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In this paper, we develop a hybrid immersed boundary (IB) and immersed interface method 
(IIM) to simulate the dynamics of a drop under an electric field in Navier–Stokes flows. 
Within the leaky dielectric framework with piecewise constant electric properties in each 
fluid, the electric stress can be treated as an interfacial force on the drop interface. Thus, 
both the electric and capillary forces can be formulated in a unified immersed boundary 
framework. The electric potential satisfies a Laplace equation which is solved numerically 
by an augmented immersed interface method which incorporates the jump conditions 
naturally along the normal direction. The incompressible Navier–Stokes equations for the 
fluids are solved using a projection method on a staggered MAC grid and the potential 
is solved at the cell center. The interface is tracked in a Lagrangian manner with mesh 
control by adding an artificial tangential velocity to transport the Lagrangian markers to 
ensure that the spacing between markers is uniform throughout the computations. A series 
of numerical tests for the present scheme have been conducted to illustrate the accuracy 
and applicability of the method. We first compute the potential and its gradient (electric 
field) to perform the accuracy check for the present augmented IIM. We then check the 
convergence of the interfacial electric force and the fluid variables. We further run a series 
of simulations with different permittivity and conductivity ratios and compare with the 
results obtained by the small deformation theory and other numerical results in literature. 
In addition, we also study the electric effect for a drop under shear flow.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The study of hydrodynamics driven by an electric field (electrohydrodynamics) has many industrial applications in micro-
fluidic systems [22,33]. In particular, a weakly conducting (leaky dielectric) drop suspended in another leaky dielectric fluid 
under an electric field (as depicted in Fig. 1) has been extensively studied from different perspectives. G.I. Taylor [27] con-
cluded that the equilibrium drop shape can be explained by balancing the viscous stress with the electric stress on the 
drop interface as long as he took into account the induced surface charges due to the mismatch in electric conductivity and 
permittivity between the two fluids. Furthermore, it is found that drop can be deformed into either a prolate or an oblate 
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equilibrium shape with circulatory flows inside the drop [20]. The drop deformation and flow patterns mainly depend on 
the electrical properties of the fluid system. A comprehensive review of further theoretical developments can be found in 
[24]. Most theoretical models are limited to small deformation from a spherical drop under moderate electric fields, and 
such limitation leads to quantitative discrepancies reported in [29]. Recently a spheroidal model was used to study the 
large electrodeformation of a leaky dielectric drop (see [21] and references therein). Results from these models agree well 
with experiments up to moderate electric capillary number. However, these spheroidal models still cannot predict the drop 
deformation under large electric field strengths.

Thus, there has been a continuing interest in using numerical methods to simulate the electrohydrodynamics of a viscous 
drop under an electric field. Numerous works on the numerical simulations of drop deformations under leaky dielectric 
theory are reported in the literature. Based on how the interface is treated, these works can be categorized into the front 
tracking method [11,30], level set method [4,31], phase field method [18,35], and the volume-of-fluid method [9,32]. Other 
numerical approaches include lattice Boltzmann method [36] and boundary integral method [13,25], just to name a few.

In this paper, a hybrid immersed boundary (IB) and immersed interface method (IIM) are developed to simulate the 
dynamics of a leaky dielectric drop under an electric field in Navier–Stokes fluids. The immersed boundary method used 
to solve the fluid equations is similar in spirit to the front-tracking method as in [11,30]. Other recent immersed boundary 
methods to study particle–particle interactions in electrohydrodynamics can be found in [3,10], in particular, the former 
one used the available immersed interface method solver [17] to solve the potential equation but the applications and the 
electric force calculations are different from the present study.

The major contributions and significant differences of our work from previous works [4,3,11,10,18,30–32,35] are as fol-
lows. Firstly, the Maxwell stress tensor arising from the electric effect is cast as an interfacial electric force (the jump of 
Maxwell tensor across the interface) rather than the volume force in the equations so that the capillary and electric inter-
facial forces can be formulated in a unified immersed boundary framework. As can be seen in the next section (Section 2), 
the present approach avoids applying the divergence operator to the Maxwell tensor. This is particularly important since the 
tensor is discontinuous across the interface due to different permittivity and conductivity.

Secondly, a sharp immersed interface method is used to compute the potential and its gradient. One-sided interpolations 
to the interface from either side are used to obtain the Maxwell stress tensor (thus the interfacial electric force) more 
accurately. In most aforementioned works in literature, the electric potential equation Eq. (6) is solved numerically by 
smoothing the piecewise conductivity σ over a narrow region using the harmonic means without any special treatments 
near the interface. However, according to the jump condition Eq. (7), one can immediately see that ∇φ has nonzero jump 
across the interface. Thus, by the above smoothing numerical method, the electric field E = −∇φ will have O (1) error near 
the interface. Furthermore, the smoothing of permittivity ε also causes O (1) error near the interface. The computations of 
∇ε and ∇ · (εE) both have O (1/h) error near the interface. As a result, the direct calculation of volume electric force Eq. (9)
is not accurate near the interface. Here, instead of computing the volume force, we compute the interfacial electric force 
in a more accurate manner. We are also able to demonstrate the numerical convergence of this interfacial force. A more 
rigorous theoretical analysis on the accuracy of finite difference schemes for elliptic interface problems can be found in [2].

The paper is organized as follows. The governing equations for the electrohydrodynamics within the leaky dielectric 
framework are presented in Section 2. A simple version of augmented immersed interface method for solving piecewise 
elliptic interface problem is introduced and tested in Section 3. A hybrid numerical algorithm of immersed boundary and 
immersed interface methods for solving the electrohydrodynamics equations is outlined in Section 4. The numerical results 
consisting of convergence check and drop deformations under DC electric fields with different permittivities and conduc-
tivities are studied in detail in Section 5. Some concluding remarks and brief discussion on future directions are given in 
Section 6.

2. Governing equations of electrohydrodynamics

In this paper, we consider a leaky dielectric drop (Ω−) suspended in another immiscible leaky dielectric fluid (Ω+) 
under a DC (direct current) electric field E∞ as depicted in Fig. 1. The governing equations consist of two-dimensional 
incompressible Navier–Stokes equations with surface tension and electric forces. We further assume that both the density 
and viscosity are identical for the drop and suspended fluid as we concentrate more on the electro-deformation of the drop 
due to different electric conductivity and permittivity. The drop is neutrally buoyant in the fluid domain Ω and the gravi-
tational force is neglected. The fluid interface Σ is represented by a Lagrangian parametric form X(s, t) = (X(s, t), Y (s, t)), 
0 ≤ s ≤ 2π , where s is the parameter of the initial configuration of the interface. Under the immersed boundary formulation, 
this two-fluid system is cast as a single fluid with variable physical properties in a single domain Ω = Ω− ∪ Ω+

ρ(
∂u

∂t
+ (u · ∇)u) + ∇p = μ
u + fC + fE in Ω, (1)

∇ · u = 0 in Ω, (2)

∂X

∂t
(s, t) = U(s, t) =

∫
u(x, t)δ

(
x − X(s, t)

)
dx on Σ. (3)
Ω
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Fig. 1. A leaky dielectric drop suspended in another leaky dielectric fluid under DC electric field.

Eqs. (1)–(2) are the familiar incompressible Navier–Stokes equations with the fluid density ρ , the velocity u, the pres-
sure p, the dynamic viscosity μ, the capillary force arising from the interfacial tension fC , and the electric force fE . Eq. (3)
simply states that the interface moves along with the local fluid velocity (the interfacial velocity) which is linked by the 
two-dimensional Dirac delta function δ(x) = δ(x)δ(y).

The capillary force due to tension on the interface is immersed as

fC (x, t) =
∫
Σ

∂

∂s
(γ τ ) δ

(
x − X(s, t)

)
ds, (4)

where γ is the surface tension, and τ = Xs|Xs| is the unit tangent vector along the interface. Here, the subscript in Xs denotes 
the partial derivative of X with respect to s. In case of a surfactant-covered drop considered, the surface tension γ may 
not be a constant and it depends on the surfactant concentration via Langmuir equation of state. For such case, an extra 
surfactant convection–diffusion equation must be incorporated into the fluid system. One of the authors (M.-C. Lai) and his 
group have developed a numerically conservative scheme for solving the insoluble [15] and soluble surfactant equations [5]. 
The electric force fE for the leaky dielectric model will be given in the next section.

2.1. Leaky dielectric model

In electrohydrodynamics, the dynamic current (with dimension I) is usually small so the induced magnetic effect can 
be neglected. Thus, the electric field intensity E(MLT −3 I−1) is irrotational which results in ∇ × E = 0. By Gauss law in a 
dielectric material with permittivity ε(M−1 L−3T 4 I2), the volume charge density qv(L−3T I) can be written as qv = ∇ · (εE). 
The conservation of free charge density in electrohydrodynamics can be expressed as

Dqv

Dt
+ ∇ · (σE) = 0, (5)

where D
Dt = ∂

∂t + u · ∇ is the material derivative and σ(M−1 L−3T 3 I2) is the electric conductivity of the medium. In a 
homogeneous incompressible fluid where the permittivity ε and conductivity σ are both constant, one can show that the 
free charge density decays from the initial charge density with the relaxation time scale tE = ε/σ [20]. The viscous time 
scale of the fluid motion is defined by tF = ρL2/μ, where ρ and μ are fluid density and viscosity, and L is the characteristic 
length scale.

In a leaky dielectric model [20,24] for a two-fluid system with different electric properties depicted in Fig. 1, the charge 
accumulates at the fluid interface almost instantaneously as compared to the time scale of the fluid motion (tE � tF ). Thus, 
the bulk charge density equation (5) can be simplified into

∇ · (σE) = 0, in Ω \ Σ. (6)

With piecewise constant of the electric conductivity σ− (in Ω−) and σ+ (in Ω+) respectively, one concludes that ∇ · E = 0
in both domains Ω− and Ω+ . Since the electric field E is irrotational (∇ × E = 0) as mentioned earlier, the electric field can 
be expressed in terms of electric potential φ by E = −∇φ. Therefore, Eq. (6) can be further reduced to Laplace equation for 
the potential φ in each fluid domain Ω− and Ω+ . In the far field, a constant electric field E∞ is applied to the fluid system.

The boundary conditions along the interface Σ separating Ω− and Ω+ are based on the continuity of the electric 
potential and the normal component of the electric flux density across the interface:

[φ] = 0 and [σ∇φ · n] = 0 on Σ, (7)

where the jump [·] indicates the quantity from the Ω+ side minus the one of Ω− side, and the normal vector n is pointing 
outward from Ω− to Ω+ side. The permittivity of drop and the suspended fluid are piecewise constant and denoted by ε−
and ε+ , respectively. A sketch of the problem setup is depicted in Fig. 1.

As described in [20,24], the stress induced in a dielectric medium under an electric field is given by the Maxwell stress 
tensor of the form
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ME = ε

(
EE − 1

2
(E · E)I

)
. (8)

The equivalent volume force density of the Maxwell stress can be obtained by taking the divergence of above equation so 
we have

fE = ∇ · ME = −1

2
(E · E)∇ε + ∇ · (εE)E. (9)

The first term on the right-hand side of the above equation is due to polarization stress and it acts along the normal 
direction of the interface. The second term is due to the interaction of the electric charges under the direction of the 
electric field. Since both the permittivity and conductivity are piecewise constant, one immediately sees that the electric 
force in Eq. (9) is non-zero only in the vicinity of the interface due to the fact of ∇ · E = 0 in both domains Ω− and Ω+ . 
Therefore for our modeling purpose, we regard the electric effect as an interfacial force from the jump of Maxwell stress in 
the normal direction instead of applying the volume force as in Eq. (9) into the fluid equations. The interfacial electric force 
is defined as

FE = [ME · n] = (
M+

E − M−
E

) · n, (10)

where M−
E and M+

E stand for Maxwell stress tensor in the drop and the suspended fluid, respectively. Thus, the electric 
volume force fE can be alternatively represented by the electric interfacial force using the Dirac delta function as

fE(x, t) =
∫
Σ

FE(s, t)δ
(
x − X(s, t)

)|Xs|ds. (11)

It is quite interesting to conclude that the interfacial electric force in Eq. (10) has exactly the same form as the continuous 
electric surface force derived by Tomar et al. [32] in which the authors take the limit of vanishing transition region thickness 
to be zero. The explicit form of the present interfacial electric force in Eq. (10) will be derived in detail in Appendix A. Note 
also that, this kind of interfacial force approach is especially necessary to numerical simulations for boundary integral 
method such as in [13] and has been adopted by McConnell and Miksis in [19] for vesicle electrohydrodynamic simulations.

3. A simple version of immersed interface method for solving elliptic interface problem

In this section, we propose a simple version of immersed interface method for solving the electric potential equation 
Eq. (6) in a domain Ω with jump conditions across the interface Σ (Eq. (7)). We consider the problem on a rectangular 
computational domain Ω = [a, b] × [c, d] with an immersed interface Σ = {X(s) = (X(s), Y (s)), 0 ≤ s < 2π}, where s is a 
Lagrangian parameter and X(0) = X(2π). The interface Σ divides the domain Ω into two regions; namely inside (Ω−) 
and outside (Ω+) of the interface. Without loss of generality, we consider the following elliptic interface problem with 
inhomogeneous jumps as

∇ · (σ∇φ) = f in Ω \ Σ, [φ] = v, [σ∇φ · n] = w, on Σ. (12)

Of course, the above equation should be accompanied with some suitable boundary condition (say Dirichlet or Neumann 
condition) along the computational domain ∂Ω . Other boundary conditions will not change the main ingredients presented 
here. Note that, the jumps v(s) and w(s) are both functions defined on the interface Σ . Since σ is piecewise constant, we 
can rewrite the above equation in the form of Poisson equation 
φ = f /σ in different domains Ω+ and Ω− with the same 
jump conditions. In the following, we use the shorthand φn to represent the normal derivative ∇φ · n. In order to apply 
the scheme developed in [23,14] directly, the jump conditions [φ] and [φn] must be known and given. However, the jump 
in normal derivative [φn] is unknown. We thus introduce an augmented unknown variable [φn] = g into the system as in 
[17] such that the solution satisfies the piecewise jump condition [σφn] = w . In summary, Eq. (12) becomes the following 
elliptic interface problem as


φ =
{

f −/σ− in Ω−
f +/σ+ in Ω+ [φ] = v, [φn] = g, [σφn] = w, on Σ. (13)

After some simple calculations, the relation between the jumps of [φn] and [σφn] can be expressed by either one of

φ+
n + σ−

[σ ] [φn] = [σφn]
[σ ] , if σ− > σ+, or (14)

φ−
n + σ+

[σ ] [φn] = [σφn]
[σ ] , if σ+ > σ−. (15)

The above choice is proposed by Xu [34] which will become clear in our numerical scheme discussed later.
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Fig. 2. (a) The grid points used in five-point Laplacian at the irregular point xi j might cross the interface. (b) A grid layout indicating the neighboring grid 
points used in least squares cubic polynomial approximation to the one-sided normal derivative at X∗

k .

3.1. An augmented IIM to incorporate the jumps in the normal direction

In this subsection, we introduce an augmented approach for elliptic interface problems described in previous subsection. 
Our technique is similar to the one in [17] but the computational details of the correction terms are quite different. To 
proceed, let us first lay out a uniform Cartesian grid in Ω with mesh width h = 
x = 
y. The grid points xi j are defined 
at the cell center where the discrete solutions φi j are located. As in [17], we classify the grid point as either a regular 
or irregular point. For a regular grid point, we mean that the standard five-point Laplacian at that point does not cut 
through the interface. On the other hand, if the five-point Laplacian of a grid point involves using the grid points inside 
and outside the interface simultaneously, then we call it an irregular point. Since the solution is smooth either inside or 
outside the drop, the five-point Laplacian of a regular point does not need to be modified in order to have the second-order 
accuracy. However, a modification is needed at an irregular point where the solution is not smooth across the interface. The 
modification depends on the jump conditions [φ] and [φn]. Thus, the discretization of Eq. (13) at the grid point xi j can be 
generally written in the form of


hφi j + Cij

h2
= f i j, (16)

where Cij is the correction term which is nonzero only if the grid point is irregular.
Let us briefly describe how the correction term is derived at this particular irregular point as illustrated in Fig. 2(a). 

When we apply the five-point Laplacian to xi j , the grid point xi−1, j falls into the different side of the interface so the main 
source of correction comes only from the point xi−1, j . To derive the correction term as in [14,23], we first need to find the 
orthogonal projection of xi−1, j on the interface (say X∗

k = X(s∗
k ) as shown in Fig. 2(a)), and then apply the truncated Taylor’s 

series expansion along the normal direction at X∗
k . The correction term thus becomes

Cij = [φ]X∗
k
+ d [φn]X∗

k
+ d2

2

(
[ f ] − κ [φn] − 1

|Xs|
∂

∂s

(
1

|Xs|
∂[φ]
∂s

))
X∗

k

, (17)

where the value d is the signed distance between the grid point xi−1, j and its orthogonal projection X∗
k , and κ is the local 

curvature of the interface. Note that, for a fixed interface, the curvature is known at those orthogonal projection points. 
However, when the interface is evolving as present applications, the curvature at those projection points can be computed 
by the cubic spline interpolation of the ones at the neighboring Lagrangian markers. We leave the details on how to compute 
the local curvature at Lagrangian markers in Section 4. Let Φ and Ψ be the solution vectors formed by φi j and [φn]X∗

k
, then 

the difference equation has the matrix form AΦ + EΨ = F .
Note that, in the calculation of the correction term Cij , all the terms are basically available except the normal derivative 

jump [φn]X∗
k

which can be linked to the known jump [σφn]X∗
k

through Eqs. (14) or (15). However, an approximation to 
φ+

n (X∗
k ) or φ−

n (X∗
k ) is needed. Here, we use the least squares cubic polynomial approach to approximate those values as 

follows. First, we choose the neighboring grid points of X∗
k = (X∗

k , Y ∗
k ) such as the ones depicted in Fig. 2(b), and then use 

the values of φi j at those grid points to construct the least squares cubic polynomial P (x, y). Thus, the value of φ+
n (X∗

k )

can be approximated by computing ∇ P (X∗
k ) · n(X∗

k ) directly. This least squares cubic polynomial approach has third-order of 
accuracy to the approximation of the function itself while the derivative has second-order of accuracy. Notice that, in our 
present numerical experiments, the above approach to approximate φ+

n (X∗
k ) has better accuracy than the one-sided normal 

extrapolation formula proposed by Xu in [34].
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The approximation for φ−
n can be done in a similar manner so we omit it here. With this approximation, we can rewrite 

Eqs. (14)–(15) in a matrix form as B±Φ + σ∓
[σ ]Ψ = G , where B+ and B− denote the matrices resulting from the above least 

squares cubic polynomial approximation along the outward and inward normal directions, respectively. Note that, we do 
not form the matrix B± explicitly in practice since the GMRES iteration is applied to solve the above linear system in the 
following solution procedures. The vector G is the known jumps at those orthogonal projections X∗

k . Thus, the resultant 
linear system becomes[

A E

B± σ∓
[σ ] I

][
Φ

Ψ

]
=

[
F
G

]
. (18)

Although the above augmented technique is similar to the one developed in [34], the linear system in Eq. (18) is solved 
differently. In [34], the author first eliminated the unknown Ψ to obtain the equation for Φ; and then solved the resultant 
linear system by pseudo time iteration to steady state. Here, we first eliminate Φ from Eq. (18) to obtain a linear system 
of Ψ (

B± A−1 E − σ∓

[σ ] I

)
Ψ = B±(

A−1 F
) − G. (19)

This is an Nb × Nb system for Ψ where Nb is the number of the projection points used on the interface. The order of above 
linear system is one-dimension lower than the one for solving Φ . We then use the GMRES iterative method to solve the 
above linear system. Since the GMRES method only requires the matrix-vector multiplication, it is not necessary to construct 
the matrices A and B± explicitly. In each GMRES iteration, the inversion of A can be performed efficiently by applying the 
fast Poisson solver provided by Fishpack [1] public software package. The detailed numerical algorithm can be split into the 
following three steps.

Step 1. Apply one fast Poisson solver to solve Φ∗ in

AΦ∗ = F .

Step 2. Apply GMRES iterative method to solve Ψ until it converges in(
B± A−1 E − σ∓

[σ ] I

)
Ψ = B±Φ∗ − G.

Step 3. Apply one fast Poisson solver to solve Φ in

AΦ = F − EΨ.

As mentioned before, the usage of Eq. (14) or Eq. (15) depends on the ratio of σr = σ−/σ+ . If σr > 1, then we use 
Eq. (14) to compute [φn]; otherwise, we use Eq. (15). One can easily compute that σ−/[σ ] = σr/(1 − σr) and σ+/[σ ] =
1/(1 − σr). The reason of the above choice is to ensure that the coefficient of diagonal matrix σ∓

[σ ] I has larger magnitude 
so that the matrix tends to be more diagonally dominant. In such way, the GMRES iterative method can converge quickly. 
Here, we set the stopping criteria for GMRES method as h2 since the correction term is now with local truncation error 
O (h). Thus, the overall computational cost for Steps 1–3 in our present scheme can be evaluated in terms of the number of 
fast Poisson solvers being applied.

3.2. Numerical tests

Example 1 (Convergence and efficiency test). In this test, we demonstrate the accuracy and efficiency of the present augmented 
IIM by choosing a given analytical solution for Eq. (12) in Ω = [−1, 1] × [−1, 1] as

φ(x, y) =
{

exp (x + y) x ∈ Ω−,

sin x sin y x ∈ Ω+.

The interface is chosen as an ellipse ( x
0.2 )2 + (

y
0.5 )2 = 1 so that the jump discontinuities v and w in Eq. (12) can be exactly 

computed as well. For simplicity, here the Dirichlet boundary conditions are used because an exact solution is available. In 
Table 1, we show the mesh refinement results for the solution and its derivatives with conductivity ratio σr = 10 and 0.1, 
respectively. The mesh width is defined as h = 2/N in both x and y directions with the grid size N . Note that, the derivatives 
φx and φy are defined at the cell edges and computed by the standard centered difference scheme using the computed 
solutions of two adjacent grid points. At the irregular point, a correction term has to be added as in [14]. This can be 
done straightforwardly here since the jump [φn] is also solved in our numerical algorithm. As shown in Table 1, the rate of 
convergence for the solution φ is around second-order while the derivatives φx and φy are slightly less than second-order. 
As for the computational complexity, one can see from the last column of Table 1 that the number of GMRES iterations 
plateaus to 10 as the grid size doubles. All the numerical computations were carried out on a PC with Intel Core i7 CPU 
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Table 1
The accuracy and efficiency results for the numerical solution φh and its derivatives (φh)x and (φh)y as the mesh is refined. Here, φe is the exact solution 
so its derivatives (φe)x and (φe)y can be computed directly.

N ‖φh − φe‖∞ Rate ‖(φh)x − (φe)x‖∞ Rate ‖(φh)y − (φe)y‖∞ Rate Iter.

σr = 10
32 3.31E−04 – 2.51E−03 – 1.75E−03 – 7
64 8.46E−05 1.97 3.42E−04 2.88 3.84E−04 2.19 9

128 2.43E−05 1.80 9.85E−05 1.80 1.13E−04 1.76 10
256 5.37E−06 2.18 3.84E−05 1.36 3.50E−05 1.69 10

σr = 0.1
32 7.99E−04 – 5.07E−03 – 5.16E−03 – 6
64 1.27E−04 2.65 5.21E−04 3.28 6.10E−04 3.08 6

128 3.08E−05 2.04 1.91E−04 1.45 2.52E−04 1.28 7
256 5.37E−06 2.52 2.85E−05 2.74 3.12E−05 3.01 7

Table 2
The mesh refinement results between the present IIM (denoted by φh) and the smoothing method (denoted by φ S

h ) with ratio σr = 0.1.

N ‖φh − φe‖∞ ‖φ S
h − φe‖∞ ‖(φh)x − (φe)x‖∞ ‖(φ S

h )x − (φe)x‖∞
32 3.07E−03 2.84E−02 1.45E−03 6.34E−01
64 7.72E−04 8.57E−03 4.44E−04 5.91E−01

128 1.93E−04 4.28E−03 1.10E−04 6.32E−01
256 4.84E−05 2.45E−03 2.85E−05 6.80E−01

and 16G RAM. The computational cost for the present fast Poisson solver is O (N2 log N) with the grid size N in both x and 
y directions. The total CPU running time for each numerical result listed in Table 1 is within a second even with the grid 
size N = 256.

Example 2 (Comparison with the smoothing method). Here we consider an example with zero jump conditions [φ] = 0 and 
[σφn] = 0, and compare the numerical results with those from the smoothing method. By the smoothing method, we meant 
that Eq. (12) is solved by first smoothing σ through harmonic averaging as

1

σ(x)
= H(x)

σ− + 1 − H(x)

σ+ ,

and then using the regular centered difference scheme to discretize the equation. Here, H(x) is the indicator function (or 
regularized Heaviside function) which can be obtained by solving


H(x) = −∇ ·
∫
Σ

nδ
(
x − X(s)

)|Xs|ds.

In this case, the interface is chosen as a circle with radius 0.5 immersed in computational domain [−1, 1] × [−1, 1]. The 
exact solution is given by

φ(x, y) =
{

a2(x2 + y2) + a1 x ∈ Ω−,

(x2 + y2)2 x ∈ Ω+.

The ratio is taken by σr = 0.1. The parameters a1 and a2 can be determined by setting the jump conditions [φ] and [σφn]
to be zero across the interface. From Table 2, one can see that the numerical solution from the smoothing method φ S

h
has first-order convergence while its derivatives do not seem to converge at all. This is not surprising since the derivative 
is discontinuous across the interface in the smoothing method. Both the solution (φh) and its derivative (φh)x from our 
present IIM are more accurate than those from the smoothing method.

4. Numerical algorithm

To solve the whole electrohydrodynamic equations numerically, let us first perform the non-dimensionalization on those 
governing equations as in [11]. To proceed, we scale all physical variables by the associated characteristic scales as follows.

x∗ = x

R
, t∗ =

√
γ

ρR3
t, u∗ =

√
ρR

γ
u, p∗ = R

γ
p, ε∗ = ε

ε+ , σ ∗ = σ

σ+ , E∗ = E

|E∞| .

Here, R is the initial drop radius. After some simple calculations, the dimensionless governing equations become (after 
dropping ∗ in notations)
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∂u

∂t
+ (u · ∇)u + ∇p = Oh 
u +

∫
Σ

(
FC + CaE FE |Xs|

)
δ
(
x − X(s, t)

)
ds in Ω, (20)

∇ · u = 0 in Ω, (21)

FC = ∂

∂s
(γ τ ) on Σ, (22)


φ = 0 in Ω, [φ] = 0, [σφn] = 0, on Σ, (23)

E = −∇φ, ME = ε

(
EE − 1

2
(E · E)I

)
, FE = (

M+
E − M−

E

) · n, (24)

∂X

∂t
(s, t) = U(s, t) =

∫
Ω

u(x, t)δ
(
x − X(s, t)

)
dx on Σ. (25)

There are two dimensionless numbers; namely, the Ohnesorge number, Oh = μ/
√

γρR is the ratio of the viscous force 
to the inertia and surface tension force; and the electric capillary number, CaE = ε+R|E∞|2/γ measures the strength of the 
electric field relative to the surface tension force.

Next, we describe a hybrid numerical scheme to solve the electrohydrodynamic equations Eqs. (20)–(25). The underlying 
idea is that the fluid equations are solved by usual immersed boundary method while the electric potential equation is 
solved by the proposed immersed interface method in Section 3. For simplicity, let us assume the computational domain 
to be a rectangular domain Ω = [a, b] × [c, d]. Within this domain, a uniform lattice grid with mesh width h is employed, 
and the fluid variables are defined in a staggered MAC manner [8]. That is, the velocity components u and v are defined at 
cell-normal edges (xi−1/2, y j) = (a +(i −1)h, c+( j −1/2)h) and (xi, y j−1/2) = (a +(i −1/2)h, c+( j −1)h), respectively, while 
the pressure p and the electric potential φ are both defined at the cell center x = (xi, y j) = (a + (i − 1/2)h, c + ( j − 1/2)h).

Since the drop interface X(s) = (X(s), Y (s)), s ∈ [0, 2π ] is closed (so periodic), we can use the spectral Fourier discretiza-
tion to represent X(s) and Y (s). We first choose an even number of collocation points such that the interface is discretized 
by X(sk) = (X(sk), Y (sk)), where sk = k
s, k = 0, 1, . . . M with 
s = 2π/M . The interface can be represented in truncated 
Fourier series as

X(s) =
M/2−1∑

l=−M/2

X̂le
ils, and Y (s) =

M/2−1∑
l=−M/2

Ŷle
ils, (26)

where X̂l and Ŷl are the corresponding Fourier coefficients for X(s) and Y (s), respectively, and can be computed very 
efficiently using the Fast Fourier Transform (FFT). Under the Fourier representation, the derivatives with respect to s can 
be computed quite easily by using the pseudospectral method [28]. The Fourier coefficients of p-th derivative of X(s) are 
simply computed as (il)p X̂l . Similar procedures can be applied for the derivatives of Y (s). In this fashion, all interfacial 
quantities such as the tangent vector τ (thus, the normal vector n) and the curvature κ can be computed with spectral 
accuracy. As demonstrated in our recent work [12] for a three-dimensional axisymmetric interface, the present spectral 
method for computing the curvature is indeed more accurate than the finite difference method (traditionally used in IB). 
In addition, this spectral representation of the interface is more advantageous when the surfactant is present along the 
interface since the surfactant convection-diffusion equation can be solved more accurately as well.

In the following, we describe how to advance one time step for the solution variables. At the beginning of each time 
step n, the interface position Xn and the fluid velocity un must be given. The numerical algorithm is as follows.

1. Compute the electric potential φn in Eq. (23) by the augmented IIM developed in Subsection 3.1. Use the values of φn

to compute the electric field En = (−φn
x , −φn

y) on the grid. (At the irregular point, a correction term must be added to 
achieve the desired accuracy.) Then we perform one-sided interpolation to compute the Maxwell stresses M+

E and M−
E

to obtain the interfacial electric force Fn
E at Lagrangian markers.

2. Given the interface markers Xn , we first compute the unit tangent vector τn and then compute the interfacial tension 
force Fn

C in Eq. (22). The above both terms involving spatial derivatives with respect to s can be computed with spectral 
accuracy.

3. Distribute the interfacial tension and electric force from the Lagrangian markers to the fluid grid points by using the 
discrete delta function as in traditional IB method.

4. Solve the Navier–Stokes equations by the pressure-increment projection method to obtain new velocity un+1. This 
procedure involves solving two Helmholtz-type equations for the intermediate velocity and one Poisson equation for 
the pressure-increment which again can be efficiently done by applying the fast direct solver provided by Fishpack.

5. Interpolate the new velocity on the fluid grid points to the marker points and then move the markers to new positions 
Xn+1 as in Eq. (25).

Here, the detailed numerical implementation of Step 1 is described in Subsection 3.1 while Steps 2–5 are quite standard in 
immersed boundary method and can be found in any related literature such as in [16,12].
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Fig. 3. Electric force FE at different number of markers M = 64, 128, 256 and 512. Left panel is the x component and right panel is the y component. 
M = 64 for dash-dotted lines, M = 128 for dotted lines, M = 256 for dashed lines, and M = 512 for solid lines.

Remark. In the context of immersed boundary simulations, the interface is usually evolved by tracking the interface markers 
in a Lagrangian manner. Once the initial positions of the Lagrangian markers are chosen, the movement of those markers 
is determined by the interpolated local fluid velocity. Very often, as time evolves, these Lagrangian markers may be either 
clustered or dispersed in some regions. For example, our numerical results in the next section show that a homogeneous 
DC electric field induces a circulatory flow inside the viscous leaky dielectric drop, moving from the equator toward the 
tips and the Lagrangian markers are densely clustered around the tip regions. As a result, the overall numerical stability 
and accuracy may suffer at later times. To avoid such clustering of Lagrangian markers, we have introduced an artificial 
tangential velocity U A(s, t) into Eq. (25) as

∂X(s, t)

∂t
= U(s, t) + U A(s, t)τ , (27)

so that the Lagrangian markers can be uniformly distributed. Here, the term U A(s, t) has the form of

U A(s, t) = s

2π

2π∫
0

∂U

∂s′ · τ ′ ds′ −
s∫

0

∂U

∂s′ · τ ′ ds′. (28)

The detailed derivation for the above tangential velocity can be found in [16].

5. Numerical results

In this section, we perform a series of numerical tests for the present scheme developed in the previous section. We 
first verify the convergence of the interfacial electric force and the fluid variables. Then, we run a series of simulations with 
different permittivity ratio εr = ε−/ε+ and conductivity ratio σr = σ−/σ+ , and compare the results with the ones obtained 
by the small deformation theory. We also study the electric effect for a drop under shear flow. Finally, we study some drop 
deformations by slightly increasing the electric capillary number CaE to see how the drop behaves and compare with other 
numerical results in literature. Throughout this paper, we put a circular drop with the radius R = 1 inside the fluid domain 
Ω = [−4, 4] × [−4, 4] and set the initial velocity to be zero everywhere. The flow is simply driven by the electrical field. 
The boundary condition for the velocity field is zero (except the one for the shear flow which is indicated in Fig. 7). The 
far electric field is chosen as E∞ = (0, −1) so the boundary conditions for the potential φ are φ = y (Dirichlet) at y = ±4, 
and ∂φ

∂x = 0 (Neumann) at x = ±4. The Cartesian grid mesh width h for the fluid variables and the potential is now defined 
as h = 8/N in both x and y directions with the grid size N . There are M Lagrangian markers distributed initially along 
the interface with the Lagrangian mesh 
s = 2π/M < h. Here, we simply choose M = N in all simulations. The time step 
is chosen as 
t = h/4. The Ohnesorge number is chosen as Oh = 1, the surface tension γ = 1 and the electric capillary 
number CaE = 0.5 unless otherwise stated.

5.1. Convergence test for the interfacial electric force FE

As mentioned in Section 2.1, the electric field effects are incorporated as an electric interfacial force FE in Eq. (10)
instead of the more conventional approach in [11,31]. In this simulation, we set σr = 3 and εr = 2, and plot FE in Fig. 3
with different number of Lagrangian markers M = 64, 128, 256 and 512. One can see that the interfacial electric force tends 
to converge as the marker size M increases. In addition, we plot the successive errors defined by ‖(FE )2M − (FE )M‖∞ versus 
the marker size M in Fig. 4. Again, roughly second-order convergence has been observed in this test.
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Fig. 4. The successive errors of the electric interfacial force FE in both x and y directions (see legends). The rate of convergence is around second-order.

Table 3
The mesh refinement results for the velocity components u and v , the interface configuration X, and the relative volume loss of the drop at T = 2.

N ‖u2N − uN ‖∞ Rate ‖v2N − v N‖∞ Rate ‖X2N − XN‖∞ Rate |AN −A0 |
A0

64 1.19E−02 – 1.62E−02 – 3.01E−02 – 8.74E−05
128 2.84E−03 2.07 5.36E−03 1.60 8.80E−03 1.78 5.85E−05
256 7.77E−04 1.87 8.85E−04 2.60 1.41E−03 2.64 3.16E−05

5.2. Convergence test for the fluid variables

In this subsection, we perform the convergence test for the present numerical algorithm of the whole electrohydrody-
namic equations. We again choose the conductivity ratio σr = 3 and permittivity ratio εr = 2 with different number of grid 
points N = 64, 128, 256, 512. All the numerical solutions are computed up to time T = 2. Since the analytical solutions are 
not available in this test, we compute the errors between two successive grids denoted by ‖u2N − uN‖ so the rate of conver-
gence is calculated by rate = log2

‖uN −uN/2‖
‖u2N −uN ‖ . The errors and ratios of v and the interface configuration X are all computed in 

the same manner. Table 3 shows the maximum errors for the fluid velocity and the interface configuration. Note that, the 
fluid variables are defined on the staggered grid. Thus, when we refine the mesh, the numerical solutions will not coincide 
with the same grid locations and a simple bi-linear interpolation must be implemented. Due to the fact that the immersed 
boundary formulation has the singular forcing term in the equations, regularizing the singular term by smoothing discrete 
delta functions might cause the method to be first-order accurate. However, the present numerical results show better than 
first-order convergence.

Meanwhile, we also check the volume (area in 2D) loss of the drop in our present computations. From Table 3 (last 
column), one sees that the relative volume loss is of order of magnitude 10−5 which is negligibly small in present simula-
tions. We attribute such good volume-conservation behavior to the choice of fluid solver and the enforcement of uniformly 
distributed Lagrangian markers. Very recently, Boyce Griffith [7] has performed rather detailed numerical tests on volume-
conservation for different IB implementations. In our work the pressure-increment projection method under staggered grid 
discretization is adopted for our fluid solver because of its superior performance for volume-conservation [7].

5.3. Comparison with small-deformation theory

In this subsection, we simulate the drop deformation under a DC electric field, and compare with asymptotic results 
from the small-deformation theory. G.I. Taylor [27] developed a linear model to compute steady equilibrium shape of a 
leaky dielectric drop under a DC electric field. He found that the viscous drop can turn into either oblate or prolate shape. 
Based on Taylor’s asymptotic results, the drop deformation depends on the electric capillary number CaE , the ratio of electric 
conductivity, permittivity, and fluid viscosity. The equilibrium drop deformation can be quantified by the drop deformation 
number D as

D = L − B

L + B
,

where L and B are the drop deformations along the major and minor axes, respectively. The first-order small-deformation 
model for a two-dimensional viscous drop is developed by Feng [6] (also listed in [36]) and is analogous to Taylor’s linear 
model for a spherical drop [27]. In this linear model the equilibrium drop deformation is approximated by

D = fd(σr, εr)

2
CaE , (29)
3(1 + σr)
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Fig. 5. (a) The drop shape diagram for different conductivity ratio σr and permittivity ratio εr . Solid line: σr = εr ; dashed line: fd = 0. “P”: Oblate and 
clockwise; “1”: prolate and clockwise (prolate B); “!”: prolate and counterclockwise (prolate A). (b) The plot of the deformation number D versus the 
electric capillary number CaE . These lines are the theoretical results from the two-dimensional small-deformation theory [6].

where fd is a discriminating function defined by fd(σr, εr) = σ 2
r + σr + 1 − 3εr . The discriminating function fd indicates 

the equilibrium drop shape; that is, fd > 0, the prolate shape is obtained while fd < 0 the oblate shape is obtained. fd = 0
indicates the drop remains spherical at leading order. Under a DC electric field, a circulatory flow motion is needed to bal-
ance the electric stress when the drop reaches a steady equilibrium. For the oblate drop, the circulatory flow pattern inside 
the first quadrant is always clockwise, while the flow for the prolate one is either clockwise (σr < εr ) or counterclockwise 
(σr > εr ).

For the following simulation results, the number of grid point is fixed as N = 128 and the simulations are started from 
the same initial condition (circular shape) until a steady equilibrium state is achieved. Fig. 5(a) shows the equilibrium 
drop shape diagram and circulatory flow patterns (as labeled) for the drop under DC electric field on the σr –εr plane. 
Our numerical simulation results confirm the predictions from the small-deformation theory. Such agreement validates our 
hybrid numerical schemes.

In Fig. 5(a) three cases in different parameter regimes are labeled: Case A (σr = 1.75, εr = 3.5), Case B (σr = 3.25, 
εr = 3.5), and Case C (σr = 4.75, εr = 3.5). For these three cases, we conduct the simulations with different electric cap-
illary number CaE . Fig. 5(b) shows the deformation number D versus the electric capillary number CaE for these three 
cases. Notice that, the deformation number D is negative when the shape is oblate while D is positive when the shape is 
prolate. As expected, the steady deformation becomes larger as the electric capillary number CaE increases. We also plot 
the theoretical results based on small deformation theory (Eq. (29)) for these three cases. One can see that the present 
numerical results agree well with the theoretical ones when CaE is small. This is not surprising since the theoretical result 
is applicable only for small drop deformation.

Fig. 6 shows the drop shapes and flow patterns at different times for the above Cases A, B, and C. In each subplot, 
the velocity quivers are depicted in the right half while the corresponding stream lines are shown in the left. One can 
immediately see that when the drop shape is oblate (Case A), the induced circulatory flow inside the first quadrant is 
clockwise (from the pole to the equator). However, for the prolate shape, the induced circulatory flow can be clockwise 
(Case B) and counterclockwise (from the equator to the pole, Case C). Again, these flow patterns are in good agreement 
with those from the theoretical models.

5.4. A leaky dielectric drop under a DC field and a shear flow

If a shear flow and electric field are simultaneously applied to the drop, the drop deformation and orientation will be 
affected by the relative strength of the shear and electric stresses. As we see from results in Section 5.3, the applied electric 
field aligns the drop and elongates its shape either parallel (prolate) or perpendicular (oblate) to the electric field. When 
a shear flow is applied, one can imagine that the drop rotates to orient along the extensional direction in the shear flow. 
Fig. 7 shows the comparison for the drop shapes under shear flow with (denoted by solid line) or without (dashed line) the 
electric field. Here, all the parameters used are exactly same as the ones in Fig. 6. Under the electric field, we observe that 
for the oblate Case A (top row), the drop tends to tilt horizontally along the shear flow direction, while for prolate Case B 
(middle row) and Case C (bottom row), the drops tend to tilt vertically instead.
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Fig. 6. Drop shapes and flow patterns for Cases A, B, and C at different times. Top row: Case A (σr = 1.75, εr = 3.5), oblate and clockwise; Middle row: 
Case B (σr = 3.25, εr = 3.5), prolate and clockwise; Bottom row: Case C (σr = 4.75, εr = 3.5), prolate and counterclockwise. CaE = 1.

5.5. Large deformation of drop dynamics

In this subsection, we investigate the large deformation of a viscous drop under a strong electric field (high CaE ). Lac and 
Homsy used the boundary integral method to study the axisymmetric deformation of a drop under a DC electric field. Their 
boundary integral simulations showed that the drop stays spheroidal and its deformation increases with CaE until a critical 
value, beyond which the drop either takes a non-spheroidal axisymmetric equilibrium shape or breaks up into smaller 
droplets [13]. On the other hand, they also found that under certain (σr , εr) regimes, the drop break-up process may not 
occur as CaE increases. Here, we choose the non-breakup parameters for both prolate (σr = 10, εr = 1.37) and oblate (σr =
0.6, εr = 1.37) drops, and study their large deformations. The electric capillary number CaE = 2 is chosen slightly higher 
than previous tests. One can see from Fig. 8 that both drops deform into an elongated peanut-like shape at equilibrium. The 
numerical results are qualitatively consistent with those in [13], even though our simulations are two-dimensional while 
their boundary integral simulation results are axisymmetric [13].

6. Conclusions

In this paper, we have developed a hybrid immersed boundary (IB) and immersed interface method (IIM) to simulate the 
dynamics of a leaky dielectric drop in Navier–Stokes flows. The electric potential is solved numerically by an augmented IIM 
which incorporates the jump conditions naturally along the normal direction. Instead of applying the volume electric force 
arising from the Maxwell stress tensor, we alternatively treat the electric effect as an interfacial force bearing the normal 
jump of Maxwell stress on the interface. Thus, we can put the capillary and electric forces in a unified immersed boundary 
formulation, which greatly simplifies the numerical algorithm for the full system. We first computed the potential and its 
gradient (electric field) to perform the accuracy check for the present IIM. We further checked the convergence of the 
interfacial electric force and the fluid variables. We ran a series of simulations with different permittivity and conductivity 
ratios and compared the results obtained by the small deformation theory and other numerical results in literature. Our 
results show good agreement with theoretical models and other numerical results. In addition, we also studied the electric 
effect on a drop under shear flow.
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Fig. 7. The snapshots for a drop under both an electric field (vertical) and shear flow (horizontal) u = (0.3y, 0) with (solid line) or without (dashed line) 
the electric effect. Top row: Case A; Middle row: Case B; Bottom row: Case C. CaE = 1.

Fig. 8. Drop deformation with CaE = 2 at different times: (a) σr = 10, εr = 1.37, and (b) σr = 0.6, εr = 1.37.

In this paper, we mainly consider a neutrally buoyant drop suspended in a fluid with matching density and viscosity 
but with different permittivity and conductivity subject to a DC electric field. Certainly, we can consider the cases with 
mismatched density and viscosity for the drop and suspended fluid by adopting different fluid solvers. It has been observed 
in experiments [26] that with different viscosity for the drop and suspended fluid, the drop will be tilted with respect to the 
electric field direction as long as the electric field is strong enough. As a result, the drop shape becomes non-axisymmetric 
and a rotational flow is induced about the drop. To model this problem, one needs to take the surface charge convection 
effect into account in our present formulation. However, as far as the scheme developed in this work is concerned, the 
major ingredients and contributions will remain identical. We leave this extension as our future work.
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Appendix A

In the appendix, we express the interfacial electric force explicitly and show that the mathematical form is exactly the 
same used in [32]. Let us write the electric flux density J = σE and express E = Enn + Eττ where En and Eτ are the normal 
and tangent components of the electrical field. Substituting the above expression of E into the definition of Maxwell stress 
tensor of Eq. (8) and multiplying the normal vector n, we can obtain

ME · n = ε

(
EE − 1

2
(E · E)I

)
· n

= εEn(Enn + Eττ ) − ε

2

(
E2

n + E2
τ

)
n

= ε

σ 2
(σ En)

2n + ε

σ
(σ En)Eττ − ε

2σ 2
(σ En)

2n − ε

2
E2
τ n

= ε

2σ 2
(σ En)

2n + ε

σ
(σ En)Eττ − ε

2
E2
τ n

= 1

2

(
J 2
n

ε

σ 2
− E2

τ ε

)
n + ε

σ
Jn Eττ where Jn = J · n.

The zero jump conditions of Eq. (7) imply that the tangential component of the electric field Eτ and the electric flux density 
Jn are both continuous across the interface; that is [Eτ ] = 0 and [ Jn] = 0. Thus, the interfacial electric force can be written 
as

FE = (
M+

E − M−
E

) · n

= 1

2

(
J 2
n

(
ε+

(σ+)2
− ε−

(σ−)2

)
− E2

τ

(
ε+ − ε−))

n + Jn Eτ

(
ε+

σ+ − ε−

σ−

)
τ .

This is exactly the same form as the continuous electric surface force shown in Eq. (19) of Tomar et al. [32].
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