corresponding sub-domains. The interface � is 
defined as the boundary between the sub-domains �− and �+ , where the function φ has a jump discontinuity at �. 
(Note that the function value of φ on the interface � can be simply defined by φ− for convenience purpose.) In order 
to approximate the above piecewise continuous function in d dimensions, we first make a continuous extension of the 
function in (d + 1)-dimensional space, and then construct a shallow (one hidden layer) neural network to approximate such 
a function. Since we aim to approximate the piecewise continuous function accurately and capture the function discontinuity 
sharply using only a one-hidden-layer neural network, we refer to the present network approximation as the Discontinuity 
Capturing Shallow Neural Network (DCSNN).

2.1. Continuous function extension

The key idea here is that a d-dimensional discontinuous function can be alternatively represented by a (d + 1)-
dimensional smooth function. To this end, we first introduce an augmented one-dimensional variable z to categorize the 
variable x into two types; namely, x in �− or �+ . More precisely, we set z = −1 if x ∈ �− and z = 1 if x ∈ �+ (this 
task can be easily done with the help of a level set function for which the zero level set denotes �). We then define the 
(d + 1)-dimensional function using the augmentation variable (x, z) as

φaug(x, z) =
{

φ−(x) if z = −1,

φ+(x) if z = 1,
(2)

where x ∈ � and z ∈ R. That is, both φ− and φ+ are regarded as smooth extensions over the entire domain �, and the 
augmented function φaug(x, z) is assumed to be continuous on the domain � × R. In such a way, the function φ can be 
rewritten in terms of the augmented function as

φ(x) =
{

φaug(x,−1) if x ∈ �−,

φaug(x,1) if x ∈ �+.
(3)

Therefore, the piecewise continuous function φ now can be regarded as a continuous function defined on one-dimensional 
higher space and restricted to its sub-domains.

We illustrate this idea by considering a one-dimensional example where φ−(x) = sin(2πx) if x ∈ [0, 12 ) and φ+(x) =
cos(2πx) if x ∈ ( 1

2 , 1]. The function has a jump discontinuity at x = 1
2 , see Fig. 1(a). The two-dimensional augmented function 

can be constructed as φaug(x, z) = 1−z
2 φ−(x) + 1+z

2 φ+(x), see Fig. 1(b) for the function profile. In particular, its restriction 
at z = −1 corresponding to φ− is shown as the blue solid curve, and the one at z = 1 corresponding to φ+ is shown as 
the red solid curve. It is important to mention that this augmented approach can be straightforwardly applied to piecewise 
continuous functions with arbitrary many pieces by simply labelling various z values. Besides, the augmented function is 
not unique, i.e., there exists infinitely many such functions that have their restrictions to be φ. The remaining issues are how 
to construct the neural network to approximate the augmented function and how to train the network efficiently, which we 
shall describe in the next subsection.

2.2. Shallow neural network structure

We propose a shallow neural network to approximate the d-dimensional piecewise continuous function. As shown in 
the previous subsection, all we have to do is to construct the augmented function φaug that is in fact continuous in d + 1
dimensions. Based on the universal approximation theory [1], we hereby design a shallow, feedforward, fully connected neural 
network architecture, in which only one single hidden layer is employed to approximate φaug . The structure of this shallow 
3
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Fig. 2. The structure of DCSNN. N neurons are used in the hidden layer.

neural network is shown in Fig. 2. Let N be the number of neurons used in the hidden layer, the augmented function (or 
output layer) under this network structure can be explicitly expressed by

φaug(x, z) = W [2]σ(W [1](x, z)T + b[1]) + b[2], (4)

where W [1] ∈ RN×(d+1) and W [2] ∈ R1×N are the weights, b[1] ∈ RN and b[2] ∈ R are the biases, and σ is the activation 
function. One can easily see that the augmented function is simply a finite linear combination of activation functions.

By collecting all the training parameters (including all the weights and biases) in a vector p, the total number of pa-
rameters in the network (i.e., dimension of p) is counted by Np = (d + 3)N + 1. Given M training data with feature inputs 
{(xi, zi)}M

i=1 and target outputs {φ(xi)}M
i=1, where zi is determined by identifying the category of xi , these parameters in 

φaug are learned via minimizing the following mean squared error loss

Loss(p) = 1

M

M∑
i=1

(
φ(xi) − φaug(xi, zi;p)

)2
. (5)

Now, we are in a position to solve the above optimization problem. Since the present shallow network generally results 
in a moderate number of training parameters, the above optimization problem can be efficiently solved by Levenberg-
Marquardt (LM) method [20], a full-batch optimization algorithm. That is, we find p via the iterative procedure

p(k+1) = p(k) +
(

J T J + μI
)−1 [

J T
(
� − �aug(p(k))

)]
, (6)

where the ith component of the vectors � and �aug correspond to φ(xi) and φaug(xi, zi; p) in the loss function (5), and 
J ∈ RM×N p (typically M > Np ) is the Jacobian matrix given by J = ∂�aug/∂p. The computation of the Jacobian matrix can 
be done using automatic differentiation [5,21], or backpropagation algorithm. Notice that μ is the damping parameter. The 
general strategy for tuning the damping parameter is as follows. Initially, μ is set to be large so that the first few updates 
are small steps along the gradient direction (note that the term J T

(
� − �aug(p)

)
denotes the negative gradient direction 

of the loss function). We adjust the parameter μ lower as the loss decreases, in such a way, the Levenberg-Marquardt 
method approaches the Gauss-Newton method, and the solution to the optimization problem typically speeds up to the 
local minimum. The major cost in each iteration step (6) comes from the computation of matrix-vector multiplication. 
This can be done efficiently by using reduced singular value decomposition to the Jacobian matrix J = U	V T so that the 
updating direction (the second term on the right-hand side of Eq. (6)) is computed by V diag(

σ J

σ 2
J +μ

)U T (� − �aug), where 

σ J denotes the singular values of J .

2.3. An example of function approximation

For illustration purpose, here we show the capability of the present network by considering a one-dimensional piecewise 
continuous function

φ(x) =
{

sin(2πx) if x ∈ [0, 1
2 ),

cos(2πx) if x ∈ ( 1
2 ,1]. (7)
4
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Fig. 3. (a) The piecewise continuous function φ (denoted by the solid line) and the DCSNN function φS (denoted by 50 dotted points among 1000 test 
points). (b) The plot of absolute errors |φS − φ| at 1000 test points. The maximum absolute error is ‖φS − φ‖∞ = 5.661 × 10−7.

The network is trained by using only 5 neurons in the hidden layer, thus there are totally 21 parameters in weights and 
biases needed to be learned. We use 100 randomly sampled training points in the interval [0, 1] (including two boundary 
points) with the sigmoid activation function and stop the iteration when Loss(p) < 10−12.

The results are shown in Fig. 3. In panel (a) we compare the exact solution φ with the DCSNN solution, denoted by φS . 
Both of them are evaluated at 1000 test points, which are equally distributed in [0, 1]. As can be seen, the two functions 
agree well with each other. It also clearly shows that a jump discontinuity at x = 0.5 is captured sharply. We show in 
panel (b) the pointwise absolute error |φS − φ|. It is interesting to see that the maximum error occurs close to the domain 
boundary rather than at the point of discontinuity. The prediction of the present network is quite accurate where the 
maximum norm of the error is of magnitude O (10−7). It is important to mention that, despite only one-dimensional case 
presented here, discontinuous functions in higher dimensions can also be approximated accurately and efficiently using the 
present network structure (see the last example in Section 4).

3. Elliptic interface problems

Now we apply the DCSNN to solve d-dimensional elliptic interface problems with piecewise constant coefficients. In 
such a problem, a domain � ⊂ Rd is divided by an embedded interface � ⊂ Rd−1 into two regions, namely, inside (�−) 
and outside (�+) of the interface, so that � = �− ∪ �+ ∪ �. The elliptic interface equation with general inhomogeneous 
jump conditions reads

∇ · (β∇φ) = f in � \ �, [φ] = v, [β∂nφ] = w, on �, (8)

where β is a piecewise positive constant function defined by β = β− in �− and β = β+ in �+ . (Note that the present 
method has no difficulty for handling the variable coefficient case, i.e., β is spatial dependent, as one can see from the 
implementation later.) Here the bracket [·] denotes the jump discontinuity of the quantity approaching from �+ minus the 
one from �− , n stands for the outward normal vector defined on the interface � and ∂nφ is the shorthand notation for 
∇φ · n. Certainly, the above differential equation should be accompanied with suitable boundary conditions (say Dirichlet 
or Neumann) along the domain boundary ∂�. Throughout this paper we will focus on the case of the Dirichlet boundary 
condition φ|∂� = g , while other types of boundary conditions will not change the main ingredients presented here.

We first rewrite Eq. (8) in the form of the Poisson equation:

�φ = f̃ =
{

f −/β− if x ∈ �−
f +/β+ if x ∈ �+ , [φ] = v, [β∂nφ] = w, on �, (9)

and introduce a (d + 1)-dimensional augmented function φaug(x, z) that satisfies

�xφaug(x, z) =
{

f −/β− if x ∈ �−, z = −1
f +/β+ if x ∈ �+, z = 1

, [φaug] = v, [β∂nφaug] = w, on �, (10)

where the jump condition is evaluated by taking the difference between values at z = 1 and z = −1, i.e., [φaug] =
φaug(x, 1) − φaug(x, −1) for x ∈ �, and the same manner applies for [β∂nφaug] (note that ∂nφaug = ∇xφaug · n). Once φaug is 
found, the function φ is recovered using Eq. (3).

We then need to solve the augmented elliptic interface problem (10) to obtain φaug using the present DCSNN. Given 
training points in �, on the domain boundary ∂� and along the embedded interface �, denoted by {(xi, zi)}M

i=1, {x j
∂�}Mb

j=1

and {xk
�}M�

k=1, respectively, we hereby solve the equation (10) by minimizing the mean squared error loss in the framework 
of the physics-informed learning technique [10]
5
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Loss(p) = 1

M

M∑
i=1

(
�xφaug(xi, zi) − f̃ (xi)

)2 + αb

Mb

Mb∑
j=1

(
φaug(x j

∂�,1) − g(x j
∂�)

)2

+ α�

M�

M�∑
k=1

(
[φaug(xk

�)] − v(xk
�)

)2 + α�

M�

M�∑
k=1

(
[β∂nφaug(xk

�)] − w(xk
�)

)2
,

(11)

where αb and α� are positive constants that can be adjusted to strengthen or weaken constraints at the domain boundary 
and on the interface, respectively. Notice that, in the above equation, we have collected all training parameters (weights and 
biases) in the vector p. Since the least squares loss is adopted, again, it could be quite efficient to train the network using 
the Levenberg-Marquardt method as introduced in 2.2. We mention that the spatial derivatives of the target function φaug
in the loss function, Eq. (11), can be computed by automatic differentiation easily. Although the present network is similar 
in spirit to PINNs [10], here we only use one hidden layer with sufficiently small number of neurons so it reduces the 
computational complexity and learning workload significantly without sacrificing the accuracy. Moreover, in solving Eq. (8), 
as shown in the next section, the present DCSNN not only achieves better accuracy than the traditional finite difference 
method, such as the immersed interface method [19,24,27], but also outperforms other piecewise DNN [18] in terms of 
accuracy and network complexity.

4. Numerical results

In this section, we use the developed network to perform numerical tests for the elliptic interface problems in two, three, 
and even six dimensions. Throughout all the examples (except Example 2, in which we compare our results with existing 
literature), we set β− = 1 and β+ = 10−3 (so β−/β+ = 103, the problem with high contrast coefficients) and the penalty 
parameters αb = α� = 1. The exact solution with a d-dimensional variable x = (x1, x2, · · · , xd) is given by

φ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d∏
i=1

exp(xi) if x ∈ �−,

d∏
i=1

sin(xi) if x ∈ �+,

(12)

so the corresponding right-hand side function f̃ and the jump information v and w in Eq. (9) can be easily obtained 
through the above solution.

In the following examples, we choose sigmoid as the activation function and we finish the training process when the 
stopping condition Loss(p) < ε is met (ε is set to be at least smaller than 10−9). We measure the accuracy of the solution 
using the test error instead of the training error. Precisely, we randomly choose test points {xi}Ntest

i=1 ⊂ � to compute the L∞
and L2 error as

‖φS − φ‖∞ = max
1≤i≤Ntest

|φS(xi) − φ(xi)|, ‖φS − φ‖2 =
√√√√ 1

Ntest

Ntest∑
i=1

(φS(xi) − φ(xi))2,

where φS is the solution obtained by the present DCSNN. Throughout this paper, we set the number of test points Ntest =
100M , with M training points. We also repeat the numerical experiments 10 times so the test error reported here is an 
averaged one. The source codes accompanying this manuscript are available on GitHub [22].

Example 1. We first consider a two-dimensional problem with a regular square domain � = [−1, 1] ×[−1, 1] and an ellipse-

shaped interface � :
( x1

0.2

)2 +
( x2

0.5

)2 = 1. We use 128 training points (M = 64 interior points in the computational domain, 
Mb = 32 points on the boundary, and M� = 32 points on the interface).

It is interesting to see that the deployment of training data can indeed affect the accuracy of DCSNN solutions. We con-
sider three different distributions of training points; namely, Chebyshev points of the first kind [23], uniformly distributed 
points, and randomly distributed points. The training points on � and ∂� are chosen based on those three distributions, 
while the points on the interface � are always chosen randomly. The results are shown in Table 1, where two sets of neurons 
N = 10, 20 are used for comparison. We find the errors obtained by Chebyshev and uniform nodes are of the same order 
of magnitude, whereas the ones obtained by random distribution are less accurate. The corresponding pointwise absolute 
errors are shown in Fig. 4. As one can see, the major error of Chebyshev nodes comes from the vicinity of the interface, 
while the other two distributions have their maximum error occurring close to the corners of the domain. This finding is 
surprising in the sense that, even though the activation function is fairly different from polynomials, the approximation still 
achieves better accuracy in Chebyshev nodes.

We show in Fig. 5 the solution profile of DCSNN; it sharply captures the discontinuity. Meanwhile, it is interesting to see 
that the absolute error between the exact and the DCSNN solutions also shows a discontinuity across the interface because 
of the intrinsic construction of the present network.
6
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Table 1
The errors with different training point distributions in Example 1.

(N, N p)
Chebyshev nodes uniform nodes random nodes

‖φS − φ‖∞ ‖φS − φ‖2 ‖φS − φ‖∞ ‖φS − φ‖2 ‖φS − φ‖∞ ‖φS − φ‖2

(10, 51) 1.032E−05 1.168E−06 5.965E−05 8.098E−06 3.395E−04 4.852E−05
(20, 101) 4.386E−06 7.285E−07 8.798E−06 1.247E−06 4.004E−05 1.574E−06

Fig. 4. The absolute error |φS − φ| using N = 20 with different training point distributions in Example 1.

Fig. 5. Left: The DCSNN solution profile. Right: Absolute error between the DCSNN solution and the exact solution. N = 20 with Chebyshev training points 
in Example 1.

It is worth mentioning that the number of training points in each sub-domain, �− and �+ , depends roughly on the area 
ratio between them if the solutions in both sub-domains are equally smooth. In this example, |�−|/|�+| ∼ 0.085 leads to 
less than 10 points in �− . Even with such a small amount of data, we still get accurate predictions in the interior region. 
This might be due to having enough training points on the interface, which brings in an adequate amount of information. 
Also, note that the number of points needed in each sub-domain is problem-dependent and often requires some prior 
information about the solution smoothness in each sub-domain.

We then compare the solution from the Chebyshev nodes (total 128 training points) in Table 1 with the numerical 
solution obtained by the immersed interface method (IIM) [24] which is second-order accurate for the elliptic interface 
problem Eq. (8) on Cartesian grids. In IIM, the total number of degree of freedom (number of unknowns) Ndeg equals the 
sum of the number of Cartesian grid points m2 and the augmented projection feet on the interface, m�; see [24]. Table 2
shows the comparison results where the IIM uses the grid resolutions m = m� = 128 and m = m� = 256, so correspondingly 
Ndeg = 16512 and Ndeg = 65792, while the number of parameters used in DCSNN are just Np = 51 and Np = 101, respec-
tively. One can see how significantly different those numbers of unknowns are. With just a few number of neurons, N = 10
and 20, the solutions of the present network achieve better accuracy than the IIM. Similarly, an increase in the number of 
neurons leads to better accuracy, as expected.

One may wonder what will happen if different optimizers are chosen. To see this, we use the same network model, same 
Chebyshev training points, and solve the same problem, but with Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
7
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Table 2
φ: Exact solution. φI I M : Solution obtained by IIM. Ndeg = 16512 and 
65792 correspond to m = m� = 128 and m = m� = 256. φS : Solution 
obtained by DCSNN model.

Ndeg ‖φI I M − φ‖∞ (N, N p) ‖φS − φ‖∞ ‖φS − φ‖2

16512 7.719E−05 (10, 51) 1.032E−05 1.168E−06
65792 8.347E−06 (20, 101) 4.386E−06 7.285E−07

Table 3
Comparison between optimizers in Example 1 with Chebyshev training 
points.

(N, N p)
L-BFGS Adam

‖φS − φ‖∞ ‖φS − φ‖2 ‖φS − φ‖∞ ‖φS − φ‖2

(10, 51) 1.897E−03 5.461E−04 3.270E−03 9.077E−04
(20, 101) 6.086E−04 1.420E−04 1.508E−03 2.619E−04

Fig. 6. The evolution of the loss with different optimizers in Example 1. N = 20.

Table 4
Relative L2 error for the solutions of DCSNN, φS , and for the solutions 
of piecewise deep neural network [18], φDNN .

(N, N p) ‖φS − φ‖2/‖φ‖2 N p ‖φDNN − φ‖2/‖φ‖2

(50, 251) 8.362E−04 25474 4.960E−03
(100, 501) 2.634E−04 42114 3.727E−04

BFGS) [25] and Adaptive Moment Estimation (Adam) [26] optimizers that are commonly used in machine learning practice. 
We use a learning rate of 0.1 for L-BFGS, while for Adam we use an initial learning rate 0.01 and a learning rate scheduler 
that reduces its value to 0.0001 during training. We fix the number of iterations to 50000. The results are shown in Table 3. 
Compared with the results from the LM optimizer in Table 1, the accuracy is about two orders of magnitude lower. We also 
show the evolution of the loss in Fig. 6. The LM loss drops to 10−9 in about 1000 steps, while the L-BFGS and Adam losses 
can not fall below 10−7 even up to 50000 training steps.

Example 2. As the second example, we compare the results of DCSNN with the piecewise deep neural network proposed in 
[18], in which two (or multiple) individual neural nets are trained to approximate the function in each sub-domain. Here, 
the square domain � = [−1, 1]2 is separated by the interface that is given by the polar curve r(θ) = 1/2 + sin(5θ)/7. We 
choose the exact solution as in [18]

φ(x1, x2) =
{

exp(x2
1 + x2

2) if (x1, x2) ∈ �−,

0.1(x2
1 + x2

2)
2 − 0.01 log(2

√
x2

1 + x2
2) if (x1, x2) ∈ �+,

and set β− = 10 and β+ = 1. The present network is trained using N = 50 and 100 neurons with randomly sampled training 
points (M, Mb, M�) = (400, 80, 80). We measure the accuracy of the solutions using the relative L2 error and compare the 
results with piecewise deep neural nets employing four and six hidden layers, as in [18], for which the same order of 
training data is used. As one can see from Table 4, the DCSNN model with only one hidden layer and fewer parameters 
shows better accuracy.
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Fig. 7. Left: The DCSNN solution profile. Right: Absolute error between the DCSNN solution and the exact solution. In this case ‖φS − φ‖∞ = 5.309 × 10−6

and ‖φS − φ‖2 = 5.856 × 10−7.

Table 5
The errors with different training point distributions in Example 4.

(N, N p)
Chebyshev nodes uniform nodes random nodes

‖φS − φ‖∞ ‖φS − φ‖2 ‖φS − φ‖∞ ‖φS − φ‖2 ‖φS − φ‖∞ ‖φS − φ‖2

(20, 121) 3.276E−05 3.832E−06 4.214E−05 2.278E−06 1.610E−04 1.341E−05
(30, 181) 5.605E−06 5.809E−07 1.733E−05 1.244E−06 7.646E−05 1.693E−06

Table 6
φ: Exact solution. φI I M : Solution obtained by IIM. Ndeg = 2201776
and 17194216 correspond to (m, m�) = (128, 104624) and (m, m�) =
(256, 417000). φS : Solution obtained from DCSNN model.

Ndeg ‖φI I M − φ‖∞ (N, N p) ‖φS − φ‖∞ ‖φS − φ‖2

2201776 9.380E−04 (20, 121) 3.276E−05 3.832E−06
17194216 2.890E−04 (30, 181) 5.605E−06 5.809E−07

Example 3. This example aims to highlight the robustness of DCSNN for handling the elliptic interface problem (8) on 
irregular domains. Since the proposed method is mesh-free (i.e., not constrained by the locations of training points), 
the implementation is indeed straightforward. Unlike the previous examples, here the domain is set to be irregular and 
enclosed by the polar curve r(θ) = 1 − 0.3 cos(5θ). The embedded interface � is also described by the polar curve, 
r(θ) = 0.4 − 0.2 cos(5θ). We use 20 neurons in the hidden layer (thus Np = 101) and randomly sample training points 
with (M, Mb, M�) = (64, 32, 32). The results are shown in Fig. 7. Without paying extra numerical efforts, the DCSNN model 
can accurately predict the solution. On the contrary, it can be difficult for traditional finite difference methods, such as IIM, 
to solve in such a domain. Here, we emphasize that the irregular domains in arbitrary dimensions can be handled properly 
with no substantial difficulty.

Example 4. Next, we proceed to the three-dimensional elliptic interface problem. The interface is elliptical, centered at the 
origin with semi-principal axes of length 0.7, 0.5 and 0.3, embedded in a regular cube � = [−1, 1]3. Similar to Example 1, 
we compare the accuracy among three different training point distributions. The number of training points is (M, Mb , M�) =
(216, 216, 108) which is about 4 times as many as used in the 2D case, while the number of neurons are set by N = 20, 30
in the hidden layer. The results are shown in Table 5. As expected, the Chebyshev nodes again give the most accurate results 
compared to the other two.

We then compare the accuracy of the DCSNN solution with the 3D immersed interface solver proposed in [27]. Note that, 
in 3D IIM, the total degree of freedom, Ndeg , is now the sum of the number of Cartesian grid points m3 and the augmented 
projection feet on the interface, m� . As shown in Table 6, the results obtained by the present model are more accurate than 
the ones by IIM, whereas the number of parameters of the network is significantly less than the one used in IIM.

It is important to point out that, in DCSNN, the number of neurons in the input layer is the problem dimension plus 
one. So with a fixed number of neurons in the hidden layer N , the total number of parameters N p increases linearly 
with the dimension d (recall that Np = (d + 3)N + 1). In contrast, when the dimensionality of the problem increases, the 
computational complexity of traditional numerical methods increases significantly.
9
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Fig. 8. The evolutions of (a) the loss and (b) the L∞ error with N = 10,30 and 50.

Example 5. As a final example, we show the ability of DCSNN to solve the high-dimensional elliptic interface problem (8) by 
taking the dimension d = 6. For the problem setup, we consider a 6-sphere of radius 0.6 as the domain � enclosing another 
smaller 6-sphere of radius 0.5 as the interior region �− . We randomly sample the training points with (M, Mb, M�) =
(100, 141, 141) while the number of neurons are set by N = 10, 30 and 50 (corresponding to total number of parameters 
Np = 91, 271 and 451). The evolutions of training loss and L∞ error against training steps are shown in Fig. 8. We find 
that increasing the number of neurons N leads to a smaller mean squared error loss (see panel (a)). However, for all cases, 
the error plateaus in the early training state (within 100 iterations) and the descent of the loss metric becomes sluggish 
for the following training steps; see panel (b). Although not shown here, our experiments show that adding more training 
points does not improve the accuracy of the predicted solution. We attribute this slow convergence to high dimensionality. 
A similar observation was found in deep Ritz method for solving high dimensional problems [11]. Despite that, our present 
solution still gives the error ‖φS − φ‖∞ = 1.689 × 10−4 for N = 10 which indicates that the error can remain small, even 
in higher dimensions.

5. Conclusion and future work

In this paper, a novel shallow neural network is developed to approximate functions with jump discontinuities. The 
crucial idea is that a d-dimensional piecewise continuous function can be augmented as a continuous function defined in 
(d + 1)-dimensional space. This function, based on the universal approximation theory, can be approximated by a shallow, 
feedforward, fully connected neural network. We thereby propose a simple neural network architecture consisting of an 
input layer of (d + 1)-dimensional coordinate variables, a hidden layer with a moderate number of neurons, and an output 
layer of the function itself. We show that the present network is efficient and accurate for piecewise continuous function 
approximation, and can serve as a solution model for elliptic interface problems. Combined with the PINN-type loss func-
tions, the present network approximates the solution with high accuracy, and the results are comparable to the immersed 
interface method. Because of the mesh-free nature of the network, there is no difficulty in implementing the model for 
problems on irregular domains or in high dimensions.

The present work differs significantly from the work using DNNs in the literature as we only consider a completely shal-
low neural network (one hidden layer). To approximate functions or solutions that are highly oscillatory, one can increase 
the number of neurons in the hidden layer to achieve the desired accuracy. As we show in the numerical experiments in 
this paper, all the problems can be solved with high accuracy by the present network with a moderate number (less than a 
hundred) of neurons. Notice that a shallow network is much easier to train than a deep one.

In the present work, we only consider the stationary elliptic interface problems. As a forthcoming extension, we shall 
consider time-dependent problems, particularly the moving interface problems, which will be left as future work.
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