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Abstract

Consider an inextensible closed filament immersed in a 2D Stokes fluid. Given a force
density F defined on this filament, we consider the problem of determining the
tension σ on this filament that ensures the filament is inextensible. This is a
subproblem of dynamic inextensible vesicle and membrane problems, which appear in
engineering and biological applications. We study the well-posedness and regularity
properties of this problem in Hölder spaces. We find that the tension determination
problem admits a unique solution if and only if the closed filament is not a circle.
Furthermore, we show that the tension σ gains one derivative with respect to the
imposed line force density F and show that the tangential and normal components of
F affect the regularity of σ in different ways. We also study the near singularity of the
tension determination problem as the interface approaches a circle and verify our
analytical results against numerical experiment.

Keywords: Stokes flow, Inextensible interface, Interfacial tension, Boundary integral
equation, Hölder regularity
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1 Introduction
1.1 Motivation andmodel formulation

Fluid–structure interaction problems in which thin elastic structures interact with the
surrounding fluid findmany applications throughout the natural sciences and engineering
[8,12,13,25,32,39]. One of the simplest of such problems is the 2D Peskin problem,
in which a 1D closed elastic structure is immersed in a 2D Stokes fluid. There have
been extensive computational studies of this and related problems [3,17,26,27,35]. More
recently, the 2D Peskin problem has been studied analytically in [4,9,23,31,36]. In an
important variant of this problem, the elastic structure is assumed to be inextensible,
motivated in particular by the properties of lipid bilayer membranes. This and related
problems have been studied computationally by many authors as models for red blood
cells and artificial membrane vesicles [24,25,30,34,38,39]. A distinguishing feature of
such inextensible interface problems is that the unknown tension σ must be found as part
of the problem. The tension σ plays a role analogous to the pressure in incompressible
flow problems. In this paper, we consider the static problem of determining the tension σ
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of a 1D inextensible interface immersed in a 2D Stokes fluid given a prescribed interfacial
force density F .
Before we state our problem, let us first consider the following dynamic problem. Let

�t denote a sufficiently smooth simple curve that depends on time t which partitions R2

into the interior region �1 and its complement �2 = R
2\{�1 ∪ �t}. The velocity field u

and p satisfy the Stokes equations in R
2\�t

−�u + ∇p = 0 in R
2 \ �t , (1)

∇ · u = 0 in R
2 \ �t . (2)

We have assumed that the viscosity of the interior and exterior fluids are the same and
normalized to 1. We let �t be inextensible. Parametrize �t as X(s, t) where s is both an
arclength and Lagrangian parametrization of the curve. For definiteness, we assume that
the parametrization is in the counter-clockwise direction along the curve �t . Since s is the
arclength parameter, we have

|τ| = 1, τ = ∂sX , (3)

where ∂s is the partial derivative with respect to s and τ is the unit tangent vector on
�t . We assume, without loss of generality, that the length of the string is 2π so that
s ∈ S

1 = R/(2πZ). We impose the following interface conditions on �t to the Stokes
equations (1) and (2)

�u� = 0 on �t , (4)

�
(
∇u + (∇u)T − pI

)
n� = F [X ] + ∂s(στ), on �t , (5)

where I is the 2×2 identity matrix and n is the unit normal vector on�t pointing outward
(from �1 to �2)

n = ∂sX⊥ = Rπ/2τ = Rπ/2∂sX , Rπ/2 =
(

0 1
−1 0

)
.

In the above, �·� denotes the jump in the enclosed value across �t

�f � := f |�1 − f |�2 .

Thus, Eq. (4) enforces continuity of the velocity field and (5) specifies the jump in stress
across the interface �t . Note that the interfacial force given in the right hand side of
(5) consists of two terms. The first term F is a mechanical force determined by the
configuration of X . A typical choice is to let the string generate a bending force

F [X ] = −∂4s X . (6)

The second term in the right hand side of (5) is a tension force that ensures where the
tension σ (s, t) is to be determined as part of the problem to enforce the inextensibility
constraint. The string position moves with the local fluid velocity

∂tX (s, t) = u(X (s, t), t), (7)

where ∂t is the partial derivative with respect to t, so the inextensibility constraint can be
written as

∂t |∂sX |2 = 2∂sX · ∂t∂sX = 2τ · ∂su = 0. (8)



P.-C. Kuo et al. Res Math Sci           (2023) 10:46 Page 3 of 55    46 

Fig. 1 Schematic diagram for the tension determination problem

The above condition is equivalent to (3) assuming that the initial parametrization is with
respect to arclength. To specify the problem completely, we finally impose the condition
that u → 0 and that p be bounded as |x| → ∞.
The above dynamic problem has been considered, from modeling and computational

points of view, by different authors primarily as a 2D mechanical model for red blood
cells in flow [5,11,29,32]. We also point out that the problem of finding the steady states
of the above dynamic problem, taking F as in (6), reduces to the problem of finding the
minimizers of the Willmore energy under a perimeter and interior area constraint. This
constrained minimization problem and its 3D counterpart have been studied by many
authors [6,33,38].
In this paper, we consider the following static problem of determining the tension σ (s)

given a force density F (s) defined on the interface (Fig. 1). This may be considered as a
subproblem of the above dynamic problem. Let � be a fixed simple curve, parameterized
by arclength as X (s), s ∈ S

1 = R/2πZ as above. The Stokes equations are satisfied in
R
2\� as in (1)–(2)

−�u + ∇p = 0 in R
2 \ �, (9)

∇ · u = 0 in R
2 \ �. (10)

Given an interfacial force density F (s), we impose the following interfacial conditions as
in (4)–(5)

�u� = 0 on �, (11)

�
(
∇u + (∇u)T − pI

)
n� = F + ∂s(στ), on �. (12)

We then have the inextensibility condition as in (8), which allows for the determination
of σ

∂s (u(X (s))) · τ = 0 on �. (13)

We again impose the condition that u → 0 and that p be bounded as |x| → ∞. In order
for u → 0 as |x| → ∞, we must impose the condition∫

�

Fds = 0.

Our problem is thus to solve for the unknown tension σ , together with u and p, given a
force density F that satisfies the mean zero condition given above.
In addition to its intrinsic interest, an understanding of the above static problem should

pave the way toward an analysis of the dynamic problem. Furthermore, an analysis of the
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above problem should give insight into the numerical algorithms for this problem. Indeed,
all numerical algorithms to date for dynamic inextensible interface problems solves for σ

at each time step [18,25,39].
The paper that is directly relevant to our paper is [18], where the authors provide an

analysis of the above tension determination problem motivated by the need to develop
numerical algorithms for the Navier–Stokes version of the dynamic problem. There, the
authors consider the problem in which a term αu,α > 0 is added to (9), and� is bounded
domain. The authors define a notion of weak solution by formulating the problem as a
saddle point problem, and prove an inf-sup inequality to establish existence and unique-
ness in an L2 based Sobolev space. We shall comment on the relationship between this
and our results where appropriate.

1.2 Well-posedness

Let Ck (A), k = 0, 1, 2, . . . be the space of functions with continuous k-derivatives on the
set A, where A = S

1,R2, or R2\�. We shall mostly work with Ck (S1). Define the norms
on Ck (

S
1) as

∥∥f ∥∥Ck =
k∑

i=0

[
f
]
Ck ,

[
f
]
Ck = sup

s∈S1

∣∣∣∂ks f
∣∣∣ .

Next, a function f in C0 (
S
1) is in the Hölder space C0,γ (

S
1), 0 < γ < 1 if f satisfies

sup
s,s′∈S1

∣∣f (s) − f (s′)
∣∣

|s − s′|γ < ∞.

For the definition of the norm of C0,γ (
S
1), we may restrict the range of s and s′. For

example, set the range as
∣∣s − s′

∣∣ < 1. Then, define the norm as

∥∥f ∥∥C0,γ := ∥∥f ∥∥C0 + [f ]C0,γ ,
[
f
]
C0,γ = sup

|s−s′|<1

∣∣f (s) − f (s′)
∣∣

|s − s′|γ

since

sup
s,s′∈S1

∣∣f (s) − f (s′)
∣∣

|s − s′|γ ≤ 2
∥∥f ∥∥C0 + [f ]C0,γ .

Next, we define the Hölder space Ck,γ (
S
1). The function f is in Ck,γ (

S
1) if f ∈ Ck (

S
1)

and ∂ks f is in C0,γ (
S
1), where the norm is defined as

∥∥f ∥∥Ck,γ := ∥∥f ∥∥Ck +
[
∂ks f
]
C0,γ

.

We will frequently write f = f (s) and f ′ = f (s′) and use the notation

�f := f (s) − f (s′), 
hf = f (s + h) − f (s).

To estimate expressions which feature denominators of the form |�X |, we will need the
following quantity

|X |∗ := inf
s �=s′

∣∣∣∣
X (s) − X (s′)

s − s′

∣∣∣∣ .
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This condition allows us to estimate �X from below

|�X | ≥ |X |∗
∣∣s − s′

∣∣ .

It is easily seen that X (s) is a simple curve if and only if |X |∗ > 0. Indeed, |X |∗ = 0 if
and only if |∂sX | = 0 at some s or if there are points s �= s′ such that X(s) �= X(s′).
Given our arclength parametrization, |∂sX | = 1 �= 0; thus, |X |∗ > 0 is equivalent to the
condition that X has no self-intersections. We shall also make use of the Lebesgue spaces
Lp(S1), 1 ≤ p ≤ ∞.
Before we state our result, we give a precise definition of what we mean by a solution to

the tension determination problem. Let the stress tensor be


(x) = ∇u(x) + (∇u(x))T − p(x)I, (14)

and define limits

F�1 (s) = lim
t→0+ 
(X (s) − tn(s))n(s), F�2 (s) = lim

t→0+ 
(X(s) + tn(s))n(s), (15)

where n(s) = X (s)⊥ is the outward normal on �.

Definition 1.1 (Solution of Tension Determination Problem) Assume F ∈ C0(S1), X ∈
C2(S1) and |X |∗ > 0. Let u, p, σ belong to the following function spaces

u ∈ C2(R2\�) ∩ C0(R2), p ∈ C1(R2\�) ∩ L1loc(R
2), σ ∈ C1(S1), (16)

where L1loc(R
2) denotes the space of locally integrable functions in R

2. Suppose u and p
satisfy the following conditions in the far field

lim
R→∞ sup

|x|=R

∣∣u(x)∣∣ = 0, lim
R→∞ sup

|x|≥R

∣∣p(x)∣∣ < ∞. (17)

We say that u, p, σ are a solution to the tension determination problem if the following
conditions hold.

1. u and p satisfy the Stokes equations (9) and (10) in R
2\�.

2. u, p, σ satisfy the condition (12) in the following sense. The limits in (15) exist, this
convergence is uniform, and F�1 − F�2 = F + ∂s(στ).

3. The inextensibility condition (13) is satisfied in the following weak sense. For any
w ∈ C1(S1), we have

∫

S1
u(X (s)) · ∂s(wτ)ds = 0.

The above represents the weakest possible condition on F ,X and σ if we are to make
pointwise sense of the interface condition (12). It turns out that, when X is merelyC2(S1),
the inextensibility condition (13) cannot be satisfied pointwise. We hence impose this
condition in a weak sense.
Before we state our well-posedness result, let us consider the case when X is a circle.

Given F , assume u0, p0, σ0 are a solution satisfying (9)–(12). Let

χ�1 (x) =
⎧⎨
⎩
1 if x ∈ �1,

0 otherwise.
(18)
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We claim that u = u0, p = p0 + cχ�1 , σ = σ0 + c for any constant c is also a solution.
The functions u, p clearly satisfy (9)–(11), so we only need to check (12).

�
(
∇u + (∇u)T − pI

)
n� = �

(
∇u0 + (∇u0)T − p0I

)
n� − c�χ�1n�

=F + ∂s(σ0τ) − cn = F + ∂s(στ).
The above argument is essentially just the Laplace-Young law applied to a circle. We thus
see that when X is a circle, the tension σ is not uniquely determined. In fact, this turns
out to be the only obstacle to uniqueness.

Theorem 1.2 Suppose X ∈ C2(S1) with |X |∗ > 0, and

F · ∂sX ∈ C0,γ (S1), γ ∈ (0, 1), F · ∂sX⊥ ∈ C0(S1),
∫

S1
Fds = 0.

Then, there exists a solution u, p, σ to the tension determination problem in the sense of
Definition 1.1 with the following properties.

1. If X is not a circle, the general solution can be written as u, σ , p+ c where c ∈ R is an
arbitrary constant.

2. If X is a circle, the general solution can be written as u, σ + c1, p + c1χ�1 + c2 where
χ�1 is as in (18) and c1, c2 ∈ R are arbitrary constants.

Furthermore, σ ∈ C1,γ (S1) and ∂su(X(s)) ∈ Lp(S1), 1 < p < ∞, so that (13) is satisfied for
almost every s ∈ S

1. If, in additionF ∈ C0,γ (S1)andX ∈ C2,γ (S1), then ∂su(X(s)) ∈ Cγ (S1)
and (13) is satisfied pointwise.

The additional smoothness requirements on F ,X needed for (13) to be satisfied point-
wise are explained in Remark 1.7.

Remark 1.3 Let the force F in (6) be the bending force F = −∂4s X . Let us also assume
that X ∈ C4 (

S
1) so that F is defined pointwise. Obviously,

∫
S1 Fds = 0 and F · ∂sX⊥ =

−∂4s X · ∂sX⊥ ∈ C0(S1). In addition,

F · ∂sX = −∂4s X · ∂sX = 3∂3s X · ∂2s X ∈ C1(S1).

Therefore, F = −∂4s X satisfies Theorem 1.2.

We thus see that the tension determination problem has a unique solution σ if and only
if X is not a circle. This suggests that as � approaches a circle, the problem of uniquely
determining the tension σ becomes increasingly singular.We shall further investigate this
solution behavior in Sect. 3.

Remark 1.4 The results of [18] imply that if F ∈ H−1/2(�), then there is a suitable weak
solution σ ∈ L2(�). Theorem 1.2 shows that σ is one derivative smoother than F in the
Hölder scale. It is thus likely that even in the L2 Sobolev scale, σ gains onemore derivative
compared to F .
We also note that [18] claims that the tension determination problem always has a

unique (weak) solution, regardless of whether� is a circle. This seems to be due to the fact
that [18] considers the weak solution corresponding to the following problem in which
(12) is replaced by the following condition

�
(
∇u + (∇u)T − pI

)
n� = F + ∂s(στ) + c∗κn
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for some constant c∗ andwhere κ is the curvature, and the followingmean-zero constraint
is imposed on σ

∫

�

σds = 0.

It is straightforward to see from our results that σ , in the sense above of [18], is always
uniquely determined regardless of whether � is a circle.

To prove the above well-posedness result, we first rewrite the problem in terms of a
boundary integral equation for the unknown tension σ . Let F̂ = F + ∂s(στ) denote the
right hand side of (12). It is well-known that the velocity field u and pressure p can be
expressed as

u(x) = Ŝ[F̂ ](x) :=
∫

S1
G(x − X(s′))F̂ (s′)ds′, (19)

p(x) = P[F̂ ](x) :=
∫

S1
(x − X(s′))F̂ (s′)ds′, (20)

where

G(r) = 1
4π

(GL(r)I + GT (r)) , GL(r) = − log |r| , GT (r) = r ⊗ r
|r|2 ,

(r) = 1
2π

rT
|r|2 .

Moreover, the stress tensor 
 will be


ij (x) = T [F̂ ](x) :=
∫

S1
�ijk (x − X (s′))̂Fk (s′)ds′, (21)

where

�ijk (r) = − 1
π

rirjrk
|r|4 .

The relevant properties of the above potentials will be discussed in Sect. 2.1. Take the limit
as x → X (s) in (19) to obtain

u(X (s)) = Ŝ[F̂ ](X (s)) = S[F̂ ](s) =
∫

S1
G(X(s) − X(s′))F̂ (s′)ds′. (22)

Now, we can rewrite Eq. (13) as

∂sX · ∂sS[∂s(σ∂sX )] = −∂sX · ∂sS[F ].

Let us define operator L andQ as follows:

Lσ = Q[∂s(σ∂sX )], Q[F ] = ∂sX · ∂sS[F ]. (23)

Note that L depends on X . Thus, Eq. (13) becomes

Lσ = −Q[F ]. (24)
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To study the solvability of Eq. (24), we need to understand the mapping properties of L
and Q under certain assumptions on the regularity of �. Let us write the operator Q as
follows:

Q[g] = ∂sX · ∂sS[g] = ∂sX · ∂s

∫

S1
G(X − X ′)g ′ds′

= 1
4π
(
∂sX · F̃C [g] + ∂sX · FT [g]

)
,

F̃C [g] = ∂s

∫

S1
GL(X − X ′)g ′ds′, FT [g] = ∂s

∫

S1
GT (X − X ′)g ′ds′.

(25)

It is useful to further decompose the operator F̃C . When
∣∣s − s′

∣∣� 1, we have

−∂sGL(X − X ′) = �X · ∂sX
|�X |2 ≈ 1

s − s′
≈ 1

2
cot
(
s − s′

2

)
.

Note that 1
2π cot

(
s−s′
2

)
is the kernel of the Hilbert transformH on S

1, i.e.,

(Hf )(s) := 1
2π

p.v.
∫

S1
cot
(
s − s′

2

)
f
(
s′
)
ds′.

We thus rewrite F̃C as
1
4π

F̃C [g] = −1
4
Hg + 1

4π
FC [g],

FC [g] =
∫

S1
KC (s, s′)g′ds′, KC (s, s′) = 1

2
cot
(
s − s′

2

)
− �X · ∂sX

|�X |2 ,
(26)

so we obtain

Q[F ] = −1
4
∂sX · HF + 1

4π
∂sX · (FC [F ] + FT [F ]) .

The extraction of the principal part (in the above, involving the Hilbert transform) is
similar in spirit to the “small scale decomposition” used in the analysis and numerical
analysis of different problems in interfacial problems in fluid mechanics [1,10]. To state
our main result for the operatorQ, we split F into tangential and normal components to
X

F = f1τ + f2n = f1∂sX + f2∂sX⊥, (27)

Proposition 1.5 Let γ ∈ (0, 1) and X ∈ C2(S1) with |X |∗ > 0. Let F be in the form of
(27), and suppose that f1 ∈ C0,γ (S1) and f2 ∈ C0(S1). Then,

Q[F ] = −1
4
Hf1 + M1(f1) + M2(f2),

whereM1 andM2 are bounded linear operators fromC0(S1) to C0,α(S1) for anyα ∈ (0, 1).
In particular, if F ∈ C0,γ (S1), thenQ(F ) ∈ C0,γ (S1).

To establish the above result, we first show in Proposition 2.6 that FC and FT are
operators that map functions in C0(S1) to C0,α(S1),α ∈ (0, 1). This follows from the study
of the properties of the associated kernels, and estimates similar to those used in [23].
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Wethen turn to theHilbert transform term.Ourmain technical result is in the following.
Suppose v ∈ C1(S1) and f ∈ C0(S1). In Proposition 2.8, we shall establish the following
commutator estimate

H(f v) = (Hf )v + R(f, v),

where R ∈ C0,α(S1). This immediately yields

∂sX · (H(f1∂sX + f2∂sX⊥)) = Hf1 + R.

where R ∈ C0,α(S1). This, together with the estimates on FC and FT discussed above,
yields Proposition 1.5.
The mapping properties of L are obtained as a direct consequence of the mapping

properties ofQ established in Proposition 1.5. Indeed, note that

∂s (σ∂sX ) = ∂sσ∂sX + σ∂2s X = ∂sσ∂sX + σ̃ ∂sX⊥, σ̃ = σ∂2s X · ∂sX⊥.

Applying Proposition 1.5 with f1 = ∂sσ and f2 = σ̃ , we obtain the following result.

Proposition 1.6 Given X ∈ C2(S1) with |X |∗ > 0, then, for any γ ∈ (0, 1), we have
L : C1,γ (S1) �→ C0,γ (S1). In particular,

L(·) = −1
4
H(∂s(·)) + M(·),

whereM is a bounded operator from C1(S1) to C0,α(S1) for any α ∈ (0, 1).

In this proposition, since σ ∈ C1,γ (S1) ↪→ C1(S1), it is obvious that M is a bounded
operator from C1,γ (S1) to C0,α(S1) for any α ∈ (0, 1).

Remark 1.7 ∂su(X (s)) can be split into

∂su(X (s)) = H
(
σ∂2s X + F)+ R (σ ,X ) ,

where R (σ ,X ) is a bounded operator from C1,α (
S
1) × C2 (

S
1) to C1,α (

S
1) for any 0 <

α < 1. Note that, the Hilbert transform H is a bounded operator in Lp(S), 1 < p < ∞
and Cα(S), 0 < α < 1 but not in C0(S). Therefore, if X is only in C2(S1) and F is only in
C0 (

S
1),H (σ∂2s X + F) (s) may not be defined pointwise. IfX ∈ C2,α(S1) and F ∈ Cα

(
S
1)

for some α,H
(
σ∂2s X + F) ∈ Cα

(
S
1).

Finally, to solve (24), we consider the following equation
(
I + 1

4
H∂s

)−1
Lσ = −

(
I + 1

4
H∂s

)−1
Q[F ].

Thanks to Proposition 1.6, the operator acting on σ on the left hand side can bewritten as
I +K, whereK is a compact operator fromC1,γ (S1) to itself, whose details are provided in
Sect. 2.3.Wemay use Fredholm theory to establish the well-posedness, which implies that
L is invertible if and only if its nullspace is trivial. We demonstrate thatL has a non-trivial
nullspace if and only if � is a circle. If � is a circle, the nullspace is given by the constant
functions, i.e.,

L1 = 0 if � is a circle. (28)
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1.3 Behavior ofL near the unit circle

As we saw above, the operator L has a non-trivial null-space if and only if � is a circle.
Thus, as � approaches a circle, we expect L to become increasingly singular. In Sect. 3,
we study the behavior of L when � is close to a circle.
For purposes of studying L near a circle, it is convenient to change the parametrization

of X from the arclength s to polar coordinate θ . Condition (12) now becomes

�
(
∇u + (∇u)T − pI

)
n� |∂θX | = F (θ ) + ∂θ (σ (θ )τ(θ )) on �,

where F (θ ) is the force density with respect to the θ variable. The tension determination
problem in the θ variable can be reduced to an integral equation in exactly the same way
as in the case of arclength parametrization. In fact, the problem we obtain turns out to be
identical to (24) except the arclength variable s is replaced by the polar coordinate θ

Lθσ = −Qθ [F ], Lσ = Qθ [∂θ (στ)], Qθ [F ] = τ · ∂θS[F ],

Sθ [g] =
∫

S1
G(X (θ ) − X (θ ′))g(θ ′)dθ ′.

In Sect. 3.1, we obtain a precise relationship between L (in the arclength variable) and Lθ

defined above. Like L, it is shown that Lθ maps C1,γ (S1) to Cγ (S1). Furthermore, Lθ is
invertible if and only if L is invertible. We may thus study the invertibility of Lθ when �

is near a circle. Define

Xε = X c + εY = (1 + εg)X c, X c =
(
cos θ

sin θ

)
, (29)

where g is a C2 function. When ε = 0, Xε = X0 is the unit circle. Let Lε be the operator
Lθ when X = Xε , then

Lεσ = τε · ∂θSε [∂θ (στε)]

= τε · ∂θ

∫

S1
G(�Xε)∂θ ′ (σ (θ ′)τε(θ ′))dθ ′, τε = ∂θXε

|∂θXε| .
Here and henceforth,�f denotes the difference f (θ )− f (θ ′) when applied to a function of
θ . When ε = 0, the arclength and polar coordinates coincide, and thus L0 has a nullspace
of constant functions (see (28)). Our goal is to understand the behavior of this null space.
We consider the following eigenvalue problem

Lεσε = λεσε ,
∫

S1
σ 2

ε dθ = 2π , where λ0 = 0, σ0 = 1. (30)

For small values of ε, λε is nonzero but small, and is expected to quantify the near-
singularity of Lε . We will prove the following result.

Theorem 1.8 Suppose g in (29) is in C2(S1), and suppose it has the following Fourier
expansion

g(θ ) = g0 +
∑
n≥1

(gn1 cos (nθ ) + gn2 sin (nθ )) . (31)

There is an ε∗ > 0 so that if |ε| ≤ ε∗, there is a unique λε that satisfies (30) with the
following properties:

1. λε is smooth in ε and λε ≤ 0.
2. If Xε is not a circle for ε �= 0, there are constants C1 and C2 that do not depend on ε

so that:
∥∥L−1

ε

∥∥
B(Cγ (S1);C1,γ (S1)) ≤ C1 + C2

|λε | for 0 < |ε| ≤ ε∗,



P.-C. Kuo et al. Res Math Sci           (2023) 10:46 Page 11 of 55    46 

where B in the left hand side is the operator norm of L−1
ε as a map from Cγ (S1) to

C1,γ (S1).
3. λε has the following expansion around ε = 0:

λε = λ2ε
2 + O(|ε|3), λ2 = −1

8
∑
n≥2

n(n2 − 1)(g2n1 + g2n2). (32)

The first item in the above theorem follows by the implicit function theorem and is
proved in Sect. 3.2. The non-positivity of λε is shown in Sect. 3.1, as a consequence of the
negative semi-definiteness of the operatorLθ . The second item, which demonstrates that
magnitude of λε controls the near singularity of Lε , is also shown in the same Section.
The third item is the subject of Sect. 3.3.
In Sect. 3.4, expression (32) is verified against numerical experiments.Weuse aboundary

integral method to solve the tension determination problem and to compute the eigen-
values of the operatorLε . We see that the expression for λ2 is in excellent agreement with
the numerically calculated eigenvalues. In particular, when gn1 = gn2 = 0 for n ≥ 2, we
see that λ2 = 0. In this case, we expect that λε = O(|ε|4) since λε ≤ 0.We indeed observe
this behavior in our numerical experiments. We summarize the results and discussion for
future outlook in Sect. 4.
In Appendix A, we have collected some basic statements about layer potentials for

Stokes flow and their proofs. These results are standard and classical, but we have found it
difficult to locate in the literature the precise statements we need in this paper. Appendix
B contains some calculations needed to carry out perturbative calculations around the
unit circle performed in Sect. 3.3

2 Well-posedness of the tension determination problem
2.1 Stokes interface problem and layer potentials

Consider the following Stokes interface problem

−�u + ∇p = 0, ∇ · u = 0, in R
2\�,

�u� = 0, �
n� = F on �.
(33)

We seek a solution in the function spaces given in (16) and suppose that the stress jump
condition is satisfied in the sense of item 2 of Definition 1.1. That is, given the stress 
(x)
defined as in (14), the uniform limits of (15) exist and that the limiting functions satisfy
F�1 − F�2 = F . We quote the following result.

Theorem 2.1 Suppose X ∈ C2(S1) |X |∗ > 0 and F ∈ C0(S1). Then, u(x) = Ŝ[F ] and
p(x) = P[F ](x) defined in (19) and (20) is a solution to the Stokes interface problem (33).
Moreover, u(x) is continuous across the interface � and

∣∣u(x)∣∣→ 0 as x → ∞ ⇔
∫

S1
Fds = 0.

Remark 2.2 It is clear that u(x) = Ŝ[F ] and p(x) = P[F ](x) belong to the function spaces
in (16), and satisfy the Stokes equation. It is standard that Ŝ[F ] is continuous across the
interface �. The important part is to check whether u and p indeed satisfy the stress
interface condition in the sense specified above. This result is classical and can be found,
for example, in [28]. We leave the discussion about Theorem 2.1 in Appendix A.
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As a consequence, we also have the following result.

Corollary 2.3 Let X and F be as in Theorem 2.1, and suppose F satisfies:
∫

S1
Fds = 0. (34)

Let u = Ŝ[F ]. Then, we have
1
2

∫

R2\�

∣∣∣∇u + (∇u)T
∣∣∣
2
dx =

∫

�

u · Fds.

Proof This follows from the usual integration by parts argument for (33)wherewe setu =
Ŝ[F ] and p = P[F ]. Integration by parts is justified by Theorem 2.1, and the sufficiently
fast decay of u and∇u at infinity, which is in turn guaranteed by (34).We omit the details.

��

We state the uniqueness statement for the Stokes interface problem as follow.

Proposition 2.4 Suppose X ∈ C2(S1) |X |∗ > 0 and F ∈ C0(S1) and satisfies (34). Con-
sider a solution to the Stokes interface problem (33) that satisfies the growth condition (17)
at infinity. Then, the unique solution u is given by u = Ŝ[F ] with p = P[F ] + c where c is
an arbitrary constant.

This is also well known, but we have not been able to find this precise statement and
proof. We include a proof of this fact for completeness.

Proof That u = Ŝ[F ] and p = P[F ] + c satisfy (33) follows from Theorem 2.1. It is
also clear that they satisfy the decay estimate (17). What remains to be shown is that the
problem (33) with F = 0 only admits the trivial solution u = 0 and p = c where c is an
arbitrary constant. Let w = (w1, w2) and v be compactly supported smooth functions in
R
2.Multiply the Stokes equations byw and the incompressibility condition by v. Integrate

by parts and use the interface condition with F = 0 to obtain
∫

R2
(u · ∇(∇ · w) + u · �w + p∇ · w) dx = 0,

∫

R2
u · ∇vdx = 0, (35)

Let φ be a compactly supported smooth function, and let w = ∇φ. Plugging this into the
first equation in the above, we have

∫

R2
(2u · ∇(�φ) + p�φ) dx =

∫

R2
p�φdx = 0,

where we used the second equation in (35) with v = �φ in the first equality above.
Since p ∈ L1loc(R

2), p is a distribution, and is weakly harmonic. By a result of Weyl (see,
for example, Appendix B of [16]), weakly harmonic functions are harmonic. Thus, p is
smooth and satisfies �p = 0. Given (17), p = c by Liouville’s theorem. Putting p = c in
the first equation of (35), and using the second equation in (35) with v = ∇ · w we have

∫

R2
u · �wdx = 0.

This again implies that each component of u is weakly harmonic, and thus, harmonic.
Given (17), u = 0 by Liouville’s theorem. ��
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2.2 Properties of operatorsQ andL
Let u, p, σ be a solution to the tension determination problem in the sense of Definition
1.1. According to Proposition 2.4, u(X(s)) can be expressed in terms of σ and F as follows

u(X (s)) = Ŝ[F + ∂s(σ∂sX )](X(s)) = S[F + ∂s(σ∂sX )](s),

where S was defined in (22). We now study the properties of ∂sS[F ]. For this purpose, we
make use of the decomposition discussed in (25) and (26). We start with some technical
results.

Lemma 2.5 Let X = (X1, X2) ∈ C2 with |X |∗ > 0 and Y ∈ C1. Consider

Ai(s, s′) = �Xi
|�X | , Bi(s, s′) = 1

|�X |
(

∂sXi − �Xi
s − s′

)
.

We have
∣∣∣∣∂s
(

�Y
|�X |

)∣∣∣∣ ≤ C
‖Y ‖C1 ‖X‖C1

|X |2∗
∣∣s − s′

∣∣−1 , (36)

|∂sAi| ≤ C
‖X‖C2

|X |∗ , |∂s′Ai| ≤ C
‖X‖C2

|X |∗ , |∂s′∂sAi| ≤ C
‖X‖2C2

|X |2∗
∣∣s − s′

∣∣−1 , (37)

|Bi| ≤ ‖X‖C2

|X |∗ , |∂sBi| ≤ C
‖X‖2C2

|X |2∗
∣∣s − s′

∣∣−1 . (38)

A naive application of estimate (36) to ∂sAi will not produce the first inequality in (37),
and here, we take advantage of an additional cancellation. Similar cancellations are used
to establish (38).

Proof The estimate (36) can be established by direct computation as
∣∣∣∣∂s
(

�Y
|�X |

)∣∣∣∣ =
∣∣∣∣

∂sY
|�X | − �Y ∂sX · �X

|�X |3
∣∣∣∣ ≤ C

‖Y ‖C1 ‖X‖C1

|X |2∗
∣∣s − s′

∣∣−1 .

For the remaining inequalities, we make repeated use of the following
∣∣∣∣∂sXi − �Xi

s − s′

∣∣∣∣ =
∣∣∣∣
∫ 1

0

(
∂sXi (s) − ∂sXi

(
θs + (1 − θ ) s′

))
dθ

∣∣∣∣ ≤ ‖X‖C2
∣∣s − s′

∣∣ . (39)

From this, the first inequality in (38) is immediate. Let us move on to the first inequality
in (37).

∂s

(
�Xi
|�X |

)
= 1

|�X |
(

∂sXi − �Xi
|�X |

�X
|�X | · ∂sX

)
.

The expression in the parenthesis on the right hand side of the above is
∣∣∣∣∂sXi − �Xi

|�X |
�X
|�X | · ∂sX

∣∣∣∣

=
∣∣∣∣∣∂sXi − �Xi

s − s′
+ �Xi

|�X |
2∑

k=1

�Xk
|�X |

(
�Xk
s − s′

− ∂sXk

)∣∣∣∣∣
≤ C ‖X‖C2

∣∣s − s′
∣∣ ,

where we used (39) in the inequality. From this, we obtain the first inequality in (37). The
second inequality in (37) follows from the first inequality since

|∂s′Ai| = ∣∣∂s′Ai(s′, s)
∣∣ .
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For the third inequality in (37), we have

∂s∂s′
(

�Xi
|�X |

)
= �X · ∂s′X ′

|�X |3
(

∂sXi − �Xi
|�X |

�X
|�X | · ∂sX

)

+ �X · ∂sX
|�X |3

(
∂s′X ′

i − �Xi
|�X |

�X
|�X | · ∂s′X ′

)

+ �Xi

|�X |3
2∑

j=1
∂sXj

(
∂s′X ′

j − �Xj
|�X |

�X
|�X | · ∂sX

)
.

The terms in the three parentheses on the right hand side of the above can be estimated
in the same way as in (39). This yields the third inequality in (37). Finally, for the second
inequality in (38), note first that

Bi = �∂sXi
|�X | + (∂s′X ′

i − �Xi/(s − s′))
|�X | =: Bi,1 + Bi,2.

Using (36), we have

∣∣∂sBi,1
∣∣ ≤ C

‖X‖2C2

|X |2∗
∣∣s − s′

∣∣−1 .

For Bi,2, we have

∂sBi,2 = − (∂sXi − �Xi/(s − s′))
(s − s′) |�X | − �X · ∂sX

|�X |3
(

∂s′X ′
i − �Xi

s − s′

)
.

Using (39), we see that

∣∣∂sBi,2
∣∣ ≤ C

‖X‖2C2

|X |2∗
∣∣s − s′

∣∣−1 .

Combining the above estimates on ∂sBi,1 and ∂sBi,2, we obtain the second inequality in
(38). ��
The above lemma allows us to prove the following estimates on FC [g] and FT [g], defined

in (26) and (25).

Proposition 2.6 Let X ∈ C2(S1) with |X |∗ > 0, g ∈ C0(S1). Then, for any α ∈ (0, 1),

∥∥FC [g]
∥∥
C0,α ≤ C

‖X‖2C2

|X |2∗
∥∥g∥∥C0 ,

and
∥∥FT [g]

∥∥
C0,α ≤ C

‖X‖2C2

|X |2∗
∥∥g∥∥C0 ,

where C depends on α, and is independent of X and g .

Proof First, let us estimate FT [g].
Let

Q[u] = ∂s

∫

S1
K (s, s′)u′ds′, K (s, s′) = �Xi�Xj

|�X |2 , i, j = 1, 2.
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To estimate FT [g], it suffices to estimate Q[u]. Since

∂sK (s, s′) = −∂s′K (s, s′) + (∂s + ∂s′ )K (s, s′)

= −∂s′K (s, s′) − 2
�X · �∂sX

|�X |2
�Xi�Xj

|�X |2 + �∂sXi�Xj + �Xi�∂sXj

|�X |2
:= −∂s′K (s, s′) + K2(s, s′),

we can split K [u] as

Q[u] =
∫

S1

(−∂s′K (s, s′) + K2(s, s′)
)
u′ds′ := Q1[u] + Q2[u].

Let us estimate the kernel of K1.
∣∣∂s′K (s, s′)

∣∣ = ∣∣∂s′AiAj
∣∣ ≤ ∣∣Ai∂s′Aj + (∂s′Ai)Aj

∣∣ ≤ C
‖X‖C2

|X |∗ , (40)

where we used the notation of Lemma 2.5 and used (37) as well as the fact that |Ai| ≤ 1.
We thus have

|Q1[u]| ≤
∫

S1

∣∣∂s′K (s, s′)u′∣∣ ds′ ≤ C
‖X‖C2

|X |∗
‖u‖C0 . (41)

To estimate the Hölder norm of K1[u], we need the following estimate

∣∣∂s∂s′K (s, s′)
∣∣ ≤ ∣∣Ai∂s∂s′Aj + (∂s∂s′Ai)Aj + ∂sAi∂s′Aj + ∂s′Ai∂sAj

∣∣ ≤ C
‖X‖2C2

|X |2∗
∣∣s − s′

∣∣−1 ,

where we used (37) in the inequality above.Without loss of generality, we set 0 < h < 2π ,
and define the intervals

Is := (s − h/2 < s′ < s + 3h/2), If := S
1 \ Is.

Then,


hQ1[u] =
∫

S1

h∂s′k(s, s′)u′ds′ =

∫

Is

h∂s′K (s, s′)u′ds′ +

∫

If

h∂s′K (s, s′)u′ds′.

On Is,∣∣∣∣
∫

Is

h∂s′K (s, s′)u′ds′

∣∣∣∣ ≤ C
‖X‖C2

|X |∗
‖u‖C0

∫

Is
ds′ ≤ C

‖X‖C2

|X |∗
‖u‖C0 h,

where we used (40). On If , by mean value theorem, there exists ξ between 0 and h s.t.

∣∣
h∂s′K (s, s′)
∣∣ = ∣∣∂s∂s′k(s + ξ , s′)

∣∣ h ≤ Ch
‖X‖2C2

|X |2∗
∣∣s + ξ − s′

∣∣−1

≤ Ch
‖X‖2C2

|X |2∗
(∣∣s + h − s′

∣∣−1 + ∣∣s − s′
∣∣−1
)
,

so
∣∣∣∣∣
∫

If

h∂s′K (s, s′)u′ds′

∣∣∣∣∣ ≤Ch
‖X‖2C2

|X |2∗
‖u‖C0

∫

If

(∣∣s + h − s′
∣∣−1 + ∣∣s − s′

∣∣−1
)
ds′

≤C
‖X‖2C2

|X |2∗
‖u‖C0 h

∣∣log h∣∣ .



   46 Page 16 of 55 P.-C. Kuo et al. Res Math Sci          (2023) 10:46 

Using the above inequality and together with (42), we have

|
hQ1[u]| ≤ C
‖X‖C2

|X |∗
‖u‖C0 h + C

‖X‖2C2

|X |2∗
‖u‖C0 h

∣∣log h∣∣

≤ C
‖X‖2C2

|X |2∗
‖u‖C0 hα , 0 < α < 1,

where the last constant depends on α. Together with (41), we obtain

‖Q1[u]‖C0,α ≤ C
‖X‖2C2

|X |2∗
‖u‖C0 . (42)

TheestimateQ2[u] follows similarly. First,wehave the following estimate,whichdirectly
follows from the expression for K2

∣∣K2(s, s′)
∣∣ ≤ C

‖X‖C2

|X |∗ .

Using (36) and (37), we also have

∣∣∂sK2(s, s′)
∣∣ ≤ C

‖X‖2C2

|X |2∗
|s − s′|−1.

These estimates are the same as those of ∂s′k(s, s′), and thus, using the same steps as in the
estimates for K1[u], we obtain

‖Q2[u]‖C0,α ≤ C
‖X‖2C2

|X |2∗
‖u‖C0 .

where the constantC depends only on α. The above together with (42) yields the estimate
on Q[u] and hence on FT [g].
Next, for FC [g], let us define

RC (s, s′) := 1
2
cot
(
s − s′

2

)
− 1

s − s′
. (43)

We decompose the kernel KC (s, s′) defined in (26) into two parts

KC = KL + RC,

where

KL(s, s′) = −
�X ·

(
∂sX − �X

s−s

)

|�X |2 .

By Taylor expansions for cot function, RC is smooth in both s and s′, and

∣∣RC (s, s′)
∣∣ ≤ C0

∣∣s − s′
∣∣ , ∣∣∂sRC (s, s′)

∣∣ ≤ C1

for some constant C0, C1 which depend only on the expansion of cot(s). Using (37) and
(38), we see that

∣∣KL(s, s′)
∣∣ ≤ C

‖X‖C2

|X |∗ ,
∣∣∂sKL(s, s′)

∣∣ ≤ C
‖X‖2C2

|X |2∗
∣∣s − s′

∣∣−1 .
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Combining the bounds on RC and KL, we have

∣∣KC (s, s′)
∣∣ ≤ C

‖X‖C2

|X |∗ ,
∣∣∂sKC (s, s′)

∣∣ ≤ C
‖X‖2C2

|X |2∗
∣∣s − s′

∣∣−1 .

Using the same procedure used to prove the estimate on Q1[u], we obtain the estimate

∥∥FC [g]
∥∥
C0,α ≤ C

‖X‖2C2

|X |2∗
∥∥g∥∥C0

for some constant C which only depends on α. ��

We now have the following result on the properties of ∂sS[F ].

Corollary 2.7 Let X ∈ C2(S1) and |X |∗ > 0 and let F ∈ C0,γ (S1). Then, ∂sS[F ] ∈
C0,γ (S1) and is given by

∂sS[F ] = −1
4
HF + FC [F ] + FT [F ].

If F ∈ C0(S1), then the above is still valid, but ∂sS[F ] ∈ Lp(S1), 1 < p < ∞ and ∂sS[F ]
should be interpreted in the weak sense. That is, for any w ∈ C1(S1), we have

−
∫

S1
∂sw · S[F ]ds =

∫

S1
w · ∂sS[F ]ds.

Proof When F ∈ C0,γ (S1), the decompositions of (25) and (26) are valid pointwise, so we
have

∂sS[F ] = −1
4
HF + FC [F ] + FT [F ].

Note that F ∈ C0,γ (S1) ⊂ C0(S1), and thus, by letting α = γ in Proposition 2.6, we have
FC [F ] + FT [F ] ∈ C0,γ (S1). Since the Hilbert transform maps C0,γ (S1) to itself, we have
∂sS[F ] ∈ C0,γ (S1). If F ∈ C0(S1), we need to use a standard approximation argument. Let
F k ∈ C0,γ (S1) be a sequence of functions that converges to F in C0(S1). Then, we have

∂sS[F k ] = −1
4
HF k + FC [F k ] + FT [F k ].

Multiplying the above by w ∈ C1(S1) and integrating by parts, we have

−
∫

S1
∂sw · S[F k ]ds =

∫

S1
w ·
(

−1
4
HF k + FC [F k ] + FT [F k ]

)
ds =

∫

S1
w · ∂sS[F k ]ds.

Letting k → ∞ and noting that the Hilbert transform is bounded from Lp(S1) to itself
when 1 < p < ∞, we obtain the desired result. ��

Note that, as a consequence of the above corollary,Q[F ] = ∂sX · ∂sS[F ] is well-defined
for F ∈ C0(S1). We now proceed to prove finer properties of the operatorQ as stated in
Proposition 1.5. Define the following commutator

[
H, f

]
g := H (fg) − fH (g) .

We prove the following estimate.
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Proposition 2.8 Given f ∈ C1(S1) and g ∈ C0 (
S
1), then for any α ∈ (0, 1),

∥∥[H, f
]
g
∥∥
C0,α ≤ C

∥∥f ∥∥C1
∥∥g∥∥C0 ,

where C depends on α, and is independent of f, g .

Proof First, we split
[
H, f

]
g as

[
H, f

]
g = 1

2π

∫

S1
cot
(
s − s′

2

) (
f
(
s′
)− f (s)

)
g
(
s′
)
ds′

= 1
π

∫

S1
RC (s, s′)

(
f
(
s′
)− f (s)

)
g
(
s′
)
ds′ − 1

2π

∫

S1

f
(
s′
)− f (s)
s′ − s

g
(
s′
)
ds′

:= I + II,

where RC is defined in (43). Next, given the smoothness of RC , we have

|I | ≤ C
∥∥f ∥∥C0

∥∥g∥∥C0

∫

S1

∣∣s − s′
∣∣ ds′ ≤ C

∥∥f ∥∥C0
∥∥g∥∥C0 ,

where C only depends on the expansion of cot(s). For II ,

|II | ≤ C
∥∥f ∥∥C1

∥∥g∥∥C0

∫

S1
ds′ ≤ C

∥∥f ∥∥C1
∥∥g∥∥C0 .

Let us now examine ∂s
([
H, f

]
g
)
.

∂sI = 1
2π

∫

S1
∂sRC (s, s′)

(
f
(
s′
)− f (s)

)
g
(
s′
)
ds′

− 1
2π

∫

S1
RC (s, s′)∂sf (s) g

(
s′
)
ds′,

so

|∂sI | ≤ C
∥∥f ∥∥C1

∥∥g∥∥C0

∫

S1

∣∣s − s′
∣∣ ds′ + C

∥∥f ∥∥C1
∥∥g∥∥C0

∫

S1

∣∣s − s′
∣∣ ds′,

where C only depends on the expansion of cot(s). For 
hII ,

∣∣∣∣∣∂s
f
(
s′
)− f (s)
s − s′

∣∣∣∣∣ =
∣∣∣∣∣

1
s − s′

(
f (s) − f

(
s′
)

s − s′
− ∂sf (s)

)∣∣∣∣∣ ≤
∥∥f ∥∥C1

1
|s − s′| .

With the technique of 
hQ1[u] in Proposition 2.6,

|
hII | ≤ C
∥∥f ∥∥C1

∥∥g∥∥C0 h (1 + log h) ≤ C
∥∥f ∥∥C1

∥∥g∥∥C0 hα ,

where C only depends on α. We thus obtain the desired estimate. ��

We are now ready to prove Proposition 1.5.
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Proof of Proposition 1.5 Recall that

Q[F ] = −1
4
∂sX · HF + 1

4π
∂sX · (FC [F ] + FT [F ]) .

For the ∂sX · FC [F ] term,

∂sX · FC [F ] = ∂sX · FC
[
f1∂sX

]+ ∂sX · FC
[
f2∂sX⊥] .

By Proposition 2.6,

∥∥∂sX · FC
[
f1∂sX

]∥∥
C0,α ≤ C ‖∂sX‖C0,α

∥∥FC
[
f1∂sX

]∥∥
C0,α

≤ C
‖X‖3C2

|X |2∗
∥∥f1∂sX

∥∥
C0 ≤ C

‖X‖3C2

|X |2∗
∥∥f1
∥∥
C0 ,

where we used |∂sX | = 1. Likewise, we have

∥∥∥∂sX · FC
[
f2∂sX⊥]∥∥∥

C0,α
≤ C

‖X‖3C2

|X |2∗
∥∥f2
∥∥
C0 .

Similarly, for the ∂sX · FT [F ] term, by Proposition 2.6, we obtain

∥∥∂sX · FT
[
f1∂sX

]∥∥
C0,α ≤C

‖X‖3C2

|X |2∗
∥∥f1
∥∥
C0 ,

∥∥∥∂sX · FT
[
f2∂sX⊥]∥∥∥

C0,α
≤C

‖X‖3C2

|X |2∗
∥∥f2
∥∥
C0 .

Let us now consider the first term in (44) which involves the Hilbert transform. First, note
that, for v ∈ C1 and f ∈ C0, we have

H(f v) = (Hf )v + [H, v·]f. (44)

Applying this to f = f1 and v = ∂sX , we obtain

∂sX · H (f1∂sX ) = Hf1 + ∂sX · ([H, ∂sX ·] f1) ,

By Proposition 2.8, we get

∥∥∂sX · ([H, ∂sX ] f1)
∥∥
C0,α ≤ C ‖∂sX‖C0,α

∥∥[H, ∂sX ·] f1
∥∥
C0,α ≤ C ‖X‖2C2

∥∥f1
∥∥
C0 .

Applying (44) with f = f2 and v = ∂sX⊥ and using Proposition 2.8, we obtain
∥∥∥∂sX · H

(
f2∂sX⊥)∥∥∥

C0,α
≤
∥∥∥∂sX ·

([
H, ∂sX⊥·

]
f2
)∥∥∥

C0,α
≤ C ‖X‖2C2

∥∥f2
∥∥
C0 .

Therefore,

Q[F ] = −1
4
Hf1 + M1(f1) + M2(f2),

M1(f1) = −1
4
∂sX · [H, ∂sX ] f1 + 1

4π
∂sX · (FC

[
f1∂sX

]+ FT
[
f1∂sX

])
,

M2(f2) = 1
4

[
H, ∂sX⊥·

]
f2∂sX⊥ + 1

4π
∂sX ·

(
FC
[
f2∂sX⊥]+ FT

[
f2∂sX⊥]) ,
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where M1,M2 are bounded maps from C0(S1) to C0,α(S1) for any α ∈ (0, 1). The state-
ment on the mapping properties of Q follows from the well-known fact that the Hilbert
transform is a bounded operator from C0,α(S1) to itself for α ∈ (0, 1) (see, for example,
Sect. I.8.4 of [14]). ��
Proof of Proposition 1.6 Recall that

Lσ =Q[∂s (σ∂sX )].

Since

∂s (σ∂sX ) = ∂sσ∂sX + σ∂2s X = ∂sσ∂sX + σ̃ ∂sX⊥,

where σ̃ = σ∂sX⊥ · ∂2s X , we have

Lσ = −1
4
H∂sσ + M1(∂sσ ) + M2(σ̃ ).

Since ‖σ̃‖C0 ≤ ‖X‖C2 ‖σ‖C0 , the result follows by Proposition 1.5. ��

2.3 Proof of well-posedness

We are now ready to prove the well-posedness of the tension determination problem.
Proof of Theorem 1.2, when � is not a circle
By Proposition 2.4, solving the tension determination problem in the sense of Definition
1.1 is equivalent to finding a σ satisfying

∫

S1
∂s (w∂sX ) · S(∂s(σ∂sX ) + F )ds = 0 for any w ∈ C1(S1), (45)

which, thanks to and Proposition 2.7, is equivalent to solving the following equation for σ

Lσ = −Q[F ]. (46)

We would thus like to show that Eq. (46) has a unique solution in C1,γ (S1) when � is not
a circle. Proposition 1.6 implies

Lσ =
(

−1
4
H∂s + M

)
σ ,

whereM is a bounded operator from C1,γ (S1) to Cα(S1) for any α in (0, 1). We may take
γ < α. Thus, solving the above equation is equivalent to solving

((
I + 1

4
H∂s

)
− (I + M)

)
σ = Q[F ],

where I is the identity map. Since the Hilbert transform is a bounded operator from
C0,α(S1) to itself for α ∈ (0, 1) (mentioned in the proof of Proposition 1.5),

(
I + 1

4H∂s
)
is

a bounded operator from C1,α(S1) to C0,α(S1). We claim that
(
I + 1

4H∂s
)
has a bounded

inverse. We now give a short proof of this fact for completeness.
Since Ck,α(S1) is embedded in the L2 Sobolev spaces Hk (S1) for k = 0, 1, we may view(
I + 1

4H∂s
)
as a Fourier multiplier operator with symbol:

A0(n) = 1 + 1
4

|n| , n ∈ Z.
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Since A0(n) ≥ 1 for all n ∈ Z,
(
I + 1

4H∂s
)
is an one-to-one operator. The Fourier coeffi-

cients of f ∈ C0,α(S1) decay like |n|−α for large |n|. Since
1

A0(n)
= 1

1 + 1
4 |n| ≤ 4

1
|n| ,

(
I + 1

4H∂s
)−1 f is in C1(S1). Since

n
A0(n)

= 4sgn (n) − 4
sgn (n)
1 + 1

4 |n| ,

∂s
(
I + 1

4H∂s
)−1 f = −4H(f − (

I + 1
4H∂s

)−1 f ). Therefore, ∂s
(
I + 1

4H∂s
)−1 f is in

C0,α(S1) and
(
I + 1

4H∂s
)
f is bijective from C1,α(S1) to C0,α(S1). By the inverse mapping

theorem
(
I + 1

4
H∂s

)−1

is a bounded operator from C0,α(S1) to C1,α(S1) for any 0 < α < 1.
Using the above, we see that solving (24) is equivalent to solving

(I + K) σ = F̃ ,

where

K = −
(
I + 1

4
H∂s

)−1
(I + M),

F̃ =
(
I + 1

4
H∂s

)−1
Q[F ] ∈ C1,γ (S1).

Note that K is a bounded operator from C1,γ to C1,α , and since we have chosen α > γ ,
K is in fact a compact operator from C1,γ to itself. Thus, by the Fredholm alternative
theorem, I + K is invertible if and only if

(I + K)σ = 0

has a unique solution. We must thus show that if σ ∈ C1,γ (S1) satisfies Lσ = 0, then
σ = 0. Let

u(x) = Ŝ[∂s(σ∂sX)](x), p(x) = P[∂s(σ∂sX)][x].
The aboveu and p, together with σ , solves the tension determination problem in the sense
of Definition 1.1. In particular, we have (see also (45)):

∫

S1
u(X (s)) · ∂s(w∂sX )ds = 0 for any w ∈ C1(S1). (47)

By Corollary 2.3, we have
1
2

∫

R2\�

∣∣∣∇u + (∇u)T
∣∣∣
2
dx =

∫

�

u(X(s)) · ∂s (σ∂sX) ds = 0,

where we used (47) in the last equality. Noting that u is smooth in R
2\�, we have

∇u + (∇u)T = 0
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and therefore u must be a rigid rotation. Since u → 0 as |x| → ∞, we conclude that
u = 0 in the exterior region �2. Using Lemma 2.1, u is continuous across �, and thus
must be identically equal to 0 in the interior region �1 as well. Since u and p satisfy the
Stokes equation (9), we have

∇p = 0 for R2\�.

Thus, p is constant within �1 and �2. Let 
p := p|�1 − p|�2 . Inserting this into (12) with
F = 0, we have


pn = ∂s(στ) = (∂sσ )τ + σ∂sτ. (48)

Since τ · ∂sτ = 0, we have

∂sσ = 0, (49)

which implies that σ is constant on �. Equating the normal components implies


p = n · σ∂sτ = −σκ(s), (50)

where κ is the curvature. If � is not a circle, κ(s) is not a constant. Thus, σ = 0.
��

Let us now turn to the case when � is a circle.
Proof of Theorem 1.2 when � is a circle
Wemust solve (46). To do so, we first prove that, for g ∈ C0(S1), we have

∫

S1
Q[g]ds = 0. (51)

Indeed,∫

S1
Q[g]ds =

∫

S1
τ · ∂sS[g]ds = −

∫

S1
∂2s X · S[g]ds =

∫

S1
n · S[g]ds,

where we used the fact that � is a unit circle, and thus, ∂2s X = −n. Let u(x) = Ŝ[g](x).
Then,∫

S1
n · S[g]ds =

∫

S1
n · u(X (s))ds =

∫

�1
∇ · udx = 0, (52)

where we used the divergence theorem and the fact that u is divergence free. We thus
have (51).
Define the following function space with zero average

C̄k,γ (S1) =
{
w ∈ Ck,γ (S1)

∣∣∣∣
∫

S1
wds = 0

}
, k = 0, 1, 2, . . . , γ ∈ (0, 1). (53)

From (51), we see that Q[F ] ∈ C̄0,γ (S1). When σ ∈ C̄1,γ (S1) ⊂ C1,γ (S1), clearly, Lσ ∈
C0,γ (S1). Since Lσ = Q[∂s(σ∂sX )], we see from (51) that in fact, Lσ ∈ C̄0,γ (S1). We may
thus regard (46) as an equation for σ ∈ C̄1,γ (S1) with right hand side in C̄0,γ (S1). The
question of well-posedness thus reduces to the question of invertibility ofL as amap from
C̄1,γ (S1) to C̄0,γ (S1).
Note that the operator H∂s maps C̄1,γ (S1) to C̄0,γ (S1). We may thus use exactly the

same argument as in the non-circle case to show that L is invertible if and only if its
kernel is trivial. Thus, suppose Lσ = 0. Again, using exactly the same argument as in the
non-circle case, we deduce (48), from which we see that σ must be a constant, as in (49).
However, since κ = 1 (does not depend on s) for a circle, we cannot conclude that σ = 0
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as in (50). The kernel of L thus consists of constant σ . Since we have restricted L to act
on C̄1,γ (S1), this implies that σ = 0.
For F satisfying the assumptions of the theorem statement, we thus see that (46) has a

solution σ0 ∈ C̄1,γ (S1). If we take any general solution σ ∈ C1,γ (S1), we have

L(σ − σ0) = 0.

The above argument shows that σ − σ0 = c for some constant c. ��
For future use, we collect some results that we proved above.

Lemma 2.9 When� is a circle, S[∂sτ] = 0. The operatorL has an eigenvalue of 0with the
constant functions as eigenfunctions. Moreover, L is an invertible operator from C̄1,γ (S1)
to C̄γ (S1), 0 < γ < 1.

Proof The first statement follows from (52). Indeed, we have
∫

S1
n · S[g]ds =

∫

S1
g · S[n]ds = 0,

where we used the symmetry of S . Since g is arbitrary, we see that S[n] = S[∂sτ] = 0.
The rest of the statements were already shown in the proof of the theorem above. ��

3 Behavior ofLwhen � is close to a circle
3.1 OperatorL under general non-degenerate parametrization of �

In this subsection, we translate our results for L in the previous section to the case when
X is given an arbitrary non-degenerate parametrization. Let X(s) be a simple C2 curve
parametrized by the arclength coordinate s ∈ S

1
L = R/LZ. Let us reparametrize this curve

by a strictly monotone increasing C2 function s = �(θ ), θ ∈ S
1 = R/2πZ so that the

new parametrization is given by X̃ (θ ) = X(�(θ )). Now that our curve is parametrized by
θ , the stress jump condition (12) in the tension determination problem is replaced by

�
(
∇u + (∇u)T − pI

)
n�∂θ� = F̃ (θ ) + ∂θ (σ̃ (θ )̃τ(θ )), τ̃ = ∂θ X̃∣∣∂θ X̃

∣∣ on �.

where F̃ = F (�(θ ))∂θ� and σ̃ (θ ) = σ (�(θ )). Using the steps identical to those that led to
Eq. (23), we see that the equation satisfied by σ̃ is given by

Lθ σ̃ = −Qθ [F̃ ], Lθ σ̃ = Qθ [∂θ (σ̃ τ̃)], Qθ [F̃ ] = τ̃ · ∂θSθ [F̃ ],

Sθ [g] =
∫

S1
G(X̃ (θ ) − X̃ (θ ′))g(θ ′)dθ ′.

(54)

Let Ls be the operator L in (23) (except here, the length of the curve is not necessarily
normalized to 2π ). It is easily seen that themapLθ andLs have the following relationship.
For a function w(s), s ∈ S

1
L, define the map:

(�∗w)(θ ) = w(�(θ ))

and likewise for (�−1)∗. We have

Lθ g(θ ) = (∂θ�)((Lsg(�−1(s)))(�(θ ))) = (∂θ�)
(
�∗ ◦ Ls ◦ (�−1)∗g

)
(θ ).

Recall from Proposition 1.6 that Ls is a bounded operator from C1,γ (S1L) to Cγ (S1L) where
0 < γ < 1 (Proposition 1.6 proves this when length L = 2π , but it is clear that this
statement remains true for arbitrary L). Note also that�∗ is an isomorphism fromCα(S1L)
to Cα(S1) for any 0 ≤ α ≤ 2. The map (�−1)∗ is simply the inverse map of �∗. Mul-
tiplication by ∂θ� is an isomorphism from Cα(S1) to itself as long as 0 ≤ α ≤ 1. The



   46 Page 24 of 55 P.-C. Kuo et al. Res Math Sci          (2023) 10:46 

above expression thus implies that Lθ is a bounded operator from C1,γ (S1) to Cγ (S1) for
0 < γ < 1. Furthermore, we see that Lθ is invertible if and only if Ls is invertible. We
have the following proposition. It is convenient to introduce the L2 inner product:

〈
f, g
〉 =

∫

S1
f (θ )g(θ )dθ ,

〈f , g 〉 =
∫

S1
f (θ ) · g(θ )dθ .

We also note that the function spaces C̄k,γ (S1) was defined in (53).

Proposition 3.1 Let � be a simple closed curve inR2 such that its arclength parametriza-
tion X (s) is a C2 function. Let θ be an alternate C2 non-degenerate parametrization such
that s = �(θ ), ∂θ� > 0. The operator Lθ defined in (54) is a bounded operator from
C1,γ (S1) to Cγ (S1) where 0 < γ < 1. The spectrum of Lθ consist of discrete and real
eigenvalues. Furthermore we have the following.

1. If � is not a circle, all eigenvalues are negative.
2. If � is a circle, the eigenvalues are negative except for a simple eigenvalue at 0.

Proof We have already proved the first statement. When � is not a circle, we know that
Lθ is invertible, and thus,L−1

θ exists and it is a bounded operator fromCγ (S1) toC1,γ (S1).
Thus, L−1

θ is a compact operator on C
γ (S1) with trivial kernel, and thus, the spectrum is

discrete and consist of eigenvalues. Thus, the spectrum of Lθ consists of eigenvalues, and
they are discrete and nonzero. To prove positivity, we note the following. Let σ and μ be
C1,γ (S1) functions that are real valued. Then,

〈μ,Lθσ 〉 =
∫

S1
μ(θ )̃τ(θ ) · ∂θG(X(θ ) − X(θ ′))

(
σ (θ ′ )̃τ(θ ′)

)
dθ ′dθ

= −
∫

S1
∂θ (μ(θ )̃τ(θ )) · G(X(θ ) − X(θ ′))

(
σ (θ ′ )̃τ(θ ′)

)
dθ ′dθ

= 〈Lθμ, σ 〉 ,

(55)

where we integrated by parts in the second equality and used the symmetry of G(X(θ ) −
X(θ ′)) and the Fubini’s theorem in the last equality. Substituting μ = σ into the above
expression, we have

〈σ ,Lθσ 〉 = −
∫

S1
∂θ (σ τ̃) · Sθ [∂θ (σ τ̃)]dθ . (56)

As in (19), define

u(x) = Ŝθ [∂θ (σ τ̃)](x) :=
∫

S1
G(x − X(θ ))∂θ (σ τ̃)dθ .

Using Corollary 2.3 with � parametrized by θ , we find that:∫

S1
∂θ (σ τ̃) · Sθ [∂θ (σ τ̃)]dθ = 1

2

∫

R2\�

∣∣∣∇u + (∇u)T
∣∣∣
2
dx ≥ 0.

Combining the above with (56), we have

〈σ ,Lθσ 〉 ≤ 0.

The symmetry (55) with the semi-negativity above immediately shows that all eigenvalues
must be non-positive. Since the eigenvalues of Lθ are nonzero, they must be negative.
When � is a circle we note that Ls is invertible as an operator from C̄1,γ (S1L) to C̄γ (S1L)

as observed in proof of Theorem 1.2 when � is a circle (see the discussion following (53)
and Lemma 2.9). Using this fact, we can prove our assertion in the same way as in the
non-circle case. We omit the details. ��
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Remark 3.2 The above proof shows thatLθ is a symmetric negative semidefinite operator
on C1,γ (S1), which is a dense subset of L2(S1). We thus see that Lθ has a Friedrichs
extension as a self-adjoint operator on L2(S1). We will not be making use of this fact in
what follows.

3.2 Eigenvalue problem forL near a circle

We shall henceforth consider the case when X is close to a unit circle. Suppose � is close
to a unit circle in the C2 sense. Then, it is clear that X can be written as

X (θ ) = X c(θ ) + Y (θ ) = (1 + g(θ ))X c(θ ), X c(θ ) =
(
cos(θ )
sin(θ )

)
,

where g(θ ) is aC2 function. This is simply the polar coordinate representation of the curve
�. In the above and henceforth, we drop the ·̃ in Sect. 3.1 when referring to quantities
parametrized in the θ coordinate. We will discuss the properties ofLθ when X is given by
(29), which we reproduce here:

X = Xε = X c + εY = (1 + εg)X c.

We shall henceforth drop the subscript θ when we refer toLθ ,Sθ andQθ of (54). Instead,
we will let Lε ,Sε ,Qε denote the respective operators when X = Xε . Let us write out Lε

Lεσ = τε · ∂θSε [∂θ (στε)]

= τε · 1
4π

∂θ

∫

S1
(GL(�Xε)I + GT (�Xε))∂θ ′ (σ ′τ′

ε)dθ ′, τε = ∂θXε

|∂θXε| ,
(57)

where σ ′ = σ (θ ′) and similarly for other symbols with a prime.
We are interested in the behavior of Lε when ε is close to 0. For this purpose, we first

examine the regularity of Lε with respect to ε. For Banach spaces U and V , let us denote
by B(U,V ) the set of Banach space of bounded operators fromU to V topologized by the
uniform operator topology. For a Banach space W and an open interval I ⊂ R we shall
use the notation Cn(I ;W ) to denote the set of n-times continuously differentiable maps
from I toW . The smooth maps from I toW will be denoted by C∞(I ;W ).

Proposition 3.3 Suppose Y (θ ) is a C2 function. Then, there is an ε0 > 0 such that
Lε is a smooth map from ε ∈ (−ε0, ε0) to B(C1,γ (S1), Cγ (S1)). In other words, Lε ∈
C∞((−ε0, ε0);B(C1,γ (S1), Cγ (S1))).

Proof Pick anM > 0 andm > 0 such that

‖Y ‖C2 ≤ M, sup
|ε|<ε0

‖Xε‖C2 ≤ M,

inf|ε|<ε0
|Xε |∗ ≥ m, |X |∗ = inf

θ �=θ ′

∣∣X (θ ) − X(θ ′)
∣∣

|θ − θ ′| .

This is always possible by taking ε0 > 0 small enough. It is clear that

τε ∈ C∞ ((−ε0, ε0);C1 (
S
1)) . (58)

Next, let us consider ∂θSε [·]. Take derivatives of GL (�Xε) with respect to ε.

d
dε

GL (�Xε) = −�Xε · �Y
|�Xε|2

.
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Moreover, for all α0,α1,β0,β1 ∈ N ∪ {0},

d
dε

(�Xε,1)α0 (�Xε,2)β0 (�Y1)α1 (�Y2)β1

|�Xε|α0+α1+β0+β1

= − (α0 + α1 + β0 + β1)
(�Xε,1)α0 (�Xε,2)β0 (�Y1)α1 (�Y2)β1 (�Xε,1�Y1 + �Xε,2�Y2)

|�Xε|α0+α1+β0+β1+2

+ (�Xε,1)α0−1 (�Xε,2)β0−1 (�Y1)α1 (�Y2)β1 (α0�Xε,2�Y1 + β0�Xε,1�Y2)
|�Xε|α0+α1+β0+β1

.

Therefore, dn
dεn GL (�Xε) is the sum of the terms of the form

Cα0 ,α1 ,β0 ,β1
(�Xε,1)α0 (�Xε,2)β0 (�Y1)α1 (�Y2)β1

|�Xε|α0+α1+β0+β1
,

where α0 + α1 + β0 + β1 ≤ 2n. Likewise, dn
dεn GT (�Xε) is the sum of the terms of

Cα0 ,α1 ,β0 ,β1
(�Xε,1)α0 (�Xε,2)β0 (�Y1)α1 (�Y2)β1

|�Xε|α0+α1+β0+β1
,

whereα0+α1+β0+β1 ≤ 2n+2.Hence, by an argument similar to the proof of Proposition
2.6 (see also [23, Lemma 2.2]), for all |ε| < ε0, n ∈ N, dn+1

dεn+1 ∂θSε [·] exists, and

∥∥∥∥
dn+1

dεn+1 ∂θSε [·]
∥∥∥∥
B(C0 ,C0,α)

≤
∑

α0+α1+β0+β1≤2n+4
Cα0 ,α1 ,β0 ,β1

‖Xε‖2C2 ‖Y ‖α1+β1
C2

|Xε|α1+β1+2∗

≤C
M2n+6

m2n+6 ,

where C depends on n,α. We thus see that

dn

dεn
∂θSε [·] ∈ C

(
(−ε0, ε0);B

(
C0 (

S
1) , C0,α (

S
1))) .

Using the above, (58) and the expression for Lε given in (57), we see that

Lε ∈ Cn ((−ε0, ε0);B
(
C1,γ (

S
1) , C0,γ (

S
1))) for n ∈ N.

��

We now consider the eigenvalue problem:

Lεσε = λεσε ,
∫

S1
σ 2

ε dθ = 2π , where λ0 = 0, σ0 = 1. (59)

Note that, when ε = 0, the polar coordinate and the arclength coordinate coincide. Thus,
from Lemma 2.9, we see that λ0 = 0 is indeed an eigenvalue and the constant function
σ0 = 1 is an eigenvector. The above can be seen as an eigenvalue perturbation problem
for small values of ε. We now establish this solvability.

Proposition 3.4 There is an ε1 > 0 such that (59) has a solution for |ε| < ε1, where λε is
smooth in ε and σε is smooth in ε with values in C1,γ (S1), 0 < γ < 1.
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Proof Let

F (σ , λ, ε) =
(
F1
F2

)
=
(

Lεσ − λσ∫
S1 σ 2dθ − 2π

)
.

F maps (σ , λ, ε) ∈ C1,γ (S1) × R × R to Cγ (S1) × R. Given Proposition 3.3, F ∈
Cn(C1,γ (

S
1) × R × (−ε0, ε0);C0,γ (

S
1) × R), n ∈ N. We check the invertibility of the

Fréchet derivative of the above with respect to σ and λ at λ = λ0, σ = σ0, ε = 0. This
derivative, which we denote by DF (σ0, λ0, 0) ∈ B(C1,γ (S1) × R;Cγ (S1) × R) is given by

DF (σ0, λ0, 0)
(
w
μ

)
=
(
L0w − μ

2
∫
S1 wdθ

)
,
(
w
μ

)
∈ C1,γ (S1) × R.

This linear operator is one-to-one and onto. To show that this is a one-to-one map, let us
solve

L0w − μ = 0,
∫

S1
wdθ = 0.

From the first equation, we have

〈1,L0w − μ〉 = 〈L01, w〉 − 2πμ = −2πμ = 0,

where we used the symmetry of L0 (see (55)) and L01 = 0. Thus, μ = 0. Lemma 2.9
immediately shows that w = 0. To show that DF (σ0, λ0, 0) is onto, let us solve

L0w − μ = f, 2
∫

S1
wdθ = ν, f ∈ Cγ (S1), ν ∈ R. (60)

We let

μ = − 1
2π
〈
f, 1
〉
, w = L−1

0 f̄ + ν

4π
, f̄ = f − 1

2π
〈
f, 1
〉
,

it is easily checked that this satisfies (60). Note here that f̄ ∈ C̄γ (S) and thus L−1
0 f̄ is well

defined by Lemma 2.9.
An application of the implicit function theorem yields the desired result. ��

We have the following corollary, which shows that the behavior of λε determines the
near singularity of Lε when ε is small.

Corollary 3.5 Suppose Xε is not a circle for ε �= 0. Then, there is an ε2 > 0 such that
∥∥L−1

ε

∥∥
B(C1,γ (S1);Cγ (S1)) ≤ C1 + C2

|λε | for 0 < |ε| ≤ ε2,

where the constants C1 and C2 do not depend on ε and λε is the solution to (59).

Proof Let λε , σε be as in (59), whose existence and smooth dependence on ε is guaranteed
by the previous proposition. Define the following projection operator

Pεw = 1
2π

〈w, σε〉 σε .

This is clearly a bounded operator on Cγ (S1) as well as on C1,γ (S1). Now, define the
operator

Nεw = Lε(1 − Pε)w − Pεw.
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Clearly,Nε ∈ C∞((−ε1, ε1);B(C1,γ (S1);Cγ (S1))). Let us examineN0

N0w = L0(1 − P0)w − P0w.

It is clear that this operator is invertible. Indeed, (1 − P0)w ∈ C̄1,γ (S1) if w ∈ C1,γ (S1),
and thus we may use Lemma 2.9. Since Nε varies smoothly with ε, Nε is invertible for
|ε| ≤ ε2 for some ε2 > 0. Using this operator, we may write Lε as

Lεw = Nε(1 − Pε)w + λεPεw.

From this, it is immediate that

L−1
ε w = N−1

ε (1 − Pε)w + 1
λε

Pεw, for 0 < |ε| ≤ ε2,

where we used the fact that λε �= 0 given our assumption that Xε is not a circle for ε �= 0.
By taking the Cγ (S1) norm on both sides of the above, we obtain the desired result. ��

3.3 Computation of λ2

Here, we explicitly compute the solution to (59) in a power series expansion up to order
2. Let:

λε = λ0 + λ1ε + λ2ε
2 + · · · . (61)

This power series expansion is justified since λε is a smooth function of ε as shown in
Proposition 3.4. We know that λ0 = 0. We also know from Proposition 3.1 that λε ≤ 0.
Thus, we immediately see that

λ1 = 0. (62)

Thefirst potentially non-trivial term in the expansion is thusλ2.Our goal in this subsection
is to establish the last item inTheorem1.8.Wenow solve (59) in powers of ε. Let us expand
λε as in (61), and similarly expand Lε and σε . Substituting this expression into (59), we
have:

(L0 + εL1 + ε2L2 + · · ·)(σ0 + εσ1 + ε2σ2 + · · ·)
= (λ0 + ελ1 + ε2λ2 + · · ·)(σ0 + εσ1 + ε2σ2 + · · ·),

∫ 2π

0
(σ0 + εσ1 + ε2σ2 + · · ·)2dθ = 2π .

The leading order term in ε simply gives

L0σ0 = λ0σ0,
∫ 2π

0
σ 2
0 dθ = 2π ,

for which the solution is λ0 = 0, σ0 = 1. The first order term in ε gives

L0σ1 = λ1σ0 − L1σ0,
∫

S1
σ1dθ = 0.

By Lemma 2.9, the above equation for σ1 can be solved uniquely if and only if the right
hand side has the zero mean, i.e.,

〈1, λ1 − L11〉 = 0, and thus λ1 = 1
2π

〈1,L11〉 .
where we used σ0 = 1. We already know that λ1 = 0. Thus,

σ1 = −L−1
0 L11, 〈1,L11〉 = 0,
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where L−1
0 is understood as being acting on C̄γ (S1). Let us look at the determination of

λ2. We have

L0σ2 = −L1σ1 − L2σ0 + λ2σ0,
∫

S1
σ2dθ = 0.

Again, the above is uniquely solvable for σ2 if and only if the right hand side has zero
mean. From this, we see that

λ2 = 1
2π

(
〈1,L21〉 +

〈
1,L1L−1

0 L11
〉)

. (63)

Our task then is to compute the above expression.

3.3.1 The operators ∂θS0,Q0 andL0

We compute the kernel ∂θGL(�X c) and ∂θGT (�X c) (see (57)). Note that

∂θX c =
(

− sin θ

cos θ

)
, �X c = 2 sin

(
θ − θ ′

2

)⎛
⎝− sin

(
θ+θ ′
2

)

cos
(

θ+θ ′
2

)
⎞
⎠ .

We thus have

∂θGL(�X c(θ )) = −�X c · ∂θX c

|�X c|2
= −1

2
cot
(

θ − θ ′

2

)
,

∂θGT (�X c(θ )) = ∂θ

(
�X c ⊗ �X c

|�X c|2
)

= 1
2

(
sin (θ + θ ′) − cos (θ + θ ′)

− cos (θ + θ ′) − sin (θ + θ ′)

)
.

Therefore, we have

∂θS0[f ] = 1
4π

∫

S1
(∂θGL(�X c(θ ))I + ∂θGT (�X c(θ ))) f (θ ′)dθ ′

= −1
4
Hf + 1

8π

∫

S1

(
sin (θ + θ ′) − cos (θ + θ ′)

− cos (θ + θ ′) − sin (θ + θ ′)

)
f (θ ′)dθ ′.

This is all we need in the computation of λ2. We will, however, compute Q0 and L0 for
later reference. This computation will allow us to obtain an explicit solution to the tension
determination problem when � is a circle. From the above, we immediately see that

Q0[F ] = ∂θX c · ∂θS[F ] = −∂θX c · 1
4
HF − 1

8π

∫

S1
X c(θ ′) · F (θ ′)dθ ′, (64)

Furthermore, we have

L0σ = Q0[∂θ (σ∂θX c)] = −∂θX c · 1
4
H(∂θ (σ∂θX c)) + 1

8π

∫

S1
σ (θ ′)dθ ′.

We may now solve Eq. (24) explicitly when � is a circle. The following results can be
proved using Lemma B.3 and Lemma B.4

Lemma 3.6

L0(sin(nθ )) = −n
4
sin(nθ ), L0(cos(nθ )) = −n

4
cos(nθ ), n ∈ N.

The above in fact shows that L0σ = − 1
4H∂θσ .
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Lemma 3.7 For n ≥ 2,

Q0 [cos (nθ )X c] = Q0 [sin (nθ )X c] = 0,

Q0 [cos (nθ ) ∂θX c] = −1
4
sin (nθ ), Q0 [sin (nθ ) ∂θX c] = 1

4
cos (nθ ) .

Moreover,

Q0 [cos θX c] = 1
8
cos θ , Q0 [sin θX c] = 1

8
sin θ ,

Q0 [cos θ∂θX c] = −1
8
sin θ , Q0 [sin θ∂θX c] = 1

8
cos θ ,

and

Q0 [X c] = 0, Q0 [∂θX c] = 0.

From the above two lemmas, the following is immediate.

Proposition 3.8 Suppose � is a circle. Suppose F is given in terms of the following Fourier
expansion

F =
∞∑
n=0

(an cos (nθ ) + bn sin (nθ ))X c +
∞∑
n=0

(cn cos (nθ ) + dn sin (nθ )) ∂θX c.

Then, the unique solution to (24), satisfying
∫
S1 σdθ = 0 is given by

σ = a1 + d1
2

cos θ + b1 − c1
2

sin θ +
∞∑
n=2

(
dn
n

cos (nθ ) − cn
n
sin (nθ )

)
.

3.3.2 Computation ofL11

Let us expand τε and Sε in powers of ε:

τε = τ0 + ετ1 + ε2τ2 + · · · , Sε = S0 + εS1 + ε2S2 + · · · . (65)

Using (57) and collecting the first-order term in ε, we obtain

L11 = τ1 · ∂θS0[∂θτ0] + τ0 · ∂θS1[∂θτ0] + τ0 · ∂θS0[∂θτ1].

By Proposition 2.9, we know that S0[∂θτ0] = 0. Thus,

L11 = τ0 · ∂θS1[∂θτ0] + τ0 · ∂θS0[∂θτ1]. (66)

To proceed further, we need the concrete expressions for L1. Let us expand GL(�Xε),
GT (�Xε) in powers of ε

GL(�Xε) = GL0 + GL1ε + GL2ε
2 + · · · , GT (�Xε) = GT0 + GT1ε + GT2ε

2 + · · · .
Using the above, the operators Si in (65) can be written as

Si [f ] = 1
4π

∫

S1
(GLi + GTi) f ′dθ ′, i = 0, 1, 2.

Now, let us examine the two terms on the right hand side of (66). For τ0 · ∂θS1 [∂θτ0], we
have

τ0 · ∂θS1 [∂θτ0] =∂θ (τ0 · S1 [∂θτ0]) − ∂θτ0 · S1 [∂θτ0]
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= − ∂θ (∂θX c · S1 [X c]) − X c · S1 [X c] .

By (B2), (B5), and (B10),

4π∂θX c · S1 [X c] = ∂θX c ·
∫

S1
(GL1 + GT1)X ′

cdθ ′

= −
∫

S1

1
2
∂θX c · �Y + ∂θX c · X ′

c
|�X c|2

(X ′
c + 2�X c

) · �Ydθ ′.

Then, by (B2), (B5), and (B9),

4πX c · S1 [X c] = X c ·
∫

S1
(GL1 + GT1)X ′

cdθ ′ = −
∫

S1
X c · X ′

c
�X c · �Y
|�X c|2

dθ ′.

For the τ0 · ∂θS0 [∂θτ1] term in (66), by (64) and (B8),

τ0 · ∂θS0 [∂θτ1] = −1
4
∂θX c · H∂θτ1 − 1

8π

∫

S1
X c · ∂θ ′τ′

1dθ ′ = −1
4
∂θX c · H∂θτ1.

Therefore,

L11 = 1
4π

∂θ

∫

S1

1
2
∂θX c · �Y + ∂θX c · X ′

c
|�X c|2

(X ′
c + 2�X c

) · �Ydθ ′

+ 1
4π

∫

S1
X c · X ′

c
�X c · �Y
|�X c|2

dθ ′ − 1
4
∂θX c · H∂θτ1.

(67)

Recall from (29), (31) that

Y = gX c, g = g0 +
∑
n≥1

gn1 cos (nθ ) + gn2 sin (nθ ) . (68)

In the following computations, we will split �Y as

�Y = g�X c + �gX ′
c.

Now, let us compute (67).

Proposition 3.9 If Y is expanded as the form of (68) in C2(S1), then

L11 = 0.

We remark that the above result gives an independent proof of the fact that λ1 = 0.

Proof of Proposition 3.9 We leave some computations in Lemma B.1. In the first integral
term of (67),

∫

S1
∂θX c · �Ydθ ′ = −

∫

S1
g ′∂θX c · X ′

cdθ ′ = π (g11 sin θ − g12 cos θ ) ,
∫

S1

(
∂θX c · X ′

c
) (

�Y · X ′
c
)

|�X c|2
dθ ′ =

∫

S1
−1
2
g∂θX c · X ′

c + ∂θX c · X ′
c

|�X c|2
�gdθ ′

= π
∑
n≥1

gn1 sin (nθ ) − gn2 cos (nθ ) ,

2
∫

S1

�X c · �Y
|�X c|2

∂θX c · X ′
cdθ ′ =

∫

S1

(
g + g ′) ∂θX c · X ′

cdθ ′ = π (g12 cos θ − g11 sin θ ) .
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Therefore,

1
4π

∫

S1

1
2
∂θX c · �Y +

(
∂θX c · X ′

c
) (

�Y · X ′
c
)

|�X c|2
+ 2(

�X c · �Y )
|�X c|2

(
∂θX c · X ′

c
)
dθ ′

= 1
8
g11 cos θ + 1

8
g12 sin θ + 1

4
∑
n≥2

n (gn1 cos (nθ ) + gn2 sin (nθ )) .

In the second integral term of (67), by Lemma B.1,

1
4π

∫

S1
X c · X ′

c
�X c · �Y
|�X c|2

dθ ′ = 1
4π

X c ·
∫

S1

1
2
(
g + g ′)X ′

cdθ ′

= 1
8
(g11 cos θ + g12 sin θ ) .

Finally, in the last term, by Lemma B.5,

−1
4
∂θX c · H∂θτ1 = −1

4
∑
n≥1

ngn1 cos (nθ ) + ngn2 sin (nθ ) .

In conclusion, after summing the all terms, we obtain

L11 = 0.

��

3.3.3 Computation of 〈1,L21〉
Substituting the expansions of Sε and τε given in (65) into (57) and collecting terms of
order ε2, we have

L21 = τ2 · ∂θS0[∂θτ0] + τ0 · ∂θS2 [∂θτ0] + τ0 · ∂θS0 [∂θτ2]

+ τ1 · ∂θS1 [∂θτ0] + τ1 · ∂θS0 [∂θτ1] + τ0 · ∂θS1 [∂θτ1] .

Our goal is to compute 〈1,L21〉. By Lemma 2.9, we have

τ2 · ∂θS0 [∂θτ0] = 0, 〈τ0, ∂θS0 [∂θτ2]〉 = − 〈∂θτ2,S0 [∂θτ0]〉 = 0.

Since the kernel of S1 is symmetric, we have

〈τ1, ∂θS1 [∂θτ0]〉 = − 〈∂θτ1,S1 [∂θτ0]〉 = − 〈∂θτ0,S1 [∂θτ1]〉 = 〈τ0, ∂θS1 [∂θτ1]〉 .

Thus, we have

〈1,L21〉 = 〈τ0, ∂θS2[∂θτ0]〉 + 2 〈τ1, ∂θS1[∂θτ0]〉 + 〈τ1, ∂θS0[∂θτ1]〉 . (69)

We will evaluate these three terms in turn.

Lemma 3.10

〈τ0, ∂θS2 [∂θτ0]〉 = −π

4
∑
n≥1

n
(
g2n1 + g2n2

)
.
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Proof By (B3) and (B11), we have

4π
∫

S1
τ0 · ∂θS2 [∂θτ0] dθ = −4π

∫

S1
∂θτ0 · S2 [∂θτ0] dθ

=
∫

S1

∫

S1

[
1
2

|�Y |2
|�X c|2

− (�X c · �Y )2

|�X c|4
]
X c · X ′

cdθ ′dθ

−
∫

S1

∫

S1

(X c · �Y )
(
�Y · X ′

c
)

|�X c|2
+ 1

4
|�Y |2 dθ ′dθ .

For the first term, by Lemma B.1,

1
2

|�Y |2
|�X c|2

− (�X c · �Y )2

|�X c|4
= −1

4

(
g2 + g ′2)+

∣∣�g
∣∣2

8 sin2
(

θ−θ ′
2

) .

Then,
∫

S1

∫

S1
g2X c · X ′

cdθ ′dθ =
∫

S1

∫

S1
g ′2X c · X ′

cdθ ′dθ = 0.

Next, by Lemma B.2,

∫

S1

∫

S1

∣∣�g
∣∣2

8 sin2
(

θ−θ ′
2

)dθ ′dθ = π

∫

S1
gH∂θ gdθ − π

∫

S1

1
2
H∂θ g2dθ

= π2
∑
n≥1

n
[
g2n1 + g2n2

]
.

Moreover,

∫

S1

∫

S1

∣∣�g
∣∣2

8 sin2
(

θ−θ ′
2

) |�X c|2 dθ ′dθ =
∫

S1

∫

S1

∣∣�g
∣∣2

2
dθ ′dθ = 2π2

∑
n≥1

(
g2n1 + g2n2

)
.

Therefore,

∫

S1

∫

S1

1
2

|�Y |2
|�X c|2

− (�X c · �Y )2

|�X c|4
dθ ′dθ =

∫

S1

∫

S1

∣∣�g
∣∣2

8 sin2
(

θ−θ ′
2

)X c · X ′
cdθ ′dθ

=
∫

S1

∫

S1

∣∣�g
∣∣2

8 sin2
(

θ−θ ′
2

)
(
1 − 1

2
|�X c|2

)
dθ ′dθ = π2

∑
n≥1

(n − 1)
(
g2n1 + g2n2

)
.

Next, by Lemma B.1,

(X c · �Y )
(
�Y · X ′

c
)

|�X c|2
+ 1

4
|�Y |2 = −

∣∣�g
∣∣2

4
+

∣∣�g
∣∣2

4 sin2
(

θ−θ ′
2

) .

Again, by the above results,

∫

S1

∫

S1

(X c · �Y )
(
�Y · X ′

c
)

|�X c|2
+ 1

4
|�Y |2 dθ ′dθ = π2

∑
n≥1

(2n − 1)
(
g2n1 + g2n2

)
.
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In conclusion, we obtain
∫

S1
τ0 · ∂θS2 [∂θτ0] dθ = −π

4
∑
n≥1

n
(
g2n1 + g2n2

)
.

��

Lemma 3.11

〈τ1, ∂θS1 [∂θτ0]〉 = π

4
∑
n≥1

n
(
g2n1 + g2n2

)
.

Proof By (B12) and (B13),

4π
∫

S1
τ1 · ∂θS1 [∂θτ0] dθ

= −
∫

S1

∫

S1
∂θτ1 · (GL1 + GT1) ∂θ ′τ′

0dθ ′dθ

=
∫

S1

∫

S1

(∂θτ1 · �X c)X c − (∂θτ1 · X ′
c
)
�X c

|�X c|2
· �Ydθ ′dθ

− 1
2

∫

S1

∫

S1
∂θτ1 · �Ydθ ′dθ .

and by (B8),

− 1
2

∫

S1

∫

S1
∂θτ1 · �Ydθ ′dθ = 1

2

∫

S1

∫

S1
τ1 · ∂θ�Ydθ ′dθ

= 1
2

∫

S1

∫

S1
(∂θY · X c)X c · ∂θYdθ ′dθ = π

∫

S1
|τ1|2 dθ .

Therefore,

4π
∫

S1
τ1 · ∂θS1 [∂θτ0] dθ

=
∫

S1

∫

S1

(∂θτ1 · �X c)X c − (∂θτ1 · X ′
c
)
�X c

|�X c|2
· �Ydθ ′dθ + π

∫

S1
|τ1|2 dθ .

(70)

First, by Lemma B.5 and Lemma B.1,

(∂θτ1 · �X c) (X c · �Y )
|�X c|2

−
(
∂θτ1 · X ′

c
)
(�X c · �Y )

|�X c|2

= 1
2
g∂2θ g − 1

2
∂2θ g

(
g + 2g ′)X c · X ′

c − 1
2
∂θ g
(
2g + g ′) ∂θX c · X ′

c

+ 1
2
cot
(

θ − θ ′

2

)
�g∂θ gX c · X ′

c.

Then, when we integrate the four above terms,
∫

S1

∫

S1

1
2
g∂2θ gdθ ′dθ = −π2

∑
n≥1

n2
(
g2n1 + g2n2

)
.
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−
∫

S1

∫

S1

1
2
∂2θ g

(
g + 2g ′)X c · X ′

cdθ ′dθ = π2 (g211 + g212
)
.

−
∫

S1

∫

S1

1
2
∂θ g
(
2g + g ′) ∂θX c · X ′

cdθ ′dθ = −π2

2
(
g211 + g212

)
.

∫

S1

∫

S1

1
2
cot
(

θ − θ ′

2

)
�g∂θ gX c · X ′

cdθ ′dθ = −π

∫

S1
∂θ gX c · H [gX c

]
dθ

= π2

⎡
⎣1
2
(
g211 + g212

)+
∑
n≥2

n
(
g2n1 + g2n2

)
⎤
⎦ .

Next, by Lemma B.5
∫

S1
|τ1|2 dθ = π

∑
n≥1

n2
(
g2n2 + g2n1

)
.

Therefore,
∫

S1
τ1 · ∂θS1 [∂θτ0] dθ = π

4
∑
n≥1

n
(
g2n2 + g2n1

)
.

��
Lemma 3.12

∫

S1
τ1 · ∂θS0 [∂θτ1] dθ = −π

4
∑
n≥1

n3
(
g2n1 + g2n2

)
.

Proof For τ1 · ∂θS0 [∂θτ1], similar with the result of (64) and by (B8),

τ1 · ∂θS0 [∂θτ1] = (X c · ∂θY )X c · ∂θS0 [∂θτ1]

= (X c · ∂θY )
[
−1
4
X c · H∂θτ1 − 1

8π

∫

S1
∂θ ′X ′

c · ∂θ ′τ′
1dθ ′

]

= −1
4
τ1 · H∂θτ1 − 1

8π
(X c · ∂θY )

∫

S1
X ′
c · ∂θ ′Y ′dθ ′.

For the first term of (70), by Lemma B.5,

X c · H∂θτ1 =
∑
n≥1

n2
[
gn2 cos (nθ ) − gn1 sin (nθ )

]
,

so
∫

S1
τ1 · H∂θτ1dθ = π

∑
n≥1

n3
(
g2n1 + g2n2

)
.

Then, for the second term,

X ′
c · ∂θ ′Y ′ = ∂θ g =⇒

∫

S1
X ′
c · ∂θ ′Y ′dθ ′ = 0.

Therefore,
∫

S1
τ1 · ∂θS0 [∂θτ1] dθ = −π

4
∑
n≥1

n3
(
g2n1 + g2n2

)
.

��
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Table1 The errors of σ ,U on the unit circle � measured in the L∞ and L2 norms

N ‖σh − σ‖∞ ‖σh − σ‖2 ‖Uh − U‖∞ ‖Uh − U‖∞
32 5.3290E−15 1.3114E−15 5.1833E−15 1.6195E−15

64 6.4392E−15 2.1441E−15 5.8937E−15 2.0663E−15

σh andUh denote the numerical solution for σ andU (see (71)), respectively, andN is the number of discretization points
on �

Proof of Theorem 1.8 The first item was proved in Proposition 3.4 and the non-positivity
of λε was proved in Proposition 3.1. The second item was proved in Corollary 3.5. We
prove the last item. In the expansion (61), we already know that λ0 = λ1 = 0 (see (62)).
Let us compute λ2 using (63). Since L11 = 0 by Proposition 3.9, the second term in (63)
vanishes. By (69), we have

λ2 = 1
2π

〈1,L21〉

= 1
2π

(〈τ0, ∂θS2[∂θτ0]〉 + 2 〈τ1, ∂θS1[∂θτ0]〉 + 〈τ1, ∂θS0[∂θτ1]〉)

= −1
8
∑
n≥2

n(n2 − 1)
(
g2n1 + g2n2

)
,

where we used Lemma 3.10, 3.11 and 3.12. ��

3.4 Numerical results

In this section, we will use the computational boundary integral method to numerically
verify our analytical results above. We discretize the equation

τ · ∂θS [∂θ (στ)] = τ · ∂θS [F ] .

For the partial derivative with respect to θ , we use fast Fourier transform to compute the
discrete derivative. For the singular integral operator S[·], we use the discretization in [35,
Sect. 3.1]. We first check our numerical method against the case when � is a circle, for
which we obtained analytical results in Proposition 3.8. Since � is a circle, the zero mean
condition on σ is solved together with the above to obtain a unique solution.
Set � to be a unit circle, X (θ ) = (cos θ , sin θ ). For F , we let

F (θ ) =
[

sin 2θ + 4 cos θ − 4 sin θ

− cos 2θ + 4 sin θ + 4 cos θ

]
.

Imposing the zero mean condition on σ , Proposition 3.8 shows that

σ (θ ) = sin(θ ), U (θ ) = u(X (θ )) =
(

−2 sin(θ )
2 cos(θ )

)
. (71)

The numerical results (Table 1) show the accuracy of the computational boundary integral
method and indicate that the method is spectrally accurate.
Next, we compare the numerical and theoretical values in Theorem 1.8 of λε . We con-

sider two examples: (1) Y = cos θX and (2) Y = 1
2 (1 + cos (2θ ))X . We numerically

compute the leading eigenvalue of the discretization Lε by computing the largest eigen-
value of L−1

ε with the power method (Lε is implemented using GMRES), and compare
the resulting value with the asymptotic expression (32) in Theorem 1.8.
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Fig. 2 The eigenvalue λε respect to ε in Example 1: Xε (θ ) = (1 + ε cos θ )X (θ )

Example 1 Y = cos θX , so λ2 = 0 by Theorem 1.8. Since λε ≤ 0, we must have λ3 = 0
and λ4 ≤ 0. That means λε = O

(
ε4
)
when ε is the neighborhood of 0. Therefore, for the

numerical results of λε , we expect

lim
ε→0

λε

ε2
= 0 and lim

ε→0

λε

ε4
≤ 0.

Figure 2 shows the results of λε . As we can see, λε is very flat in the neighborhood of 0.
This shows |λ2| is very small. Next, Fig. 3 shows the numerical values of λε

ε2
and λε

ε4
. In the

left figure, limε→0
λε

ε2
≈ 0. In the right figure, limε→0

λε

ε4
≈ − 0.046875 = − 3

64 < 0. The
numerical results seem to suggest that λ4 = − 3

64 .

Example 2 Y = 1
2 (1 + cos (2θ ))X , so λ2 = − 3

16 . We thus expect λε ≈ − 3
16ε

2 in the
neighborhood of 0. In the left figure of Fig. 4, the numerical values of λε match λ2ε2 when
ε is near 0. The right figure shows that

lim
ε→0

λε

ε2
= − 3

16
and

λε

ε2
≈ − 3

16
+ 3

16
ε.

Hence, as we can see in the left figure, λε matches − 3
16ε

2 + 3
16ε

3 well.

4 Conclusion and future outlook
In this paper, we established the well-posedness of the tension determination problem
for a 1D interface in 2D Stokes flow. In Theorem 1.2, we show that the tension σ can be
determined uniquely if and only if � is not a circle. We have also established estimates
on the tension σ given the force density F . When � is close to a circle, the tension
determination problem becomes increasingly singular. This approach to singularity was
studied in detail leading to the results of Theorem 1.8.
According to Theorem 1.8, when the interface �ε is very close to the unit circle so that

|ε| � 1, the smallest eigenvalue of Lε generically satisfies λε = O
(
ε2
)
. We have even
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Fig. 3 The leading terms of the eigenvalue λε respect to ε in Example 1. Left: the value λε

ε2
. Right: the value

λε

ε4

Fig. 4 The leading terms of the eigenvalue λε respect to ε in Example 2. Left: the value λε . Right: the value
λε

ε2

seen that, for particular geometries, λε may scale likeO(ε4). This shows thatLε is close to
singular when the interface is close to a circle. Accurate numerical determination of σε will
be made challenging due to the resulting large condition number of the discretized linear
system. It would be interesting to see whether one may be able to remove this difficulty
in some way. We note that a somewhat similar situation arises in boundary integral
formulations for Stokes flow in multiply connected domains; the linear system can be
rank-deficient, for which modifications to the formulation have been devised [15,28].
The static tension determination problem treated here is one component of the dynamic

inextensible interface problem discussed in Sect. 1.1. The analytical understanding gained
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here is expected to be a key ingredient in the analytical study of the dynamic problem. In
particular, the estimates obtained here should be directly applicable to the proof of well-
posedness of the dynamic problem in a suitable Hölder space. It is also hoped that our
study will lead to the development of better numerical methods and numerical analysis
for this and related problems [2]. The analysis in [18] was indeed motivated by the need
to develop better numerical methods for the dynamic problem.
We also point out that the related problem of inextensible filaments in a 3D Stokes fluid,

which has been studied by many authors as models of swimming filaments [19–22,37]. It
is hoped that the analysis here may also aid in understanding these problems.

Appendix A: layer potentials
In this section, we will discuss the single layer potentials for u, p, and 
, which are
expressed as

u(x) = Ŝ[F̂ ](x) :=
∫

S1
G(x − X (s′))F̂ (s′)ds′,

p(x) := P[F̂ ](x) =
∫

S1
(x − X(s′))F̂ (s′)ds′,


ik (x) := T [F̂ ](x) :=
∫

S1
�ijk (x − X(s′))̂Fj(s′)ds′,

where

G(r) = GL(r) + GT (r) := 1
4π

(
− log |r| I + r ⊗ r

|r|2
)
, (r) = 1

2π
rT
|r|2 ,

and

�ijk (r) = ∂kGij(r) + ∂iGkj(r) − j(r)δik = − 1
π

rirjrk
|r|4 .

Since for all r �= 0, ∂iGij(r) = 0, and

∂k�ijk (r) =∂2kGij(r) + ∂i∂kGkj(r) − ∂kj(r)δik
=�Gij(r) + ∂ij(r) = 0,

(A1)

we have that u ∈ C2 (
R
2\�), p ∈ C1 (

R
2\�), and 
 ∈ C1 (

R
2\�) satisfy the Stokes

equations in R
2 \ �, i.e.,

∇ · u = 0, −∇ · 
 = −�u + ∇p = 0.

Next, since G,,�ijk ∈ C∞ (
R
2\{0}), then u, p,
 ∈ C∞ (

R
2\�).

Lemma A.1 If X ∈ C2 (
S
1) and |X |∗ > 0, then u ∈ C∞ (

R
2\�)⋂C

(
R
2).

Proof Wehave obtained u ∈ C∞ (
R
2 \ �

)
, so let us prove u is continuous at x ∈ �. Given

x0 ∈ � and X (s0) = x0, we define Y (s; s0) as

Y (s; s0) = Rθ (X − x0) ,
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where θ = arg (∂sX (s0)) andRθ is a rotation matrix with angle θ in a clockwise direction

Rθ =
[

cos θ sin θ

− sin θ cos θ

]
.

Since X ∈ C2 (
S
1) and |X |∗ > 0, there exist an ε0, 0 < ε0 < 1

2 and a function y2 = f (y1)
such that for all |Y (s; s0)| ≤ ε0,

Y2 (s; s0) = f (Y1 (s; s0)) .

Obviously, f (0) = 0, ∂y1 f (0) = 0 and there exist an ε1, 0 < ε1 < ε0 and C > 0 depending
on ε0 such that

∣∣(y1, f (y1))
∣∣ < ε0 and for all

∣∣y1
∣∣ < ε1,

∣∣∂y1 f (y1)
∣∣ < C . Moreover, s (y1)

exists with

ds
dy1

=
√
1 + (∂y1 f (y1)

)2.

Now, for all ε < ε1, we set Iε as

Iε = {s ∈ S
1 ||x − x0| < ε

}
.

Then, for all |x − x0| < ε
2 , we may split u (x) − u (x0) into

u (x) − u (x0) =
∫

Iε

G
(x − X (s′)) F̂ (s′)ds′ −

∫

Iε

G
(x0 − X (s′)) F̂ (s′)ds′

+
∫

S1\Iε

(
G
(x − X (s′))− G

(x0 − X (s′))) F̂ (s′)ds′.

Set z = Rθ (x − x0) , z0 = Rθ (x0 − x0) = 0, we have |z| < ε
2 < ε0

2 . Then, for the first
two terms, we obtain |Y1 (s; s0)| < ε < ε1 on Iε and

∣∣∣∣
∫

Iε

G
(x − X (s′)) F̂ (s′)ds′

∣∣∣∣ =
∣∣∣∣
∫

Iε

G
(z − Y (s′; s0

)) F̂ (s′)ds′
∣∣∣∣

≤ ∥∥F̂∥∥C0

∫

Iε

∣∣G (z − Y (s′; s0
))
(s′)
∣∣ ds′

≤ ∥∥F̂∥∥C0

∫ ε

−ε

∣∣G (z − (y1, f (y1)))
∣∣
√
1 + (∂y1 f (y1)

)2dy1.

Since |z| , ∣∣(y1, f (y1))
∣∣ < 1

2 ,

0 < log
1∣∣z − (y1, f (y1))

∣∣ ≤ log
1∣∣z1 − y1

∣∣ .

Therefore,
∫ ε

−ε

∣∣G (z − (y1, f (y1)))
∣∣
√
1 + (∂y1 f (y1)

)2dy1

≤ C
∫ ε

−ε

∣∣GL (z − (y1, f (y1))) + GT (z − (y1, f (y1)))
∣∣ dy1

≤ C
4π

∫ ε

−ε

log
1∣∣z1 − y1

∣∣ + 1 dy1 ≤ C
2π

ε

(
3 + log

1
2ε

)
,
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where C depends on ε0 since |z1| < ε. Next, for the last term, since |x − x0| < ε
2 , there

exists a C > 0 such that for all s′ ∈ S
1\Iε and 0 ≤ t ≤ 1

∣∣∇G
(
tx + (1 − t)x0 − X (s′))∣∣ ≤ C

2π
1
ε
.

Then,
∣∣∣∣
∫

S1\Iε

(
G
(x − X (s′))− G

(x0 − X (s′))) F̂ (s′)ds′
∣∣∣∣

≤ ∥∥F̂∥∥C0

∫

S1\Iε

∣∣G (x − X (s′))− G
(x0 − X (s′))∣∣ ds′

≤ ∥∥F̂∥∥C0

∫

S1\Iε

∫ 1

0

∣∣∂tG
(
tx + (1 − t)x0 − X (s′))∣∣ dtds′

≤ ∥∥F̂∥∥C0

∫

S1\Iε

∫ 1

0

∣∣∇G
(
tx + (1 − t)x0 − X (s′))∣∣ |x − x0| dtds′

≤ C
2π
∥∥F̂∥∥C0

1
ε

|x − x0|
∫

S1\Iε

∫ 1

0
dtds′ ≤ C

∥∥F̂∥∥C0
1
ε

|x − x0| .

Finally,

limx→x0
|u (x) − u (x0)| ≤ limx→x0

C
π

ε

(
3 + log

1
2ε

)
+ C

∥∥F̂∥∥C0
1
ε

|x − x0|

≤ C
π

ε

(
3 + log

1
2ε

)
.

Since 0 < ε < ε1 is arbitrary and C only depends on ε0, taking ε → 0, then we obtain that
u (x) is continuous at x0 ∈ �. Therefore, u ∈ C∞ (

R
2\�)⋂C

(
R
2). ��

Next, we will prove 
ik satisfies

�(
n)i� = �
iknk� = F̂i.

We first set a double layer potential of the flow as

D̂[F̂ ](x) :=
∫

S1
K (X (s) , x) F̂ (s′)ds′,

where the kernel Kij (y, x) := �ijk (y − x) nk (y). Then, we have the following result for its
integral on �.

Lemma A.2

∫

�

Kij (y, x) ds (y) =

⎧⎪⎨
⎪⎩

−δij if x ∈ �1,
0 if x ∈ �2,

− 1
2δij if x ∈ �.

(A2)

Proof First, given x ∈ �2, since
∣∣x − y

∣∣ > 0 for all y ∈ �, by (A1),
∫

�

Kij (y, x) ds (y) =
∫

�

�ijk (y − x) nk (y) ds (y) =
∫

�1
∂k�ijk (y − x) dy = 0.



   46 Page 42 of 55 P.-C. Kuo et al. Res Math Sci          (2023) 10:46 

Next, given x ∈ �1, set Bε = {y ∈ �
∣∣∣∣y − x

∣∣ < ε
}
with 0 < ε � 1 and on ∂Bε , n (θ ) =

(cos θ , sin θ ) and y (θ ) = x + εn (θ ). Then, we have

0 =
∫

�1\Bε

∂k�ijk (y − x) dy

=
∫

�

�ijk (y − x) nk (y) ds (y) −
∫

∂Bε

�ijk (y − x) nk (y) ds (y)

=
∫

�

Kij (y, x) ds (y) −
∫ 2π

0
�ijk (εn (θ )) nk (θ ) εdθ

=
∫

�

Kij (x, y) ds (y) + 1
π

∫ 2π

0

ni (θ ) nj (θ )
|n (θ )|4 dθ .

If i �= j,

∫ 2π

0

ni (θ ) nj (θ )
|n (θ )|4 dθ =

∫ 2π

0
cos θ sin θdθ = 0.

If i = j = 1 (= 2),

∫ 2π

0

ni (θ ) nj (θ )
|n (θ )|4 dθ =

∫ 2π

0
cos2 θdθ

(
=
∫ 2π

0
sin2 θdθ

)
= π .

Therefore,

∫

�

Kij (x, y) ds (y) = − 1
π

∫ 2π

0

ni (θ ) nj (θ )
|n (θ )|4 dθ = −δij .

Finally, set ∂B1
ε = ∂Bε

⋂
�1 and ∂B2

ε = {y ∈ ∂Bε

∣∣n (y) · n (x) < 0
}
. Again,

0 =
∫

�1\Bε

∂k�ijk (y − x) dy

=
∫

�

�ijk (y − x) nk (y) ds (y) −
∫

∂B1ε
�ijk (y − x) nk (y) ds (y) ,

and

∫

∂B2ε
�ijk (y − x) nk (y) ds (y) =

∫ 2π

0
�ijk (εn (θ )) nk (θ ) εdθ

= − 1
π

∫ θ0+π

θ0

ni (θ ) nj (θ )
|n (θ )|4 dθ = −1

2
,

where θ0 = arg (n (x))+ π
2 . The remaining part is only the difference of integrals between

on ∂B1
ε and ∂B2

ε . Since � ∈ C2, ∂2s X (s) is bounded, the symmetric difference between ∂B1
ε

and ∂B2
ε is contained in

∂B3
ε =

{
y ∈ ∂Bε

∣∣∣∣∣
∣∣n (y) · n (x)∣∣ ≤

∥∥∂2s X (s)
∥∥
C0

4
ε2
}
.
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Thus, as ε → 0,
∣∣∣∣∣
∫

∂B1ε
�ijk (y − x) nk (y) ds (y) −

∫

∂B2ε
�ijk (y − x) nk (y) ds (y)

∣∣∣∣∣

≤ 1
π

∫

∂B3ε

∣∣∣∣∣
ni (y) nj (y)
ε
∣∣n (y)∣∣4

∣∣∣∣∣ ds (y) ≤ 4
π
sin−1

(∥∥∂2s X (s)
∥∥
C0

4
ε2
)

−→ 0.

Therefore,
∫

�

�ijk (y − x) nk (y) ds (y) = lim
ε→0

∫

∂B1ε
�ijk (y − x) nk (y) ds (y)

= −1
2

+ lim
ε→0

(∫

∂B1ε
−
∫

∂B2ε

)
�ijk (y − x) nk (y) ds (y) = −1

2
.

��

Using the fact that � is C2, from [7, Lemma 3.15], there exist a constant C� > 0 s.t. for all
x, y ∈ �,

∣∣(x − y) · n (y)∣∣ ≤ C�

∣∣x − y
∣∣2 . (A3)

Thus, for all x, y ∈ �,

∣∣Kij (y, x)
∣∣ ≤ C�

π
, (A4)

so ‖K (·, x)‖L1(�) is uniformly bounded on�. Next, wewill claim ‖K (·, x)‖L1(�) is uniformly
bounded in R

2 \ �.

Lemma A.3 There exists a constant C < ∞ s.t. ∀x ∈ R
2\�,

∫

�

∣∣Kij (y, x)
∣∣ ds (y) ≤ C. (A5)

Proof Define dist (x,�) as the distance between point x and set �, and then there exist
0 < ε0 < 1

2C�
andC0 > 0 s.t. (1) for all x with dist (x,�) < 1

2ε0, there exists a unique x0 =
X (s0) ∈ � and t ∈ (− 1

2ε0,
1
2ε0
)
s.t. x = x0 + tn (x0), (2) define r0 (s) = |X (s) − X (s0)|,

then sgn (s − s0) ∂sr0 (s) > C0 for all 0 < r0 (s) < ε0.
We will prove this result for two different cases.
(i) Given dist (x,�) ≥ 1

2ε0, we have
∣∣Kij (y, x)

∣∣ ≤ 1
2π

1
ε0

for all y ∈ �, so

∫

�

∣∣Kij (y, x)
∣∣ ds (y) ≤ 1

2π
1
ε0

∫

�

ds (y) ≤ C1
1
ε0

,

where C1 is only depends on �.
(ii) Given dist (x,�) < 1

2ε0, set x0 ∈ � be the unique point s.t. x = x0 + tn (x0) with
t ∈ (− 1

2ε0,
1
2ε0
)
, and define Bε0 = {y ∈ �

∣∣∣∣y − x0
∣∣ < ε0

}
. We split the integral into

∫

�

∣∣Kij (y, x)
∣∣ ds (y) =

∫

Bε0

∣∣Kij (y, x)
∣∣ ds (y) +

∫

�\Bε0

∣∣Kij (y, x)
∣∣ ds (y) .
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In the second term, for all y ∈ �\Bε0 ,

∣∣y − x
∣∣ ≥ ∣∣y − x0

∣∣− |x0 − x| ≥ 1
2
ε0,

so
∫

�\Bε0

∣∣Kij (y, x)
∣∣ ds (y) ≤ 1

2π
1
ε0

∫

�\Bε0

ds (y) ≤ C1
1
ε0

.

For the first term, by (A3), we obtain

π
∣∣Kij (y, x)

∣∣ =
∣∣(yi − xi)

(
yj − xj

)
(y − x) · n (y)∣∣∣∣y − x
∣∣4

≤
∣∣(y − x0) · n (y)∣∣+ ∣∣(x0 − x) · n (y)∣∣∣∣y − x

∣∣2 ≤ C�

∣∣y − x0
∣∣2 + |x0 − x|∣∣y − x
∣∣2 .

Moreover,

∣∣y − x
∣∣2 = ∣∣y − x0

∣∣2 + |x0 − x|2 + 2 (y − x0) · (x0 − x) .

Since

x0 − x = tn (x0) , where |t| = |x0 − x| ,

by (A3),

∣∣(y − x0) · (x0 − x)
∣∣ = |(y − x0) · n (x0)| |x0 − x| ≤ C�

∣∣y − x0
∣∣2 |x0 − x| .

Then, C�

∣∣y − x0
∣∣ < C�ε0 ≤ 1

2 , so

∣∣y − x
∣∣2 ≥ ∣∣y − x0

∣∣2 + |x0 − x|2 − ∣∣y − x0
∣∣ |x0 − x|

≥ 1
2

(∣∣y − x0
∣∣2 + |x0 − x|2

)
.

(A6)

Therefore,

∣∣Kij (y, x)
∣∣ ≤ 2

π

C�

∣∣y − x0
∣∣2 + |x0 − x|∣∣y − x0

∣∣2 + |x0 − x|2

≤ 2
π
C� + 2

π

|x0 − x|∣∣y − x0
∣∣2 + |x0 − x|2

.

For the second term, set r = ∣∣y − x0
∣∣ and a = |x0 − x|. Since sgn (s − s0) ∂sr0 (s) > C0 for

all 0 < r0 (s) < ε0,

∫

Bε0

|x0 − x|∣∣y − x0
∣∣2 + |x0 − x|2

ds (y) ≤ 2
C0

∫ ε0

0

a
r2 + a2

dr ≤ 2
C0

∫ ∞

0

1
r2 + 1

dr.
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Hence,

∫

�

∣∣Kij (y, x)
∣∣ ds (y) ≤C1

1
ε0

+ 2
π
C�

∫

Bε0

ds (y) + 2
C0

∫ ∞

0

1
r2 + 1

dr

≤C1
1
ε0

+ C2.

Since ε0, C1, C2 only depend on �,

∫

�

∣∣Kij (y, x)
∣∣ ds (y) ≤ C,

where C only depends on �. ��

Remark A.4 Obviously, if F̂ (s) ∈ C0 (
S
1), D̂[F̂ ](x) is smooth and bounded in R

2 \ �.
Then, by (A4) and [7, Proposition 3.12], D̂[F̂ ](x) exists and is bounded on �. Note that
D̂[F̂ ](x) may be discontinuous across �.

Lemma A.5 Given � ∈ C2 and F̂ ∈ C (�), if F̂ (s0) = 0 where s0 ∈ S
1, then D̂[F̂ ] (x) =∫

S1 K
(X (s′) , x) F̂ (s′)ds′ is continuous at x0 = X (s0).

Proof By (A3) and (A5), there exists C0, C1 > 0 s.t.

∫

S1

∣∣Kij
(X (s′) ,X (s)

)∣∣ ds ≤ C0, ∀s �= S
1,

∫

S1

∣∣Kij
(X (s′) , x)∣∣ ds ≤ C1, ∀x �= �.

Given ε > 0, we choose 0 < η � 1 s.t.
∣∣F̂ (s)∣∣ < ε

2(C0+C1) for all s ∈ Iη :={
s ∈ S

1 ||X (s) − X (s0)| < η
}
, and set Bη = X (Iη

)
. Then, we use the technique in Lemma

A.1, and for all |x − x0| <
η
2 ,

∣∣D̂i[F̂ ] (x) − D̂i[F̂ ] (x0)
∣∣

≤
∫

Iη

(∣∣Kij
(X (s′) , x)∣∣+ ∣∣Kij

(X (s′) ,X (s0)
)∣∣) ∣∣F̂ (s′)∣∣ ds′

+
∫

S1\Iη

∣∣Kij
(X (s′) , x)− Kij

(X (s′) , x0
)∣∣ ∣∣F̂ (s′)∣∣ ds′

≤ ε + C
∥∥F̂∥∥C0(S1)

1
η2

|x − x0| .

Hence,

limx→x0

∣∣D̂i[F̂ ] (x) − D̂i[F̂ ] (x0)
∣∣ ≤ ε.

Letting ε → 0,

limx→x0

∣∣D̂[F̂ ] (x) − D̂[F̂ ] (x0)
∣∣ = 0.

��
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Now, we define limits D�1 and D�2 on � as

D�1 (x) = lim
t→0+ D̂[F̂ ](x − tn (x)), D�2 (x) = lim

t→0+ D̂[F̂ ](x + tn (x)).

We have the following results.

Theorem A.6 Given � ∈ C2 and F̂ ∈ C (�),

D�1 (X (s)) = − 1
2
F̂ (s) +

∫

S1
K
(X (s′) ,X (s)

) F̂ (s′)ds′,

D�2 (X (s)) =1
2
F̂ (s) +

∫

S1
K
(X (s′) ,X (s)

) F̂ (s′)ds′.

Proof For D�1 , since X (s) − tn (X (s)) ∈ �1 for all 0 < t � 1, by (A2),

D̂[F̂ ](X (s) − tn (X (s))) =
∫

S1
K
(X (s′) ,X (s) − tn (X (s))

) F̂ (s′)ds′

= F̂ (s)
∫

S1
K
(X (s′) ,X (s) − tn (X (s))

)
ds′

+
∫

S1
K
(X (s′) ,X (s) − tn (X (s))

) (F̂ (s′) − F̂ (s)) ds′

= −F̂ (s) +
∫

S1
K
(X (s′) ,X (s) − tn (X (s))

) (F̂ (s′) − F̂ (s)) ds′.

Then, F̂ (s′) − F̂ (s) = 0 when s′ = s, so by Lemma A.5, the second term is continuous at
t = 0. Therefore, by (A2),

lim
t→0+ D̂[F̂ ](x − tn (x)) = −F̂ (s) +

∫

S1
K
(X (s′) ,X (s)

) (F̂ (s′) − F̂ (s)) ds′

= −F̂ (s) − F̂ (s)
∫

S1
K
(X (s′) ,X (s)

)
ds′ +

∫

S1
K
(X (s′) ,X (s)

) F̂ (s′)ds′

= −1
2
F̂ (s) +

∫

S1
K
(X (s′) ,X (s)

) F̂ (s′)ds′.

Next, for D�2 , we use the same technique. Since X (s)+ tn (X (s)) ∈ �2 for all 0 < t � 1,
by (A2),

D̂[F̂ ](X (s) + tn (X (s))) =
∫

S1
K
(X (s′) ,X (s) + tn (X (s))

) F̂ (s′)ds′

=
∫

S1
K
(X (s′) ,X (s) + tn (X (s))

) (F̂ (s′) − F̂ (s)) ds′.

Thus,

lim
t→0+ D̂[F̂ ](x + tn (x)) = 1

2
F̂ (s) +

∫

S1
K
(X (s′) ,X (s)

) F̂ (s′)ds′.

��

Next, since � ∈ C2, there exists an ε0 > 0 s.t. for all x with dist (x,�) < ε0, there exists
a unique s ∈ S

1 and t ∈ (−ε0, ε0) s.t. x = X (s) + tn (s). Thus, we may define a tubular
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set V = V (ε0,�) as V := {x | dist (x,�) < ε0}, within V , we may set functions s (x) and
X (x) = X (s (x)). Now, let us compute the limits (15):

F�1 (s) = lim
t→0+ 
(X (s) − tn(s))n(s), F�2 (s) = lim

t→0+ 
(X(s) + tn(s))n(s).

Theorem A.7 Given � ∈ C2 and F̂ ∈ C (�),

F�1 (s) =1
2
F̂ (s) +

∫

S1
K
(X (s) ,X

(
s′
)) F̂ (s′)ds′,

F�2 (s) = − 1
2
F̂ (s) +

∫

S1
K
(X (s) ,X

(
s′
)) F̂ (s′)ds′.

Thus,

�
n� = F�1 − F�2 = F̂ .

Proof First, we set K ∗ (y, x) in V × V as

K ∗ (y, x) := �ijk (x − y) nk (s (x)) .

It is obvious that K ∗ (y, x) = K (x, y) for all x, y ∈ �. By (A4), ‖K (x, ·)‖L1(�) is uniformly
bounded on �, so we may set a function in V as

f [F̂ ] (x) = 
 (x)n (s (x)) =
∫

S1
K ∗ (X (s′) , x) F̂ (s′)ds′.

Next, we will claim f (x) is continuous in V where f (x) = D̂[F̂ ] (x) + F [F̂ ] (x). It is
clear that f (x) is continuous in R

2 \ �, and by (A4) and [7, Proposition 3.12], f (x) is
continuous on �. Thus, we only have to prove f (x) is continuous at x0 = X (s) for all
s ∈ S

1. We use the technique of the proofs of Lemma A.1 and Lemma A.5 again. Define
Iη := {s ∈ S

1 | |X (s) − X (s0)| < η
}
. Then for all |x − x0| < 1

2η,

∣∣f (x) − f (x0)
∣∣

≤
∫

Iη

∣∣∣Kij
(X (s′) , x)+ K ∗

ij
(X (s′) , x)

∣∣∣ ∣∣F̂ (s′)
∣∣ ds′

+
∫

Iη

∣∣∣Kij
(X (s′) , x0

)+ K ∗
ij
(X (s′) , x0

)∣∣∣ ∣∣F̂ (s′)
∣∣ ds′

+
∫

S1\Iη

∣∣Kij
(X (s′) , x)− Kij

(X (s′) , x0
)∣∣ ∣∣F̂ (s′)∣∣ ds′

+
∫

S1\Iη

∣∣∣K ∗
ij
(X (s′) , x)− K ∗

ij
(X (s′) , x0

)∣∣∣ ∣∣F̂ (s′)
∣∣ ds′

≤
∫

Iη

∣∣∣Kij
(X (s′) , x)+ K ∗

ij
(X (s′) , x)

∣∣∣ ∣∣F̂ (s′)
∣∣ ds′

+
∫

Iη

∣∣∣Kij
(X (s′) , x0

)+ K ∗
ij
(X (s′) , x0

)∣∣∣ ∣∣F̂ (s′)
∣∣ ds′

+ C
∥∥F̂∥∥C0(S1)

1
η2

|x − x0| .
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For the first two terms, we use some techniques in the proof of Lemma A.3. Consider
0 < η < 1

2ε0, where ε0 is defined in the proof of Lemma A.3. Then, for all s′ ∈ Iη,

∣∣n (s′)− n (s (x))
∣∣ ≤ ∥∥∂2s X

∥∥
C0
∣∣s′ − s (x)

∣∣ ≤
∥∥∂2s X

∥∥
C0

[X]
∣∣X (s′)− X (x)

∣∣ .

and
∣∣X (s′)− x

∣∣ > 1
2
∣∣X (s′)− X (x)

∣∣ by (A6).

Kij
(X (s′) , x)+ K ∗

ij
(X (s′) , x)

= − 1
π

(Xi (s) − xi)
(
Xj (s) − xj

) (X (s′)− x) · n (s′)

|X (s′) − x|4

− 1
π

(xi − Xi (s))
(
xj − Xj (s)

) (x − X (s′)) · n (s (x))
|x − X (s′)|4

= − 1
π

(Xi (s) − xi)
(
Xj (s) − xj

) (X (s′)− x) · (n (s′)− n (s (x))
)

|X (s′) − x|4 ,

so
∫

Iη

∣∣∣Kij
(X (s′) , x)+ K ∗

ij
(X (s′) , x)

∣∣∣ ∣∣F̂ (s′)
∣∣ ds′

≤ ∥∥F̂∥∥C0(S1)

∫

Iη

∣∣∣Kij
(X (s′) , x)+ K ∗

ij
(X (s′) , x)

∣∣∣ ds′

≤
2
∥∥F̂∥∥C0(S1)

π

∫

Iη

ds′ ≤
4
∥∥F̂∥∥C0(S1)
C0π

η,

where C0 is defined in the proof of Lemma A.3. Therefore,

limx→x0

∣∣f (x) − f (x0)
∣∣ ≤

4
∥∥F̂∥∥C0(S1)
C0π

η.

Letting η → 0, we see that f (x) continuous at x0. Finally, we have

F�1 (s) = lim
t→0+ D̂[F̂ ](X (s) − tn(s))

= lim
t→0+ f (X (s) − tn(s)) − lim

t→0+ D̂[F̂ ](X(s) − tn(s))

= f (X (s)) − D�1 (X (s))

= 1
2
F̂ (s) +

∫

S1
K ∗ (X (s′) ,X (s)

) F̂ (s′)ds′

= 1
2
F̂ (s) +

∫

S1
K
(X (s),X (s′)) F̂ (s′)ds′.

Similarly, one can obtain

F�2 (s) = −1
2
F̂ (s) +

∫

S1
K
(X (s),X (s′)) F̂ (s′)ds′.

��

Now, we will prove the necessary and sufficient condition of u (x) vanishes at infinity.
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Lemma A.8

|u (x)| → 0 as |x| → ∞ ⇐⇒
∫

S1
F̂ (s)ds = 0.

Proof Since �1 is bounded, there exists a constant R0 > 0 s.t. |X (s)| < R0 for all s ∈ S
1.

Then,

G (x − X (s)) − G (x) =
∫ 1

0
∇G (x − tX (s)) · X (s) dt,

so there exists a constant C > 0 s.t. for all |x| > 2R0,

|G (x) − G (x − X (s))| ≤ C sup
0≤t≤1

|X (s)|
|x − tX (s)| ≤ C

R0
|x| − R0

.

Next, for all |x| > 2R0,

u (x) =
∫

S1
G
(x − X (s′)) F̂ (s′)ds′

=
∫

S1

(
G
(x − X (s′))− G (x)

) F̂ (s′)ds′ + G (x)
∫

S1
F̂ (s′)ds′.

Since

lim|x|→∞

∣∣∣∣
∫

S1

(
G
(x − X (s′))− G (x)

) F̂ (s′)ds′
∣∣∣∣ ≤ lim|x|→∞C

R0
|x| − R0

= 0

and

lim|x|→∞Gii (x) = ∞, lim|x|→∞
∣∣Gi(2−i) (x)

∣∣ ≤ 1,

we obtain

lim|x|→∞
|u (x)| → 0 ⇐⇒

∫

S1
F̂ (s)ds = 0.

��

Appendix B: some calculus for the operatorL near the unit circle
B.1 Computation forSi , τi
Set

X c =
[
cos θ

sin θ

]
and Xε = X c + εY .

Then,

4πGL (�Xε) = − log |Xε| = GL0 + GL1ε + GL2ε
2 + O

(
ε3
)
,

where

GL0 = − log |�X c| , (B1)



   46 Page 50 of 55 P.-C. Kuo et al. Res Math Sci          (2023) 10:46 

GL1 = −�X c · �Y
|�X c|2

, (B2)

GL2 = (�X c · �Y )2

|�X c|4
− 1

2
|�Y |2
|�X c|2

, (B3)

and

4πGT (�Xε) = �Xε ⊗ �Xε

|�Xε|2
= GT0 + GT1ε + GT2ε

2 + O
(
ε3
)
,

where

GT0 = �X c ⊗ �X c

|�X c|2
, (B4)

GT1 = �Y ⊗ �X c + �X c ⊗ �Y
|�X c|2

− 2(
�X c · �Y ) (�X c ⊗ �X c)

|�X c|4
, (B5)

GT2 = �Y ⊗ �Y
|�X c|2

− 2(
�X c · �Y ) (�Y ⊗ �X c + �X c ⊗ �Y )

|�X c|4

+ 4 (
�X c · �Y )2 (�X c ⊗ �X c)

|�X c|6
− |�Y |2 (�X c ⊗ �X c)

|�X c|4
. (B6)

Next,

τε = ∂θXε

|∂θXε| = τ0 + τ1ε + τ2ε
2 + O

(
ε3
)
,

where

τ0 = ∂θX c, ∂θτ0 = −X c, (B7)

τ1 = ∂θY − (∂θX c · ∂θY ) ∂θX c = (X c · ∂θY )X c. (B8)

Therefore, for GT1, GT2, we have some results for some computations in Sect. 3.3

X c · GT1X ′
c =0, (B9)

∂θX c · GT1X ′
c = − 1

2
∂θX c · �Y −

(
∂θX c · X ′

c
)

|�X c|2
�Y · (X ′

c + �X c
)
, (B10)

X c · GT2X ′
c = (X c · �Y )

(
�Y · X ′

c
)

|�X c|2
+ 1

4
|�Y |2 . (B11)

Moreover,

∂θτ1 · GL1∂θ ′τ′
0 =

(
∂θτ1 · X ′

c
)
�X c

|�X c|2
· �Y , (B12)

∂θτ1 · GT1∂θ ′τ′
0 = − (∂θτ1 · �X c)X c

|�X c|2
· �Y + 1

2
∂θτ1 · �Y . (B13)

Furthermore, set Y = gX c, then we have

�Y = g�X c + �gX ′
c.

We obtain some results of �Y for computations in Sect. 3.3.
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Lemma B.1 (The computations for �Y )
(1)

�X c · �Y
|�X c|2

=1
2
(
g + g ′) .

(2)

X c · �Y = 1
2
g |�X c|2 + �gX c · X ′

c,

X ′
c · �Y = − 1

2
g |�X c|2 + �g,

∂θX c · �Y = − g∂θX c · X ′
c + �g∂θX c · X ′

c.

(3)

|�Y |2 = gg ′ |�X c|2 + ∣∣�g
∣∣2 ,

|�Y |2
|�X c|2

= gg ′ +
∣∣�g

∣∣2
|�X c|2

.

Proof (1)

�X c · �Y = g |�X c|2 − �g
(
1 − X ′

c · X c
) = g |�X c|2 − 1

2
�g |�X c|2 ,

so

�X c · �Y
|�X c|2

= g − 1
2
�g = 1

2
(
g + g ′) .

(2)

X c · �Y =X c · (g�X c + �gX ′
c
) = g

(
1 − X c · X ′

c
)+ �gX c · X ′

c

= 1
2
g |�X c|2 + �gX c · X ′

c,

X ′
c · �Y =X ′

c · (g�X c + �gX ′
c
) = g

(X c · X ′
c − 1

)+ �g

= − 1
2
g |�X c|2 + �g,

∂θX c · �Y = ∂θX c · (g�X c + �gX ′
c
) = −g∂θX c · X ′

c + �g∂θX c · X ′
c.

(3)

|�Y |2 = (
g�X c + �gX ′

c
)2 = g2 |�X c|2 − g�g |�X c|2 + ∣∣�g

∣∣2

= gg ′ |�X c|2 + ∣∣�g
∣∣2 .

��

Moreover, for g , we have the following equation of Hilbert transforms.
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Lemma B.2 (Toland) If g ∈ C1 (
S
1), then

gH∂θ g − 1
2
H∂θ g2 = 1

8π

∫

S1

∣∣�g
∣∣2

sin2
(

θ−θ ′
2

)dθ ′.

Proof

gH∂θ g − 1
2
H∂θ g2 = gH∂θ g − Hg∂θ g

= g
1
2π

∫

S1
cot
(

θ − θ ′

2

)
∂θ ′g ′dθ ′ − 1

2π

∫

S1
cot
(

θ − θ ′

2

)
g ′∂θ ′g ′dθ ′

= 1
2π

∫

S1
cot
(

θ − θ ′

2

)
�g∂θ ′g ′dθ ′ = − 1

4π

∫

S1
cot
(

θ − θ ′

2

)
∂θ ′
∣∣�g

∣∣2 dθ ′

= 1
8π

∫

S1

∣∣�g
∣∣2

sin2
(

θ−θ ′
2

)dθ ′.

��

B.2 Some computations of Hilbert transform for Fourier series

In this section,wewill compute someHilbert transforms for Sect. 3.3. First, for Proposition
3.8, we need to compute Hilbert transforms for trigonometric functions.

Lemma B.3 For n ≥ 2,

H [cos (nθ )X c] = sin (nθ )X c, H [cos (nθ ) ∂θX c] = sin (nθ ) ∂θX c,
H [sin (nθ )X c] = − cos (nθ )X c, H [sin (nθ ) ∂θX c] = − cos (nθ ) ∂θX c.

Moreover,

H [cos θX c] = 1
2

[
sin (2θ )

− cos (2θ )

]
, H [cos θ∂θX c] = 1

2

[
cos (2θ )
sin (2θ )

]
,

H [sin θX c] = −1
2

[
cos (2θ )
sin (2θ )

]
, H [sin θ∂θX c] = 1

2

[
sin (2θ )
cos (2θ )

]
.

H [X c] = −∂θX c, H [∂θX c] = X c.

Lemma B.4 For n ≥ 2,

H [∂θ (cos (nθ )X c)] = n cos (nθ )X c + sin (nθ ) ∂θX c,

H [∂θ (sin (nθ )X c)] = n sin (nθ )X c − cos (nθ ) ∂θX c,

H [∂θ (cos (nθ ) ∂θX c)] = − sin (nθ )X c + n cos (nθ ) ∂θX c,

H [∂θ (sin (nθ ) ∂θX c)] = cos (nθ )X c + n sin (nθ ) ∂θX c.
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Moreover,

H [∂θ (cos θX c)] =
[
cos (2θ )
sin (2θ )

]
, H [∂θ (cos θ∂θX c)] =

[
− sin (2θ )
cos (2θ )

]
,

H [∂θ (sin θX c)] =
[

sin (2θ )
− cos (2θ )

]
, H [∂θ (sin θ∂θX c)] =

[
cos (2θ )
sin (2θ )

]
.

Next, when we compute λ2 in Sect. 3.3, we expand Y as a Fourier series

Y (θ ) = gX c (θ ) , where g = g0 +
∑
n≥1

gn1 cos (nθ ) + gn2 sin (nθ ) .

Then, we obtain some results for τ1

Lemma B.5 (The computation for τ1) (1)

τ1 = ∂θ gX c =
∑
n≥1

n
[
gn2 cos (nθ ) − gn1 sin (nθ )

]X c,

∂θτ1 = −
∑
n≥1

n2
[
gn1 cos (nθ ) + gn2 sin (nθ )

]X c

+
∑
n≥1

n
[
gn2 cos (nθ ) − gn1 sin (nθ )

]
∂θX c.

(2)

H∂θτ1 =
∑
n≥2

n2
[
gn2 cos (nθ ) − gn1 sin (nθ )

]X c

+
∑
n≥2

n
[
gn1 cos (nθ ) + gn2 sin (nθ )

]
∂θX c

+ g12

[
cos (2θ )
sin (2θ )

]
+ g11

[
− sin (2θ )
cos (2θ )

]
.

(3)

∂θτ1 · �X c = 1
2
∂2θ g |�X c|2 − ∂θ g sin(θ − θ ′),

∂θτ1 · X ′
c = ∂2θ gX c · X ′

c + ∂θ g∂θX c · X ′
c.
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