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Abstract In this paper, a novel penaltymethod based on the immersed boundary formulation
is proposed for simulating the transient Stokes flow with an inextensible interface enclosing
a suspended solid particle. The main idea of this approach relies on the penalty techniques by
modifying the constitutive equation of Stokes flow toweaken the incompressibility condition,
relating the surface divergence to the elastic tension σ to relax the interface’s inextensibility,
and connecting the particle surface-velocity with the particle surface force F to regularize
the particle’s rigid motion. The advantage of these regularized governing equations is that
when they are discretized by the standard centered difference scheme on a staggered grid, the
resulting linear system can easily be reduced by eliminating the unknowns ph, σh and Fh

directly, so that we just need to solve a smaller linear system of the velocity approximation
uh . This advantage is preserved and even enhanced when such approach is applied to the
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transient Stokes flow with multiple compound vesicles. Moreover, this smaller linear system
is symmetric and negative-definite, which enables us to use efficient linear solvers. Another
important feature of the proposed method is that the discretization scheme is unconditionally
stable in the sense that an appropriately defined energy functional associated with the discrete
system is decreasing and hence bounded in time. We numerically test the accuracy and
stability of the immersed boundary discretization scheme. The tank-treading and tumbling
motions of inextensible interface with a suspended solid particle in the simple shear flow
will be studied extensively. The simulation of the motion of multiple compound vesicles will
be performed as well. Numerical results illustrate the superior performance of the proposed
penalty method.

Keywords Immersed boundary method · Penalty method · Stokes flow · Inextensible
interface · Solid particle · Stability

Mathematics Subject Classification 65M06 · 65M12 · 76D07 · 76M20

1 Introduction

In recent years, the study of vesicle dynamics has been the focus of intense research. Vesi-
cles provide the simplest model system for simulating complex behavior of biomembranes
suspended in the biological fluids. For example, vesicle can be considered as a simplified
model for red blood cell in blood flow, since they share many similar characteristic behavior,
such as the tank-treading, tumbling and vacillating-breathing (swinging) motions [15,17].
Basically, such a system consists of two fluids separated by an elastic membrane having
the inextensible property, which may be deformed due to the interaction with the biological
fluids. Besides, vesicles can also be considered as promising drug carriers for the delivery
at specific locations in the organisms [1]. These explain the increasing interest and impor-
tance of understanding the vesicle dynamics. In essence, the dynamics of vesicles can be
determined by their boundary rigidity, inextensibility, and the hydrodynamical forces.

On the other hand, the immersed boundary (IB) method was introduced by Peskin in the
early seventies to model blood flow in the heart and through heart valves. Currently, it has
evolved into a simple but powerful method for formulating the coupled equations of motion
of a viscous, incompressible fluid with one or more elastic surfaces immersed in the fluid; see
[18] and many references therein. In the IB method, an Eulerian description is used for the
fluid dynamics, while a Lagrangian form is used for each immersed object. The key idea of
the IBmethod is replacing each suspended object by a suitable contribution to a force density
term in the fluid dynamics equations. This allows a single set of fluid dynamics equations
to hold in the entire spatial domain without any internal boundary conditions. Moreover,
without generating an interface-fitting grid for both exterior and interior regions of each
surface at each time step, instead, the IB discretization schemes can be implemented by
employing a uniform Cartesian grid over the entire domain and the immersed boundaries are
discretized by a set of points that are not constrained to lie on the grid. In the meantime, the
Eulerian and Lagrangian variables are linked by interaction equations that involve a smoothed
approximation to the Dirac delta function.

Recently, Lai et al. [11] developed a fractional step IB method for Stokes flow with an
inextensible interface enclosing a suspended solid particle. In addition to solving for the
fluid variables, velocity and pressure, the proposed system in [11] involves finding an extra
unknown, elastic tension σ , such that the surface divergence of the velocity is vanished along
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the interface, and an extra unknown, particle surface force F, such that the velocity satisfies
the no-slip boundary condition along the particle surface. The interfacemoveswith local fluid
velocity, while the enclosed particle undergoes a rigid body motion. Finally, the force-free
and torque-free conditions along the particle surface are imposed to close the system. They
showed that the nullity of the linear algebraic system arising from the centered discretizations
of the IB equations over a staggered grid is nonzero, and thus the existence of a solution is
guaranteed. They then applied the idea of the fractional step method developed in [20] to
solve the resultant linear system of equations. Although the proposed system in [11] seems
not to be a satisfactory model for certain biological cells such as the human leukocytes, a
lipid bilayer membrane enclosing a fluid with a core, it can be viewed as a heuristic model for
developing efficient numerical schemes for analyzing the dynamics of compound vesicles.

In this paper, still based on the formulation of [11], we will propose a novel penalty
IB method for the transient Stokes flow problem with an inextensible interface enclosing
a suspended solid particle. The main idea of the proposed approach relies on the three
penalty techniques. First, we modify the constitutive equation of Stokes flow (cf. [5]) to
weaken the incompressibility condition ∇ · u = 0 by ∇ · u + εp = 0 with a small penalty
parameter ε > 0. This technique has been well studied in the finite element computation
for the incompressible viscous flow problems to circumvent the cumbersome constraint of
incompressibility [21]. Second, we assume that the elastic tension σ is given in a specific form
to follow the usual Hooke’s law for an elastic body [8,9]. This enables us to relate the surface
divergence to the elastic tension such that the interface is relaxed to nearly inextensible.
Finally, we connect the particle surface-velocity with the particle surface force F through
the use of a virtual particle to regularize the particle’s rigid motion [9]. The advantage of
the regularized governing equations is that when they are further discretized by the standard
centered difference scheme on a staggered grid, the resulting linear system can easily be
reduced by eliminating the unknowns ph, σh and Fh directly so that we just need to solve
a smaller linear system of the velocity approximation uh . Moreover, the linear system of
uh is symmetric and negative-definite. This enables us to use efficient solvers, such as the
preconditioned conjugate gradient and the algebraicmultigridmethods, to find solution of the
linear system. We emphasize that this advantage will be preserved and even enhanced when
such penalty IB approach is applied to the transient Stokes flow with multiple compound
vesicles. Indeed, for multiple vesicle problems, the resulting large linear system of equations
is still tractable to block elimination, no matter how many compound vesicles are involved
in the fluid, and we only need to solve a reduced system of the velocity. Also, the present
approach can be easily extended to Navier–Stokes flow by treating the nonlinear advection
terms explicitly in the time integration.

It is well known that the discretizations of the IB equations suffer from a severe time step
restriction for maintaining the stability and this time step restriction is typically much more
stringent than the one that would be imposed from using explicit differencing techniques; see
[2,3,13,18,19]. In recent years, considerable effort has been devoted to developing implicit
and semi-implicit schemes to alleviate this severe restriction [3,13,14,22]. The instability of
these schemes is known not to be a problem related to the advection terms in the incompress-
ible Navier–Stokes equations. Also, it has been pointed out in [16] that discretization schemes
need not be fully-implicit in order to achieve unconditional stability. One of important fea-
tures of the present penalty IB approach is that our semi-implicit discretization scheme for
the penalty IB equations is unconditionally stable in the sense that when an appropriately
energy functional associated with the discrete system is defined, we can prove that the energy
is decreasing, and hence bounded, in time. This result reflects the assertion of [16] in some
measure.
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Fig. 1 A diagram of an
inextensible interface Γ

enclosing a suspended solid
particle P

Γ

Ω

P

Since our penalty IB approach relaxes the interface to be nearly inextensible, it is important
to us to measure how extent the inextensibility is conserved as time step advances. In this
paper, we will prove that the difference of local stretching factors for two successive time
steps is still of first order in time step size Δt , i.e., O(Δt). This result is similar to that of
[11]. In addition, we find that though the difference of local stretching factors is of first order
in time step size, the length of the elastic interface may not be always increasing as much
as expected when time step advances. In other words, we could keep the inextensibility of
the interface very well. This assertion is very different with [11] and the numerical results
reported in Sect. 5 will support this observation.

We will test the accuracy and stability of the semi-implicit discretization scheme through
a number of numerical experiments. The first one, which is quoted from [11], is a Stokes
problemwithout the effects of the inextensible interface and the suspended solid particle. The
exact solution of this problem is given and so we can easily compute the errors and estimate
the convergence rates. Then we perform a series of numerical simulations for inextensible
interface with a suspended solid particle in the simple shear flow. In particular, the tank-
treading and tumbling motions will be studied extensively. The simulation of the motion
of multiple compound vesicles will be performed as well. Numerical results illustrate the
superior performance of the proposed penalty IB approach.

The remainder of this paper is organized as follows. In Sect. 2, we regularize the governing
equations by the penalty techniques. In Sect. 3, we discretize the IB equations using the
standard centered difference scheme on a staggered grid, and the unique solvability of the
resulting linear system is also studied. Some advantageous properties of the penalty IB
method, including the unconditional stability and the first-order error of inextensibility for
two successive time steps, will be derived in Sect. 4. Numerical results are presented in
Sect. 5. Some concluding remarks are given in Sect. 6.

2 Regularization of the Governing Equations of Motion

In this paper, we consider a moving immersed inextensible interface Γ enclosing a sus-
pended solid particle P in a two-dimensional fluid domain Ω; see Fig. 1. We assume that
the fluids inside and outside of the interface are the same and governed by the unsteady
incompressible Stokes equations, and the interface is massless and the particle’s grav-
ity is neglected. Let the elastic interface Γ and the particle surface ∂P be parameterized
by X(s, t) = (X1(s, t), X2(s, t)) and Y(α, t) = (Y1(α, t), Y2(α, t)), respectively, where
s ∈ [0, L1] and α ∈ [0, L2] are the corresponding Lagrangian parameters. The governing
equations of motion in dimensionless form can be formulated as follows (cf. [11]): for t > 0,
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∂u
∂t

+ ∇ p = μΔu +
∫

Γ

∂(στ )(s, t)

∂s
δ(x − X(s, t))ds

+
∫

∂P
F(α, t)δ(x − Y(α, t))dα in Ω, (1)

∇ · u = 0 in Ω, (2)

∇s · U =
(

∂U
∂s

· τ

) ∣∣∣∣∂X∂s
∣∣∣∣
−1

= 0 on Γ, (3)

∂X
∂t

(s, t) = U(s, t) =
∫

Ω

u(x, t)δ(x − X(s, t))dx on Γ, (4)

∂Y
∂t

(α, t) = V (α, t) =
∫

Ω

u(x, t)δ(x − Y(α, t))dx = V c + ωr on ∂P, (5)
∫

∂P
F(α, t)dα = 0, (6)

∫
∂P

F(α, t) · r(α, t)dα = 0, (7)

where μ > 0 is the kinematic viscosity, u = (u, v) and p are the velocity field and the
pressure, respectively, σ is the elastic tension and F = (F1, F2) is the particle surface force,
V c(t) is the translational velocity of the center of particle and ω(t) is the angular velocity
component of the particle, τ is the unit tangential vector on Γ, r(α, t) = (−(Y2(α, t) −
Y2c(t)), Y1(α, t) − Y1c(t)) is a tangential vector on ∂P, (Y1c, Y2c) is the center of mass of
P, δ(x) := δ(x)δ(y) is a two-dimensional Dirac delta function, and ∇s · denotes the surface
divergence operator.

We note that Eqs. (1) and (2) are the unsteady incompressible Stokes equations with
singular force terms arising from the elastic interface and the particle surface. Equations (3)
and (4) represent that the interface is inextensible andmoves alongwith the local fluid velocity
so that the velocity U is the interpolation of the fluid velocity at the interface. Equation (5)
describes the particle surface velocity which is consisted of the translational velocity V c and
the angular velocity ω making the particle moving like a rigid body. Finally, the system of
equations will be closed by coupling (6) and (7), which mean the force-free and torque-free
conditions for the rigid body motion.

We now introduce the penalty techniques [5,8,9,21] to regularize Eqs. (2), (3) and (5).
First, by modifying the constitutive equation of Stokes flow (cf. [5]), we are able to weaken
the incompressibility condition ∇ · u = 0 in Ω by

∇ · u + εp = 0 in Ω, (8)

where ε > 0 is a small penalty parameter. This penalty technique has been well studied in
the finite element computation for the incompressible Stokes equations. For example, it has
been shown that the solution (uε, pε) of the penalty approach will converge to the Stokes
solution (u, p) in some suitable norms as ε → 0+. More precisely, we have

uε → u in the H1(Ω) norm and pε → p in the L2(Ω) norm as ε → 0+.

For the theoretical analysis, we refer the reader to [21] for more details. In the practical
computation, an appropriate choice of the parameter ε has been suggested by Hughes et al.
[5] that ε = 1/(cμ̃), where μ̃ is the dynamic viscosity and the constant c is taken as c = 107

for Stokes flow. They pointed out that the choice of c seems to be problem independent. This
is consistent with our numerical experience.
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Fig. 2 The reacting force F
pulls Ỹ back to target position Y

Second, based on the Hooke’s law, we assume that the elastic tension σ is given in the
form

σ(s, t) = σ0

(∣∣∣∣∂X∂s (s, t)

∣∣∣∣−
∣∣∣∣∂X∂s (s, 0)

∣∣∣∣
)
, (9)

with a sufficiently large elastic coefficient σ0. Since σ0 is large, the length of the tangential
vector ∂X(s, t)/∂s will be always close to the initial length, i.e.,

∣∣∣∣∂X∂s (s, t)

∣∣∣∣ ≈
∣∣∣∣∂X∂s (s, 0)

∣∣∣∣ for all s ∈ [0, L1] and t > 0.

In other words, the interface is no longer exactly inextensible. Instead, the elastic interface
is allowed to be nearly inextensible. Indeed, from [12], we have

∂

∂t

∣∣∣∣∂X∂s
∣∣∣∣ = (∇s · U)

∣∣∣∣∂X∂s
∣∣∣∣ . (10)

Combining (9) with (10), the surface divergence free Eq. (3) should be replaced by

(
∂U
∂s

· τ

) ∣∣∣∣∂X∂s
∣∣∣∣
−1

= ∇s · U = 1

σ0

∂σ

∂t

∣∣∣∣∂X∂s
∣∣∣∣
−1

on Γ. (11)

In other words, we obtain
∂σ

∂t
= σ0

(
∂U
∂s

· τ

)
on Γ. (12)

To sum up, assumption (9) relates the surface divergence with the elastic tension σ , as that
given in (11), such that the interface is allowed to be nearly inextensible.

Finally, following the Hooke’s law again, we assume that

F = k0(Y − Ỹ), (13)

with a sufficiently large stiffness constant k0, where Ỹ is the parametrization of the virtual
solid particle P̃ and Ỹ is assumed to have the same parametric variable α with Y in the same
interval [0, L2]. The significance of this assumption can be interpreted as follows. When the
flow hits the solid particle, we image that the particle surface may be deformed a little bit
to Ỹ but at the same moment, the reacting force F pulls it back to Y , a real position of the
particle surface; see Fig. 2. Since k0 is large, Y(α, t) ≈ Ỹ(α, t) for all α ∈ [0, L2] and t > 0.
Under assumption (13) with the equation of rigid motion of Ỹ ,

∂Ỹ
∂t

= Ṽ = V c + ω r̃, (14)
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we have, combining with (5),

∂F
∂t

= k0

(
∂Y
∂t

− ∂Ỹ
∂t

)
= k0(V − Ṽ ) = k0(V c + ωr − Ṽ ) on ∂ P̃. (15)

Consequently, we connect the particle surface-velocity V with the particle surface force F
by (15). This enables us to regularize the particle’s rigid motion, see (19) and (23) below.

In summary, we obtain the following system of equations, which models the dynamics of
a nearly inextensible vesicle enclosing a suspended solid particle in Stokes flow: for t > 0,

∂u
∂t

+ ∇ p = μΔu +
∫

Γ

∂(στ )(s, t)

∂s
δ(x − X(s, t))ds

+
∫

∂P
F(α, t)δ(x − Y(α, t))dα in Ω, (16)

∇ · u + εp = 0 in Ω, (17)
∂σ

∂t
= σ0

(
∂U
∂s

· τ

)
on Γ, (18)

∂F
∂t

= k0(V c + ωr − Ṽ ) on ∂ P̃, (19)
∫

∂P
F(α, t)dα = 0, (20)

∫
∂P

F(α, t) · r(α, t)dα = 0, (21)

∂X
∂t

(s, t) = U(s, t) =
∫

Ω

u(x, t)δ(x − X(s, t))dx on Γ, (22)

Ṽ (α, t) =
∫

Ω

u(x, t)δ

(
x − (Y(α, t) − 1

k0
F(α, t))

)
dx on ∂ P̃, (23)

where ε is small but σ0 and k0 are large enough, and ∂ P̃ denotes the surface of the virtual
solid particle P̃ , which is parameterized by Ỹ(α, t) = (Ỹ1(α, t), Ỹ2(α, t)) = Y(α, t) −
(1/k0)F(α, t) for α ∈ [0, L2].

3 Discretizations of the Immersed Boundary Equations

In this section,we are going to apply the second-order centered difference scheme to discretize
the immersed boundary Eqs. (16)–(23) to reach a linear algebraic system. For simplicity, we
assume that the computational domain is a rectangular regionΩ = [a, b]×[c, d] and that the
fluid variables are defined on the staggered marker-and-cell (MAC) grids [4]. As shown in
Fig. 3, we define the pressure on the grid points (xi , y j ) = (a+(i−1/2)Δx, c+( j−1/2)Δy)
for 1 ≤ i ≤ mx and 1 ≤ j ≤ my , while the velocity components u and v are defined at
(xi−1/2, y j ) = (a + (i − 1)Δx, c+ ( j − 1/2)Δy) for 1 ≤ i ≤ mx + 1 and 1 ≤ j ≤ my and
(xi , y j−1/2) = (a + (i − 1/2)Δx, c + ( j − 1)Δy) for 1 ≤ i ≤ mx and 1 ≤ j ≤ my + 1,
respectively. Here, we use a uniform mesh with mesh size h = Δx = Δy.

For the immersed nearly inextensible elastic interface X at a given time, we use the
Lagrangian markers Xk = X(sk), where sk = kΔs for k = 0, 1, . . . , Me, and Δs is roughly
chosen as a half of fluid mesh size h. Since the elastic interface is closed, we have X0 =
XMe . We remark that these points will be used in the computation of the values of the
discrete delta functions. The elastic tension is defined on the “half-integer” points given by
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Fig. 3 A schematic diagram of
the computational domain Ω

with staggered grid, where the
unknowns u, v and p are
approximated at the grid points
marked by cross, open circle and
filled circle, respectively

sk−1/2 = (k − 1/2)Δs, so we denote it by σk−1/2. Similarly, we use the Lagrangian markers
Y k = Y(αk) on particle surface with αk = kΔα, k = 0, 1, . . . , Mp , and Δα is also roughly
chosen as a half of fluid mesh size h.

Inwhat follows, the discrete spatial operators∇h,Δh , and∇sh ·denote the standard second-
order centered difference approximations to the gradient, Laplacian and surface divergence
operators, respectively. For any function ψ(s) defined on the interface Γ , we approximate
the partial derivative ∂ψ/∂s by the centered difference scheme as

Dsψ(s) = ψ(s + Δs/2) − ψ(s − Δs/2)

Δs
.

Thus, the interface stretching factor |∂X/∂s| and the unit tangent τ can be approximated
by |DsX| and DsX/|DsX|, which are defined at the half-integer points. We denote them by
|DsX|k−1/2 and τ k−1/2, respectively.

Let Δt be the time step size, and the superscript of the variables denote the time step
index. At the beginning of each time step n, the elastic tension σ n

k−1/2, the particle surface
force Fn

k , the interface configuration Xn
k , the particle surface Y

n
k = (Yn

1k, Y
n
2k), and its center

Yn
c = (Yn

1c, Y
n
2c) are all given. Despite the face that the problem is non-linear, here we propose

a linearly semi-implicit difference scheme for the system of Eqs. (16)–(23). The time step
can be advanced as follows:

−un+1 − un

Δt
+ μΔhun+1 − ∇h p

n+1 +
Me∑
k=1

Ds(σ
n+1τ n)kδh(x − Xn

k )Δs

+
Mp∑
k=1

Fn+1
k δh(x − Yn

k )Δα = 0, (24)

∇h · un+1 + εpn+1 = 0, (25)

σ n+1
k−1/2 − σ n

k−1/2

Δt
− σ0

Un+1
k − Un+1

k−1

Δs
· τ n

k−1/2 = 0, (26)

Fn+1
k − Fn

k

Δt
− k0

(
V n+1

c + ωn+1
[−(Yn

2k − Yn
2c)

Yn
1k − Yn

1c

]
− Ṽ

n+1
k

)
= 0, (27)

Mp∑
k=1

Fn+1
k Δα = 0, (28)
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Mp∑
k=1

(
Fn+1
1k (Yn

2k − Yn
2c) − Fn+1

2k (Yn
1k − Y l

1c)
)
Δα = 0, (29)

Xn+1
k − Xn

k

Δt
= Un+1

k =
∑
x

un+1(x)δh
(
x − Xn

k

)
h2, (30)

Ṽ
n+1
k =

∑
x

un+1(x)δh

(
x − Yn

k + 1

k0
Fn
k

)
h2. (31)

We remark that since the stiffness constant k0 is large, in practical computation, we may
use δh(x − Yn

k ) to replace the term δh(x − Yn
k + 1

k0
Fn
k ) in (31). For the computation of the

discrete delta function δh(x), we adopt the following smoother version developed in [25],

δh(x, y) = 1

h2
φ
( x
h

)
φ
( y
h

)
, (32)

φ(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

3
8 + π

32 − ξ2

4 , |ξ | < 0.5,
1
4 + 1−|ξ |

8

√−2 + 8|ξ | − 4ξ2 − 1
8 sin

−1
(√

2(|ξ | − 1)
)

, 0.5 ≤ |ξ | ≤ 1.5,
17
16 − π

64 − 3|ξ |
4 + ξ2

8 + |ξ |−2
16

√−14 + 16|ξ | − 4ξ2

+ 1
16 sin

−1
(√

2(|ξ | − 2)
)

, 1.5 ≤ |ξ | ≤ 2.5,

0, 2.5 ≤ |ξ |.

(33)

Now, using the staggered grid for the fluid variables, the matrix obtained by the discrete
divergence of the fluid velocity can be written as the transpose of the discrete gradient of
the pressure. The matrix produced by the discrete surface divergence of the velocity can
be written as the transpose of the matrix obtained by the discrete spreading operator of the
tension with some suitable rescaling. Similarly, the matrix obtained by the discrete spreading
operator of the force arising from the suspended solid particle boundary can be written as the
transpose of the matrix obtained by the discrete interpolating operator of velocity with some
suitable rescaling; see [11] and also the discrete skew-adjoint and adjoint properties given in
Sect. 4 below. Thus, the resulting linear system assembled from (24)–(31) is symmetric and
can be written as

⎡
⎢⎢⎢⎢⎣

A B S E 0
B� ε I 0 0 0
S� 0 ε1 I 0 0
E� 0 0 ε2 I R
0 0 0 R� 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

un+1
h
pn+1
h

σ n+1
h
Fn+1
h

Θn+1
h

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

c1
c2
mσ

mF
0

⎤
⎥⎥⎥⎥⎦ , (34)

where ε1 = Δs/(σ0h2Δt), ε2 = Δα/(k0h2Δt), ψn+1
h denotes the unknown vector value of

ψ at the corresponding grid points, andΘ := (V1c, V2c, ω). The submatrices A, B, S, E , and
R respectively represent the discrete Laplacian-like operator, μΔh − (1/Δt)I , the discrete
gradient operator, −∇h , the discrete spreading operator on tension, the discrete spreading
operator on the surface force, and the discrete rigid body motion equation. In the right-hand
side of (34), c1 comes from the boundary condition and unh, c2 consists only of the velocity
boundary conditions since the pressure is evaluated at each cell center, mσ and mF are
depending on σ n

h and Fn
h , respectively.

In general, (34) is a large linear system and it is cost-ineffective to solve it directly even if it
is a sparse one.We propose an alternative way to efficiently solve the system as follows. From
(34), we obviously have pn+1

h = (1/ε)(c2 − B�un+1
h ) and σ n+1

h = (1/ε1)(mσ − S�un+1
h ).
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In addition, R�Fn+1
h = 0 and E�un+1

h + ε2F
n+1
h + RΘn+1

h = mF easily imply

R�E�un+1
h + R�RΘn+1

h = R�mF . (35)

We will show the invertibility of the 3 × 3 matrix R�R later and after that we obtain

Θn+1
h = (R�R)−1R� (mF − E�un+1

h

)
, (36)

and then

Fn+1
h = 1

ε2

(
(I − R(R�R)−1R�)mF − (I − R(R�R)−1R�)E�un+1

h

)
. (37)

Therefore, the linear system (34) can be reduced into a smaller one:

Ãun+1
h = b, (38)

where the matrix Ã and the right-hand side vector b are defined as

Ã := A − 1

ε
BB� − 1

ε1
SS� − 1

ε2
E(I − R(R�R)−1R�)E�, (39)

b := c1 − 1

ε
Bc2 − 1

ε1
Smσ − 1

ε2
E(I − R(R�R)−1R�)mF . (40)

We now show the invertibility of the 3× 3 matrix R�R. First, the matrix R assembled from
(27) can be written as

R = −Δα

h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −(Yn
21 − Yn

2c)
...

...
...

1 0 −(Yn
2Mp

− Yn
2c)

0 1 (Yn
11 − Yn

1c)
...

...
...

0 1 (Yn
1Mp

− Yn
1c)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To simplify the notation, we define ak = Yn
1k − Yn

1c and bk = Yn
2k − Yn

2c. Then we have

(
h4

Δα2

)3

det(R�R) = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mp 0 −
Mp∑
k=1

bk

0 Mp

Mp∑
k=1

ak

−
Mp∑
k=1

bk
Mp∑
k=1

ak
Mp∑
k=1

a2k +
Mp∑
k=1

b2k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Mp

⎧⎪⎨
⎪⎩Mp

Mp∑
k=1

a2k + Mp

Mp∑
k=1

b2k −
⎛
⎝

Mp∑
k=1

ak

⎞
⎠

2

−
⎛
⎝

Mp∑
k=1

bk

⎞
⎠

2
⎫⎪⎬
⎪⎭

(by Cauchy–Schwarz inequality)
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≥ Mp

⎧⎨
⎩Mp

Mp∑
k=1

a2k + Mp

Mp∑
k=1

b2k −
⎛
⎝

Mp∑
k=1

a2k

⎞
⎠
⎛
⎝

Mp∑
k=1

12

⎞
⎠−

⎛
⎝

Mp∑
k=1

b2k

⎞
⎠
⎛
⎝

Mp∑
k=1

12

⎞
⎠
⎫⎬
⎭

= Mp

⎧⎨
⎩Mp

Mp∑
k=1

a2k + Mp

Mp∑
k=1

b2k − Mp

Mp∑
k=1

a2k − Mp

Mp∑
k=1

b2k

⎫⎬
⎭ = 0,

where the equality holds in Cauchy–Schwarz inequality if and only if ak = C1 and bk = C2

for all k = 1, 2, . . . , Mp and for some constantsC1 andC2, both independent of k. However,
it it will never occur in our case. This leads to det(R�R) > 0, and thus R�R is invertible.
Note that we can efficiently compute the inverse of R�R because it is only a 3 × 3 matrix.
Furthermore, we can show the following result:

Theorem 3.1 The matrix Ã is symmetric and negative-definite.

Proof It is obvious that matrix Ã is symmetric. Using the facts that A is negative-definite and
both BB� and SS� are positive semi-definite, we only need to show that I − R(R�R)−1R�
is a positive semi-definite matrix. A direct computation,

(
I − R(R�R)−1R�) (I − R(R�R)−1R�) = I − R(R�R)−1R�, (41)

shows that I − R(R�R)−1R� is a projection matrix, and then its eigenvalues should be 0 or
1. This leads to the assertion and thus completes the proof. 
�

Thanks to this property of matrix Ã, we can solve (38) by using some efficient linear
solvers, such as the preconditioned conjugate gradient and the algebraic multigrid methods.

Once we obtain the new velocity field un+1 on the fluid grid, we can interpolate the new
velocity to the marker points by (30) and move the Lagrangian markers to new positions by

Xn+1
k = Xn

k + ΔtUn+1
k . (42)

For the solid particle motion, the particle center velocity V c and the angular velocity com-
ponent ω will be obtained by (36). Instead of first using the interpolation formula to find the
new velocity and then updating the particle surface points, we simply adopt the idea of rigid
body motion to determine the particle surface position (cf. [11]). Indeed, we compute the
new particle center and the rotational angle by

Yn+1
c = Yn

c + ΔtV n+1
c , θn+1 = θn + Δtωn+1 (43)

and use them to determine the new particle surface position as

Yn+1
k = Yn+1

c +
[
cos θn+1 − sin θn+1

sin θn+1 cos θn+1

]
Y0
k . (44)

Finally,we remark that the proposedpenalty IBapproach canbe applied to the transient Stokes
flow with multiple compound vesicles as well. Similar to the above procedure, the resulting
large linear system of equations is still tractable to block elimination, no matter how many
compound vesicles are involved in the fluid, so that we only need to solve a reduced system
with the velocity being the single unknown. Consequently, for multiple vesicle problems, the
computational cost of the proposed penalty method is mainly devoted to solving a reduced
linear system of the velocity approximation at each time step. This is one of the advantageous
features of the proposed method.
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4 Properties of the Penalty Immersed Boundary Method

In this section, we will discuss some properties of the penalty IB method.

4.1 Skew-adjointness and Adjointness in the Continuous Case

Let us first define the following spreading operators S1(σ ) and S2(F) and the inner products
of functions on Ω,Γ and ∂P:

S1(σ ) =
∫

Γ

∂

∂s
(στ )δ(x − X(s, t))ds, S2(F) =

∫
∂P

Fδ(x − Y(α, t))dα,

T 1(u) = ∂U
∂s

· τ , T2(u) =
∫

Ω

u(x)δ(x − Y(α, t))dx,

〈u, v〉Ω =
∫

Ω

u · vdx, 〈 f, g〉Γ =
∫

Γ

f (s)g(s)ds, 〈φ, ϕ〉∂P =
∫

∂P
φ(α)ϕ(α)dα.

Then we have

〈S1(σ ), u〉Ω =
∫

Ω

(∫
Γ

∂

∂s
(στ )δ(x − X(s, t))ds

)
· u(x)dx

=
∫

Γ

∂

∂s
(στ ) ·

(∫
Ω

u(x)δ(x − X(s, t))dx
)
ds

= −
∫

Γ

σ

(
τ · ∂U

∂s

)
ds = 〈σ,−T1(u)〉Γ , (45)

which means that S1 and T1 are skew-adjoint. We also have

〈S2(F), u〉Ω =
∫

Ω

(∫
∂P

Fδ(x − Y(α, t))dα

)
· u(x)dx

=
∫

∂P
F ·
(∫

Ω

u(x)δ(x − Y(α, t))dx
)
dα

= 〈F, V 〉∂P = 〈F, T2(u)〉∂P , (46)

that is, S2 and T2 are adjoint. Moreover, since we assume the elastic tension and the particle
surface force in the form

σ(s, t) = σ0

(∣∣∣∣∂X∂s (s, t)

∣∣∣∣−
∣∣∣∣∂X∂s (s, 0)

∣∣∣∣
)
,

F = k0(Y − Ỹ),

the associated potential energies are given by

Eσ (t) =
∫

Γ

σ0

2

(∣∣∣∣∂X∂s (s, t)

∣∣∣∣−
∣∣∣∣∂X∂s (s, 0)

∣∣∣∣
)2
ds, (47)

EF(t) =
∫

∂P

k0
2

|Y(α, t) − Ỹ(α, t)|2dα. (48)

Therefore, combining (47) with (45) and (18), and (46) with (20) and (21), we have

dEσ

dt
=
∫

Γ

1

2σ0

∂σ 2

∂t
ds =

∫
Γ

σ
( 1

σ0

∂σ

∂t

)
ds

=
∫

Γ

σ
(
τ · ∂U

∂s

)
ds = −〈S1(σ ), u〉Ω (49)
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and

〈S2(F), u〉Ω = 〈F, V 〉∂P = 〈F, V c + ωr〉∂P = V c · 〈F, 1〉∂P + ω〈F, r〉∂P = 0. (50)

From (50) and (19), we obtain

〈
F, Ṽ + 1

k0

∂F
∂t

〉
∂P

= 0,

which leads to
dEF
dt

=
〈
F,

1

k0

∂F
∂t

〉
∂P

= − 〈F, Ṽ
〉
∂P . (51)

According to (49) and (51), we can conclude that the negative rate of change of potential
energy of the elastic interface is equal to the work done by the interface on the fluid, while
the work done by surface force F pulling the virtual solid particle, characterized by Ỹ , back
to the true particle position Y equals the negative rate of change of potential energy of the
particle.

4.2 Skew-adjointness and Adjointness in the Discrete Case

Wefirst define the following discrete operators S1h, S2h, T1h, T2h , and discrete inner products:

S1h(σ
n+1) =

∑
k

Ds(σ
n+1τ n)kδh(x − Xn

k )Δs, S2h(Fn+1) =
∑
k

Fn+1
k δh(x − Yn

k )Δα,

T1h(un+1
k−1/2) = Un+1

k − Un+1
k−1

Δs
· τ n

k−1/2, T2h(un+1
k ) =

∑
x

un+1(x)δh(x − Yn
k )h

2,

〈w, v〉Ωh =
∑
x

w(x) · v(x)h2, 〈 f, g〉Γh =
∑
k

fk−1/2gk−1/2Δs,

〈φ, ϕ〉∂Ph =
∑
k

φk−1/2ϕk−1/2Δα.

Then we can verify that S1h and T1h are skew-adjoint, while S2h and T2h are adjoint as
follows:

〈S1h(σ n+1), un+1〉Ωh =
∑
x

(∑
k

Ds(σ
n+1τ n)kδh(x − Xn

k )Δs
)

· un+1(x)h2

=
∑
k

Ds(σ
n+1τ n)k ·

(∑
x

un+1(x)δh(x − Xn
k )h

2
)
Δs

=
∑
k

Ds(σ
n+1τ n)k · Un+1

k Δs

=
∑
k

σ n+1
k+1/2τ

n
k+1/2 − σ n+1

k−1/2τ
n
k−1/2

Δs
· Un+1

k Δs

= −
∑
k

σ n+1
k−1/2

Un+1
k − Un+1

k−1

Δs
· τ n

k−1/2Δs

= 〈σ n+1,−T1h(un+1)〉Γh (52)
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and

〈S2h(Fn+1), un+1〉Ωh =
∑
x

(∑
k

Fn+1
k δh(x − Yn

k )Δα
)

· un+1(x)h2

=
∑
k

Fn+1
k ·

(∑
x

un+1(x)δh(x − Yn
k )h

2
)
Δα

= 〈Fn+1, T2h(un+1)〉∂Ph . (53)

Indeed, based on these two properties (52) and (53), we are able to rescale the discretiza-
tions (24)–(31) to be a symmetric system of linear equations.

4.3 The Difference of Local Stretching Factors of Two Successive Time Steps is of O(Δt)

From the moving equation of the elastic interface (42), we have

Xn+1
k − Xn+1

k−1

Δs
= Xn

k − Xn
k−1

Δs
+ Δt

Un+1
k − Un+1

k−1

Δs
(54)

and then
DsX

n+1
k−1/2 = DsXn

k−1/2 + Δt DsU
n+1
k−1/2. (55)

By the triangle inequality, we obtain∣∣∣|DsX
n+1
k−1/2| − |DsXn

k−1/2|
∣∣∣ ≤ |DsX

n+1
k−1/2 − DsXn

k−1/2| ≤ Δt |DsU
n+1
k−1/2|, (56)

which shows the difference of local stretching factors of two successive time steps is of
O(Δt) in the discrete case. Now letting Δs → 0, we obtain from (55) that

∂

∂s
Xn+1
k−1/2 = ∂

∂s
Xn
k−1/2 + Δt

∂

∂s
Un+1

k−1/2, (57)

and this leads to∣∣∣∣ ∂

∂s
Xn+1
k−1/2

∣∣∣∣
2

=
∣∣∣∣ ∂

∂s
Xn
k−1/2

∣∣∣∣
2

+ 2Δt
∂

∂s
Xn
k−1/2 · ∂

∂s
Un+1

k−1/2 + (Δt)2
∣∣∣∣ ∂

∂s
Un+1

k−1/2

∣∣∣∣
2

. (58)

On the other hand, by virtue of (26), we have

DsU
n+1
k−1/2 · DsXn

k−1/2 = 1

σ0Δt

(
σ n+1
k−1/2 − σ n

k−1/2

)
|DsXn

k−1/2|

= 1

Δt

( ∣∣∣∣ ∂

∂s
Xn+1
k−1/2

∣∣∣∣−
∣∣∣∣ ∂

∂s
Xn
k−1/2

∣∣∣∣
)
|DsXn

k−1/2|, (59)

which implies

Δt
∂

∂s
Xn
k−1/2 · ∂

∂s
Un+1

k−1/2 =
( ∣∣∣∣ ∂

∂s
Xn+1
k−1/2

∣∣∣∣−
∣∣∣∣ ∂

∂s
Xn
k−1/2

∣∣∣∣
) ∣∣∣∣ ∂

∂s
Xn
k−1/2

∣∣∣∣ . (60)

Finally, combining (58) with (60), we have

( ∣∣∣∣ ∂

∂s
Xn+1
k−1/2

∣∣∣∣−
∣∣∣∣ ∂

∂s
Xn
k−1/2

∣∣∣∣
)2 = (Δt)2

∣∣∣∣ ∂

∂s
Un+1

k−1/2

∣∣∣∣
2

. (61)

That is, for the spatial continuous case, the difference of local stretching factors is of
O(Δt), too.
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Fig. 4 Relative errors of the interface perimeter Lh and enclosed area Ah by the penalty IB method with
h = 1/64 of Example 2 for 0 ≤ t ≤ 20

To conclude this subsection, we summarize that though our formulation (11) allows the
interface to be nearly inextensible, from (56), the difference of local stretching factors for two
successive time steps is still keeping in O(Δt) and the factor |Dn

s Xk−1/2| may not be always
increasing as much as expected when time step n advances. The spatial continuous case has
the similar behavior, see (61). Numerical results reported in Table 2 and Fig. 4 in Sect. 5 will
support this observation. We remark that this result is very different from that of [11].

4.4 The IB Discretization Scheme (24)–(31) is Unconditionally Energy Stable

In this subsection,wewill prove that the IBdiscretization scheme (24)–(31) is unconditionally
stable in the sense that an appropriately defined energy functional associated with the discrete
system is decreasing and hence bounded in time [16]. To this goal, we define the spatial-
discretized total energy E(t) = KE (t) + PE (t) of the physical system at time t , where the
kinetic energy KE and the potential energy PE are respectively defined as follows:

KE (t) = ρ

2
〈u, u〉Ωh , (62)

PE (t) = σ0

2

〈∣∣∣∣ ∂

∂s
X(s, t)

∣∣∣∣−
∣∣∣∣ ∂

∂s
X(s, 0)

∣∣∣∣ ,
∣∣∣∣ ∂

∂s
X(s, t)

∣∣∣∣−
∣∣∣∣ ∂

∂s
X(s, 0)

∣∣∣∣
〉
Γh

+ k0
2

〈Y(α, t) − Ỹ(α, t),Y (α, t) − Ỹ(α, t)〉∂Ph , (63)

where ρ is the fluid density and we have already set, for simplicity, ρ = 1 in the governing
Eq. (1). We also assume for simplicity that u = 0 on ∂Ω for all t ≥ 0. Now we consider the
following kinetic energy estimation:

Kn+1
E − Kn

E = 1

2
〈un+1, un+1〉Ωh − 1

2
〈un, un〉Ωh

= 1

2
〈un+1 + un, un+1 − un〉Ωh

= 1

2

(
−〈un+1 − un, un+1 − un〉Ωh + 2〈un+1, un+1 − un〉Ωh

)

≤ 〈un+1, un+1 − un〉Ωh
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(by (24)) = Δt〈un+1, μΔhun+1 − ∇h p
n+1 + S1h(σ

n+1) + S2h(Fn+1)〉Ωh

(by (25)) = Δt (un+1
h )�(A − 1

ε
BB�)un+1

h + Δt〈un+1, S1h(σ
n+1) + S2h(Fn+1)〉Ωh .

(64)

The potential energy estimation is given by

Pn+1
E − Pn

E = 1

2σ0

〈
σ n+1, σ n+1〉

Γh
− 1

2σ0

〈
σ n, σ n 〉

Γh
+ 1

2k0

〈
Fn+1, Fn+1〉

∂Ph

− 1

2k0

〈
Fn, Fn 〉

∂Ph

= 1

2σ0

〈
σ n+1 + σ n, σ n+1 − σ n 〉

Γh
+ 1

2k0

〈
Fn+1 + Fn, Fn+1 − Fn 〉

∂Ph

= 1

2σ0

(
− 〈σ n+1 − σ n, σ n+1 − σ n 〉

Γh
+ 2

〈
σ n+1, σ n+1 − σ n 〉

Γh

)

+ 1

2k0

(
− 〈Fn+1 − Fn, Fn+1 − Fn 〉

∂Ph
+ 2

〈
Fn+1, Fn+1 − Fn 〉

∂Ph

)

≤
〈
σ n+1,

1

σ0

(
σ n+1 − σ n)〉

Γh

+
〈
Fn+1,

1

k0
(Fn+1 − Fn)

〉
∂Ph

.

According to (26)–(29), we obtain

Pn+1
E − Pn

E ≤
〈
σ n+1,

1

σ0

(
σ n+1 − σ n)〉

Γh

+
〈
Fn+1,

1

k0
(Fn+1 − Fn)

〉
∂Ph

= Δt
〈
σ n+1, T1h(un+1)

〉
Γh

− Δt
〈
Fn+1, T2h(un+1)

〉
∂Ph

= −Δt
〈
S1h(σ

n+1), un+1〉
Ωh

− Δt
〈
S2h(Fn+1), un+1〉

Ωh
. (65)

Now, combining (64) and (65)with the facts that A is negative-definite and BB� is positive
semi-definite, we have

En+1 − En =
(
Kn+1
E − Kn

E
)

+
(
Pn+1
E − Pn

E
)

= Δt
(
un+1
h

)� (
A − 1

ε
BB�

)
un+1
h < 0.

(66)
In other words, the IB discretization scheme (24)–(31) is unconditionally energy stable.

5 Numerical Experiments

In this section, we will perform a series of numerical tests to illustrate the superior perfor-
mance of the proposed penalty IB method. Throughout this section, except in Example 5,
the computational domain is chosen as Ω := [−1, 1] × [−1, 1].
Example 1 (Convergence test for the Stokes solver) We first study the convergence behav-
ior of the proposed penalty IB discretization scheme for the steady Stokes problem with
μ = 1. The numerical scheme for solving this problem is exactly same as that described in
Sect. 3, except it is steady state and without the elastic interface enclosing a suspended solid
particle. We assume that the exact solution (u, p) of the steady Stokes problem is given by
(cf. [11])

u(x, y) = sin x cos y, v(x, y) = − cos x sin y, p(x, y) = ex sin y.
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Table 1 Maximum errors of the numerical solution (uh , vh , ph) of Example 1

1/h ‖u − uh‖∞ Rate ‖v − vh‖∞ Rate ‖p − ph‖∞ Rate

Penalty IB method

16 1.5782E−04 − 1.5786E−04 − 9.6060E−04 −
32 4.4804E−05 1.82 4.4815E−05 1.82 4.2835E−04 1.17

64 1.2061E−05 1.89 1.2064E−05 1.89 2.0500E−04 1.06

128 3.1541E−06 1.94 3.1546E−06 1.89 1.0044E−04 1.03

256 8.1303E−07 1.94 8.1272E−07 1.96 5.1026E−05 0.98

Fractional step IB method [11]

16 1.5780E−04 − 1.5780E−04 − 9.6150E−04 −
32 4.4810E−05 1.82 4.4810E−05 1.82 4.2860E−04 1.17

64 1.2060E−05 1.89 1.2060E−05 1.89 2.0520E−04 1.06

128 3.1530E−06 1.94 3.1530E−06 1.94 1.0050E−04 1.03

256 8.1200E−07 1.96 8.1200E−07 1.96 4.9700E−05 1.02

Numerical results for different grid resolutions are reported in Table 1. The choice of the
penalty parameter ε = 10−7 follows the suggestion given in [5]. From the numerical results,
we may observe that the orders of convergence of velocity field is clearly of second-order
accuracy,while the pressure is of first-order accuracy. The cause of the first-order convergence
of pressure is probably due to that for retaining the symmetry of the resulting linear system
(34), we use a first-order extrapolation in the computation of the discrete gradient of pressure
∇h pn+1 in (24) at the boundary grid points. These results are almost identical with those
obtained by the fractional step IB method in [11]. From this observation, we believe that
weakening the incompressibility condition from (2) to (17) with a small penalty parameter
ε would not be the main source of numerical errors in the immersed boundary approach to
fluid-structure interaction problems.

Example 2 (Convergence test for the Stokes flowwith an inextensible interface enclosing
a suspended solid particle) We study the convergence behavior of the Stokes flow with an
inextensible interface enclosing a suspended solid particle. For the sake of comparison, we
take the kinematic viscosity μ = 1 and in this example, we drop the term ∂u/∂t from (16) as
that of [11]. We put the inextensible interface Γ and the boundary of particle P with initial
configurations X(s, 0) = (0.25 cos(s), 0.5 sin(s)) and Y(α, 0) = (0.1 cos(α), 0.1 sin(α))

for 0 ≤ s, α ≤ 2π under a shear flow (u, v) = (γ y, 0) in the fluid domain Ω , where γ is the
shear rate. In this example, we take γ = 1.

Consider the penalty parameters ε = 10−7 and σ0 = k0 = 107. We remark that based
on our numerical experience, the choices of the penalty parameters are not dependent on the
mesh size h and time step Δt . To examine the convergence rates, we let the mesh size h
decrease by half, i.e., h = 1/16, 1/32, 1/64, 1/128. We also set the Lagrangian mesh widths
to be Δs = Δα ≈ h/2 and the time step size Δt = h/4. Due to the exact solution is not
available in this example, we take the result obtained from the finest mesh h = 1/256 as our
reference solution and compute the errors between the reference and the numerical solutions,
although the resulting rate of convergence may tend to be overestimated than the real one.
Moreover, since the numerical solutions are not coincide with the same grid locations of the
reference solution, we use a linear interpolation to compute the numerical solutions at the
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Table 2 Relative errors of the interface perimeter Lh , maximum errors of the interface configuration Xh ,
and maximum errors of the numerical velocity (uh , vh) of Example 2 at time T

1/h |L0 − Lh |/L0 Rate ‖Xref − Xh‖∞ Rate ‖uref − uh‖∞ Rate ‖vref − vh‖∞ Rate
Penalty IB method (T = 0.0625)

16 4.7544e−04 − 4.4082e−03 − 6.6113e−02 − 1.3871e−01 −
32 2.1585e−04 1.14 1.1455e−03 1.94 2.6011e−02 1.35 4.0193e−02 1.79

64 1.0411e−04 1.05 4.1673e−04 1.46 1.0095e−02 1.37 1.5367e−02 1.39

128 5.1292e−05 1.02 1.2945e−04 1.69 3.1458e−03 1.68 4.9530e−03 1.63

Fractional step IB method [11] (T = 0.0625)

16 3.5110E−02 − 3.4130E−03 − 6.5520E−02 − 1.1330E−01 −
32 2.0890E−02 0.75 1.0790E−03 1.66 2.5920E−02 1.34 3.6600E−02 1.63

64 1.2200E−02 0.78 4.4380E−04 1.28 1.0530E−02 1.30 1.5540E−02 1.24

128 6.7490E−03 0.85 1.6220E−04 1.45 4.0470E−03 1.38 4.9680E−03 1.64

Penalty IB method (T = 1)

16 4.4363e−03 − 4.2099e−02 − 1.3619e−01 − 1.3717e−01 −
32 1.8934e−03 1.23 1.1020e−02 1.93 4.2443e−02 1.68 4.7357e−02 1.53

64 9.1114e−04 1.06 3.1892e−03 1.79 1.7763e−02 1.26 1.9007e−02 1.32

128 4.5011e−04 1.02 8.7944e−04 1.86 7.9879e−03 1.15 6.1128e−03 1.64

Fig. 5 (Example 3)
Tank-treading motion and
inclination angle θ

desired locations. Let L0 and A0 be the perimeter of the interface and the enclosed area at
the initial time, while at time t they are denoted by Lh and Ah , respectively.

First, we compute the numerical solutions up to time T = 0.0625. At the time, the
numerical results produced by the fractional step IB method are available in [11]. The results
of both methods are reported in Table 2, from which we find that the relative errors of the
interface perimeter by the penalty IB method are much smaller than those obtained by the
fractional step IB method in [11], and the maximum errors of the interface configuration
and the fluid velocity field are comparable with that in [11]. The penalty IB method still
can retain reasonable accuracy for a longer time; see the results of time T = 1 in Table 2.
Moreover, from Fig. 4 for h = 1/64 and T = 20, we notice that the relative errors of the
interface perimeter and enclosed area by the proposed penalty IB method take a rather long
time increasing to 10−2. This supports the theoretical finding (56).

Example 3 (Tank-treading to tumbling motion of a compound interface under shear
flow) In this example, we study the transient deformation from tank-treading to tumbling
of an inextensible interface enclosing a suspended solid particle in the simple shear flow
with shear rate γ = 1 and μ = 1. The initial configuration of the interface is given by
X(s, 0) = (0.25 cos(s), 0.5 sin(s)) for 0 ≤ s ≤ 2π . The penalty parameters in the penalty
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Fig. 6 (Example 3) The motion of a compound interface in a shear flow with initial configurations X(s, 0) =
(0.25 cos(s), 0.5 sin(s)), 0 ≤ s ≤ 2π , and Y(α, 0) = (0.1 cos(α), 0.1 sin(α)), 0 ≤ α ≤ 2π , and filling
fraction φ = 0.08

IB method are taken as ε = 10−7 and σ0 = k0 = 107. The mesh sizes are chosen as
h = 1/64,Δs = Δα ≈ h/2 and the time step Δt = h/4.

We first recall the filling fraction of the solid particle, which is given by φ := Ap/A0,
where Ap and A0 are respectively the area of solid particle and the enclosed area of interface
at the initial time. One of the interesting motions of a compound interface under shear flow
is the so-called tank-treading [8]; see Fig. 5. The tank-treading motion of interface can be
characterized by both the inclination angle θ and the tank-treading frequency f of revolution.
The former is the angle between the long axis of interface and the flow direction as that shown
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Fig. 7 (Example 3) The inclination angle θ of a compound interface in a shear flowwith initial configurations
X(s, 0) = (0.25 cos(s), 0.5 sin(s)), 0 ≤ s ≤ 2π , and Y(α, 0) = (0.1 cos(α), 0.1 sin(α)), 0 ≤ α ≤ 2π , and
filling fraction φ = 0.08 for 0 ≤ t ≤ 20 (left) and 13 ≤ t ≤ 15 (right)

in Fig. 5 and the latter is defined as f = 2π/
∫
Γ

(u · τ )−1d�. As it has been pointed out in
previous literature [6,8,10,11,23,26] that the inclination angle has strongly dependent on the
reduced area RA, which is defined as RA = 4π A0/L2

0, but independent on the dimensionless
shear rate γ .

We now examine the elastic interface enclosing different solid particles. At first, we
consider the case of circular solid particle centered at the origin. Figures 6 and 8 show the
time evolution of the motion for 0 ≤ t ≤ 20 with filling fractions φ = 0.08 and φ = 0.42,
respectively. Clearly, the former shows the tank-treading motion, while the latter displays
the tumbling. This is consistent with the observation in [24] that the compound interfacial
dynamics will have the transition from tank-treading to tumbling if the inclusion effect is
strong enough. In other words, if the filling fraction φ of the circular solid particle is above
some critical threshold, then the interface will start to tumble rather than being stationary.
In [11], Lai et al. give a possible explanation for this point. By including a solid particle,
the energy dissipation enhances, so the compound interface behaves like an inclusion-free
interface that encapsulates a more viscous fluid. In some measure, the larger the inclusion
is, the higher the viscosity inside the interface will be. The large difference of viscosities
of the fluids inside and outside of the interface could eventually cause the transition of
motion. Furthermore, we find that a different shape of the enclosed solid particle, even with
the same filling fraction, may also result in a different viscosity inside the interface. For
example, in Fig. 9, we consider the interface enclosing a peanut-like solid particle Y(α, 0) =
(0.232 sin(α), 0.38 cos(α)(0.0414+0.4004 sin2(α)−0.2246 sin4(α))) for 0 ≤ α ≤ 2π with
the same filling fraction φ = 0.08 as that investigated in Fig. 6. However, in this case, the
tumbling motion occurs. It is also interesting to point out that although we may observe the
tank-treading motion in Fig. 6, with a close inspection, we find that the inclination angle θ of
the compound interface shows a tiny trembling as that depicted in Fig. 7. This phenomenon
can be observed in the inclusion-free case as well.

In this example, we also find that in the tank-treading regime, as the filling fraction
increases, both the inclination angle and the tank-treading frequencywill decrease.Moreover,
the compound interfacewith larger reduced area has larger inclination angle and tank-treading
frequency when the filling fraction is small. These observations are depicted in Fig. 10.
Finally, we investigate the critical value of filling fraction versus the reduced area for the
tank-treading to tumbling transition. In Fig. 11, above the critical value, the interface motion
will transit from tank-treading to tumbling. One can easily see that as the reduced area
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Fig. 8 (Example 3) The motion of a compound interface in a shear flow with initial configurations X(s, 0) =
(0.25 cos(s), 0.5 sin(s)), 0 ≤ s ≤ 2π , and Y(α, 0) = (0.23 cos(α), 0.23 sin(α)), 0 ≤ α ≤ 2π , and filling
fraction φ = 0.42

increases, the critical filling fraction increases too. These results are consistent qualitatively
with those reported in [11] and [24].

Example 4 (Tank-treading to tumbling motion of a compound interface under shear
flow by varying the kinematic viscosity μ) In this example, we investigate the dynamical
transition from tank-treading to tumbling of an inextensible interface enclosing a suspended
solid particle in the simple shear flowwith shear rate γ = 1 by varying the kinematic viscosity
μ. The initial configuration of the interface is given by X(s, 0) = (0.25 cos(s), 0.5 sin(s))
for 0 ≤ s ≤ 2π enclosing a solid particle whose boundary is parameterized by Y(α, 0) =
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Fig. 9 (Example 3) The motion of an interface enclosing a peanut-like solid particle in a shear flow with
initial configurations X(s, 0) = (0.25 cos(s), 0.5 sin(s)), 0 ≤ s ≤ 2π , and Y(α, 0) = (0.232 sin(α),

0.38 cos(α)(0.0414 + 0.4004 sin2(α) − 0.2246 sin4(α))), 0 ≤ α ≤ 2π , and filling fraction φ = 0.08

(0.1 cos(α), 0.1 sin(α)) for 0 ≤ α ≤ 2π . The filling fraction is φ = 0.08. Again, we take the
penalty parameters in the penalty IB method as ε = 10−7 and σ0 = k0 = 107, and the mesh
sizes are chosen as h = 1/64,Δs = Δα ≈ h/2 and the time step Δt = h/4.

For the kinematic viscosity μ = 1, the tank-treading motion of the compound interface
has been clearly observed in Fig. 6. The dynamical behavior of μ = 0.1 is very similar to the
case of μ = 1. If we decrease μ from 0.01 to 0.001, however, we can find that the transition
from tank-treading to tumbling motion occurs; see Figs. 12 and 13. Obviously, the compound
interface is easier to tumble when the kinematic viscosity μ is getting smaller.
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Fig. 10 (Example 3) The inclination angle θ (left) and tank-treading frequency f (right) versus filling fraction
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Fig. 11 (Example 3) The critical
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Example 5 (Motion of multiple compound vesicles in a shear flow) In this example, we
demonstrate that the proposed penalty IB method can be applied to the problems of multiple
vesicles as well. We explore the motion of a group of three identical compound vesicles
aligned initially on the x-axis (cf. Fig. 14) under a shear flow, in which each vesicle is
composed of an inextensible interface enclosing a solid particle. The initial configurations
of the inextensible interfaces and boundaries of particles are given by

X1(s, 0) = (0.2 cos(s) − 0.45, 0.4 sin(s)) and Y1(α, 0)
= (0.08 cos(α) − 0.45, 0.08 sin(α)),

X2(s, 0) = (0.2 cos(s), 0.4 sin(s)) and Y2(α, 0) = (0.08 cos(α), 0.08 sin(α)),

X3(s, 0) = (0.2 cos(s) + 0.45, 0.4 sin(s)) and Y3(α, 0)
= (0.08 cos(α) + 0.45, 0.08 sin(α))

(67)

for 0 ≤ s, α ≤ 2π . Thus, at initial time, one can calculate that the spacing between
each pair of interfaces is 1/20 and and the filling fraction φ = 0.08. We examine the
motion of these three compound vesicles under the shear flow (u, v) = γ ((1/π) sin πy, 0)
in the fluid domain [−2, 2] × [−1, 1], where γ is the shear rate. In the simulation, we
take γ = 6.25, the kinematic viscosity μ = 1, the penalty parameters ε = 10−7 and
σ0 = k0 = 107, and the mesh sizes are chosen as h = 1/64,Δs = Δα ≈ h/2 and the
time step Δt = h/4. The numerical results are depicted in Fig. 14, from which we can
observe that the group of compound vesicles turns to slant-aligned about time t = 2.5
due to the shear flow and then they start to separate. Once they separate, the shear flow
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Fig. 12 (Example 4,μ = 0.01) Themotion of a compound interface in a shear flowwith initial configurations
X(s, 0) = (0.25 cos(s), 0.5 sin(s)), 0 ≤ s ≤ 2π , and Y(α, 0) = (0.1 cos(α), 0.1 sin(α)), 0 ≤ α ≤ 2π , and
filling fraction φ = 0.08

will drive the left vesicle toward the lower left corner and the right vesicle to the upper
right corner, and the middle one still stands at the origin and displays a tank-treading
motion.

We remark that in this example, the computational cost of the proposed penalty method
is mainly devoted to solving the the linear system of the velocity approximation at each time
step, since the approximations of all other variables can be directly obtained in terms of the
approximation of velocity, as that described in Sect. 3.
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Fig. 13 (Example 4,μ = 0.001)Themotion of a compound interface in a shear flowwith initial configurations
X(s, 0) = (0.25 cos(s), 0.5 sin(s)), 0 ≤ s ≤ 2π , and Y(α, 0) = (0.1 cos(α), 0.1 sin(α)), 0 ≤ α ≤ 2π , and
filling fraction φ = 0.08

6 Concluding Remarks

In this paper, we have proposed a novel penalty IB formulation for simulating the transient
Stokes flow with an inextensible interface enclosing a suspended solid particle. The main
idea of the proposed approach was based on the penalty techniques by modifying the consti-
tutive equation of Stokes flow to weaken the incompressibility condition, relating the surface
divergence to the elastic tension σ to make the interface nearly inextensible, and connect-
ing the particle surface-velocity with the particle surface force F to regularize the particle’s
rigid motion. The advantage of these regularized governing equations is that when they are
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Fig. 14 (Example 5) The motion of three compound vesicles in a shear flow (u, v) = 6.25((1/π) sin πy, 0)
with the initial configurations given in (67)
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discretized by the standard centered difference scheme on a staggered grid, the resulting
linear system can easily be reduced by eliminating the unknowns ph, σh and Fh directly.
Thus, we just need to solve a smaller linear system of the velocity approximation uh . This
advantage can be preserved and even enhancedwhen such approach is applied to the transient
Stokes flow with multiple compound vesicles. Moreover, we have proved that this smaller
linear system is symmetric and negative-definite, which enables us to use efficient linear
solvers.

One of the advantageous features of the proposed penalty IB method is that the dis-
cretization scheme is unconditionally stable in the sense that an appropriately defined energy
functional associated with the discrete system is decreasing and hence bounded in time.
Another important feature of the approach is that the difference of local stretching factors
for two successive time steps is of first order in time step Δt , and the length of the elastic
interface may not be always increasing as much as expected when time step advances. We
have performed a number of numerical examples to test the accuracy and stability of the
IB discretization scheme. The tank-treading and tumbling motions for inextensible interface
with a suspended solid particle for different shapes and filling fractions in the simple shear
flow have been extensively studied. The simulation of the motion of multiple compound
vesicles has been performed as well. Numerical results illustrate the superior performance
of the proposed penalty IB method.

Finally, we remark that the present penalty IB approach can be easily extended to Navier–
Stokes flow by treating the nonlinear advection terms explicitly in the time integration.
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