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A parametric derivation of the surfactant transport

equation along a deforming fluid interface

Huaxiong Huang∗ Ming-Chih Lai† Hsiao-Chieh Tseng‡

Abstract

A parametric derivation of the surfactant transport equation along
a deforming fluid interface is presented in this paper. The derivation is
based on the Lagrangian formulation of the interface with a parametric
representation. Comparisons with some of the existing derivations are
also given.

Keywords: Surfactant transport equation; Surface divergence; Interfacial
flow; Parametric representation

1 Introduction

Surfactant are surface active agents that adhere to the fluid interface and af-
fect the interface surface tension. Surfactant play an important role in many
applications in the industries of food, cosmetics, oil, etc. For instance, the
daily extraction of ore rely on the subtle effects introduced by the presence
of surfactant [2]. In a liquid-liquid system, surfactant allow small droplets
to be formed and used as an emulsion. Surfactant also play an important
role in water purification and other applications where micro-sized bubbles
are generated by lowing the surface tension of the liquid-gas interface. In
microsystems with the presence of interfaces, it is extremely important to
consider the effect of surfactant since in such case the capillary effect domi-
nates the inertial effect of the fluids [6].

The basic equation for surfactant transport equation along a deform-
ing interface has been derived by Scriven [4], Aris [1], and Waxman [7].
All these derivations of the surfactant equation rely heavily on differential
geometry. Stone [5], on the other hand, presented a simple derivation of the
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time-dependent convective-diffusion equation for surfactant transport along
a deforming interface. Stone’s derivation leads a form of surfactant mass bal-
ance equation which is used later in numerical computations [10, 9]. Wong
et al. [8] derived an alternative form of the surfactant transport equation
and provided an interpretation of the equation by Stone.

In this paper, we present a new derivation of the surfactant equation.
Our derivation is in the same spirit as Stone’s but more detailed. For the
immersed interface, we use a global Cartesian position vector and a para-
metric representation. As a result, the meaning of the time derivative and
surface divergence in Stone’s equation become clearer. Since an explicit ex-
pression for the surface divergence is given, our formulation can be readily
incorporated into a front-tracking solver or other interface tracking method
for numerical computations, e.g., the immersed boundary method.

2 Surfactant transport equation

Consider a two-dimensional interfacial element Σ(t) that is immersed in
a three-dimensional incompressible fluid domain Ω. The interface is de-
formable and moves with the fluid. Following Stone [5], we assume that the
surfactant remains on the interfacial element and does not transport (dif-
fuse) from or to the surrounding bulk fluids, and the total amount on the
element is conserved. That is, let Γ denote the mass of the surfactant per
unit area, we have

d

dt

∫

Σ(t)
Γ(x, y, z, t) dS = 0, (1)

where dS is the surface area element. For simplicity, we have also neglected
diffusion along the interface. We use two independent parameters (α, β) to
label a fixed material point of the initial reference configuration (Σ(0) :=
{X0(α, β)|(α, β) ∈ S0}, S0 is a fixed domain) and the parametric form of
the interfacial element at time t is given by Σ(t) := {X(α, β, t)|(α, β) ∈ S0}.
In other words, we have used a Lagrangian description of the time evolution
of the deformable interface and the following derivation of the surfactant
transport equation is based on this parametric form of the interface.

We assume the deforming interface is smooth so that the two independent
unit tangent vectors (denoted by τ 1 and τ 2) and its corresponding unit
normal vector (denoted by n) on the surface can be explicitly expressed by

τ 1 =
∂X
∂α∣∣∣∂X
∂α

∣∣∣
, τ 2 =

∂X
∂β∣∣∣∂X
∂β

∣∣∣
, n =

τ 1 × τ 2

|τ 1 × τ 2| =
∂X
∂α × ∂X

∂β∣∣∣∂X
∂α × ∂X

∂β

∣∣∣
. (2)

Since the interface is immersed in a three-dimensional incompressible fluid
and moves with the local flow velocity, we have

∂X(α, β, t)
∂t

= u(X(α, β, t), t), X(α, β, 0) = X0(α, β), (3)

2



where the fluid velocity u is defined in the fluid domain Ω and satisfies
∇ · u = 0. Before we proceed, let us prove the following lemma.

Lemma. The material time derivative of the surface element is given by

d

dt

∣∣∣∣
∂X

∂α
× ∂X

∂β

∣∣∣∣ = (∇s · u)
∣∣∣∣
∂X

∂α
× ∂X

∂β

∣∣∣∣ (4)

where the surface divergent is defined as1

∇s · u =
(

∂u

∂τ 1
· b2 +

∂u

∂τ 2
· b1

) ∣∣∣∣
∂X

∂α

∣∣∣∣
∣∣∣∣
∂X

∂β

∣∣∣∣
/ ∣∣∣∣

∂X

∂α
× ∂X

∂β

∣∣∣∣ . (5)

Here b1 = n × τ 1 and b2 = τ 2 × n are the tangential unit vectors normal
to τ 1 and τ 2, respectively, as illustrated in Figure 1.

»»»»»»: τ 1






Á
τ 2

C
C
C
CCO

n
6b1

XXXXXXz b2

Figure 1: Illustration of tangential and normal vectors on the surface and
their relationships: b1 = n× τ 1, b2 = τ 2 × n.

Proof. Firstly, we review some vector identities that will be used in the
following. Let us denote a, b, c and d all time-dependent vectors in R3. The
identity

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c) (6)

can be easily checked and found in [3]. From n · n = 1, we have

dn

dt
· n = 0. (7)

1A comparison between Eq. (5) and the surface divergence used in the literature [5] is
given in Section 3.
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We also note that
∂X

∂α
× ∂X

∂β
=

∣∣∣∣
∂X

∂α
× ∂X

∂β

∣∣∣∣ n. (8)

We start with the left-hand-side (LHS) of Eq. (4) by using Eqs. (7) and (8)
to obtain

d

dt

∣∣∣∣
∂X

∂α
× ∂X

∂β

∣∣∣∣ = n · d

dt

(
∂X

∂α
× ∂X

∂β

)

= n ·
(

∂2X

∂t∂α
× ∂X

∂β

)
+ n ·

(
∂X

∂α
× ∂2X

∂t∂β

)

= n ·
(

∂u

∂α
× ∂X

∂β

)
+ n ·

(
∂X

∂α
× ∂u

∂β

)
.

Substituting n = τ 1× τ 2/ |τ 1 × τ 2| into the above expression and applying
vector identity (6), we obtain

d

dt

∣∣∣∣
∂X

∂α
× ∂X

∂β

∣∣∣∣ = G

/∣∣∣∣
∂X

∂α
× ∂X

∂β

∣∣∣∣ (9)

where

G =

[
∂X

∂α
· ∂u

∂α

∣∣∣∣
∂X

∂β

∣∣∣∣
2

+
∂X

∂β
· ∂u

∂β

∣∣∣∣
∂X

∂α

∣∣∣∣
2

− ∂X

∂α
· ∂X

∂β

(
∂X

∂β
· ∂u

∂α
+

∂X

∂α
· ∂u

∂β

)]
.

To compute the right-hand-side (RHS) of Eq. (4), it is straightforward
to verify that

b1 =
(

∂X

∂α
× ∂X

∂β

)
× ∂X

∂α

/(∣∣∣∣
∂X

∂α

∣∣∣∣
∣∣∣∣
∂X

∂α
× ∂X

∂β

∣∣∣∣
)

=

[∣∣∣∣
∂X

∂α

∣∣∣∣
2 ∂X

∂β
−

(
∂X

∂α
· ∂X

∂β

)
∂X

∂α

]/(∣∣∣∣
∂X

∂α

∣∣∣∣
∣∣∣∣
∂X

∂α
× ∂X

∂β

∣∣∣∣
)

,

b2 =
∂X

∂β
×

(
∂X

∂α
× ∂X

∂β

)/(∣∣∣∣
∂X

∂β

∣∣∣∣
∣∣∣∣
∂X

∂α
× ∂X

∂β

∣∣∣∣
)

=

[∣∣∣∣
∂X

∂β

∣∣∣∣
2 ∂X

∂α
−

(
∂X

∂α
· ∂X

∂β

)
∂X

∂β

]/(∣∣∣∣
∂X

∂β

∣∣∣∣
∣∣∣∣
∂X

∂α
× ∂X

∂β

∣∣∣∣
)

.

Using the definition of the surface divergence of Eq. (5), we find that

∇s · u = G

/∣∣∣∣
∂X

∂α
× ∂X

∂β

∣∣∣∣
2

. (10)

Combining (9) and (10) completes the proof.
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To derive the governing equation for the surfactant concentration Γ, we
begin by applying the law of mass conservation, which yields

0 =
d

dt

∫

Σ(t)
Γ(x, y, z, t) dS

=
d

dt

∫

Σ(0)
Γ(X(α, β, t), t)

∣∣∣∣
∂X

∂α
× ∂X

∂β

∣∣∣∣ dα dβ

=
∫

Σ(0)

DΓ
Dt

∣∣∣∣
∂X

∂α
× ∂X

∂β

∣∣∣∣ dα dβ +
∫

Σ(0)
Γ

d

dt

∣∣∣∣
∂X

∂α
× ∂X

∂β

∣∣∣∣ dα dβ,

where the material derivative is defined as usual DΓ
Dt = ∂Γ

∂t

∣∣
X + u · ∇Γ, and

the subscript X denotes that the derivative is taken with respect to time
while X is fixed. In order to simplify the notation, we drop the subscript in
the rest of the paper. Using the previous lemma and combining these two
integrands, we have

0 =
∫

Σ(0)

(
∂Γ
∂t

+ u · ∇Γ + Γ(∇s · u)
) ∣∣∣∣

∂X

∂α
× ∂X

∂β

∣∣∣∣ dα dβ,

=
∫

Σ(t)

(
∂Γ
∂t

+ u · ∇Γ + Γ(∇s · u)
)

dS.

Since the material element is arbitrary, we have derived the equation for the
surfactant concentration

∂Γ
∂t

+ u · ∇Γ + Γ∇s · u = 0. (11)

Using the fact that the surfactant only transport along the interface and
does not transport into the bulk fluid ( ∂Γ

∂n = 0), we can rewrite the above
equation into

∂Γ
∂t

+ u · ∇sΓ + Γ∇s · u = 0. (12)

One can conclude that, the physical contributions to the surfactant distribu-
tion along the interface come from two parts; namely, due to fluid advection
(the second term) and the surface stretching (the third term).

Let us decompose the velocity u into its tangential component along the
interface us, and normal component to the interface (u ·n)n, then Eq. (12)
can be expressed as

∂Γ
∂t

+∇s · (Γus) + Γ(u · n)(∇s · n) = 0. (13)

This leads to the same surfactant transport equation as in [5]. Thus we have
established that the time derivative in Stone’s derivation is identical to the
one used here, i.e., with X fixed.

5



In [8], Wong et. al. argued that in Stone’s derivation, the time derivative
has the meaning that the derivative follows the fixed point which moves nor-
mal to the interface rather than the usual meaning of the partial derivative
which keeps the surface coordinates (α, β) fixed. Therefore, they derived
another surfactant transport equation in which the time derivative is taken
by fixing the surface coordinates. The difference between those two deriva-
tions can be easily seen by defining Γ(X(α, β, t), t) = Γ̂(α, β, t). Going back
to the material derivative, we immediately obtain that

DΓ
Dt

+ Γ∇s · u =
∂Γ̂
∂t

+ Γ̂∇s · u = 0. (14)

It is important to note that the second equation above is exactly the one
derived by Wong et.al. in [8] without the diffusion term.

The above surfactant equation can also be derived under the present
formulation as follows. By assuming the surfactant concentration Γ̂(α, β, t)
is a function of initial parameters α, β and the time t, the conservation of
mass becomes

0 =
d

dt

∫

Σ(0)
Γ̂(α, β, t)

∣∣∣∣
∂X

∂α
× ∂X

∂β

∣∣∣∣ dα dβ

=
∫

Σ(0)

∂Γ̂
∂t

∣∣∣∣
∂X

∂α
× ∂X

∂β

∣∣∣∣ dα dβ +
∫

Σ(0)
Γ̂

d

dt

∣∣∣∣
∂X

∂α
× ∂X

∂β

∣∣∣∣ dα dβ,

=
∫

Σ(0)

(
∂Γ̂
∂t

+ Γ̂∇s · u
)∣∣∣∣

∂X

∂α
× ∂X

∂β

∣∣∣∣ dα dβ.

Since the material element Σ(0) is arbitrary, we immediately obtain the
second equation of (14). The time derivative here is taken by fixing α and
β, which is simply the material derivative.

3 Surface divergence

In this section, we show that our definition of surface divergence is consistent
to the one used in the literature [5]

∇s · u = (I − n⊗ n)∇ · u = ∇ · u− n · ∇u · n. (15)

In order to simplify the notation, we use zk as the parameters for the surface
with z1 = α and z2 = β. The third parameter z3 is used for the parameter
along the normal direction. We use xi as the Cartesian coordinates and ei

as the corresponding unit vectors for i = 1, 2, 3. Therefore, the position and
velocity vectors can be expressed as

X = xiei, u = uiei

6



where the repeated indices indicate the summation. To deal with non-
Cartesian coordinates one often uses the co-variant and contra-variant basis
vectors as follows

gk =
∂xi

∂zk
ei, gk =

∂zk

∂xi
ei, k = 1, 2, 3 (16)

with the orthogonal property

gi · gj = δi
j (17)

where δi
j is the Kronnecker delta symbol. Comparing with our earlier nota-

tion, we have

τ 1 =
g1

|g1|
, τ 2 =

g2

|g2|
, b1 =

g2

|g2| , b2 =
g1

|g1| , n =
g3

|g3|
=

g3

|g3| .

Using Eq. (16) and the fact that ei are constant unit vectors, we have

∇ · u =
∂(ei · u)

∂xi
=

∂(ei · u)
∂zk

∂zk

∂xi
= ei · ∂u

∂zk

∂zk

∂xi
= gk · ∂u

∂zk
.

Similarly, we have

∇u =
∂u

∂xi
ei =

∂u

∂zk
gk

and
n · ∇u · n = n · ∂u

∂zk
gk · n = n · ∂u

∂z3

∣∣g3
∣∣ = g3 · ∂u

∂z3
.

Therefore,

∇ · u− n · ∇u · n = g1 · ∂u

∂z1
+ g2 · ∂u

∂z2

=
∣∣g1

∣∣ |g1| b2 · ∂u

∂τ 1
+

∣∣g2
∣∣ |g2| b1 · ∂u

∂τ 2
. (18)

From Eq. (17), we have
∣∣g1

∣∣ |g1| τ 1 · b2 =
∣∣g2

∣∣ |g2| τ 2 · b1 = 1.

Using
τ 1 · b2 = τ 1 · (τ 2 × n) = n · (τ 1 × τ 2) = |τ 1 × τ 2|

and
τ 2 · b1 = τ 2 · (n× τ 1) = n · (τ 1 × τ 2) = |τ 1 × τ 2| ,

we obtain
∣∣g1

∣∣ |g1| =
∣∣g2

∣∣ |g2| = 1/ |τ 1 × τ 2| =
∣∣∣∣
∂X

∂α

∣∣∣∣
∣∣∣∣
∂X

∂β

∣∣∣∣
/∣∣∣∣

∂X

∂α
× ∂X

∂β

∣∣∣∣ . (19)

Combining Eq. (19) and Eq. (18) shows that the surface divergence given
by Eq. (15) is consistent with our definition (5).
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