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Numerical simulations of vesicle and bubble dynamics in two-dimensional four-roll mill flows
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We use a computational technique based on the immersed boundary method to construct a four-roll mill device
with which we can generate a broad spectrum of flow types from an extensional flow to a rotational one. We put
a vesicle or a bubble in the constructed four-roll mill device to investigate their interaction with the surrounding
fluid. The vesicle dynamics are determined by its bending rigidity, inextensibility, and hydrodynamical force,
whereas the bubble dynamics is governed by the surface tension and the hydrodynamic interaction. Depending
on the type of the flow, these suspended objects go through either a tank-treading motion or a tumbling motion.
We validate our numerical method by a convergence study and discuss the transition between tank-treading and
tumbling motions for the vesicles and bubbles.
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I. INTRODUCTION

We investigate the dynamics of a vesicle and a bubble in
various flow types, which are generated by a two-dimensional
computational model analogous to a four-roll mill device.
It has been a long-time interest for many researchers in the
fluid dynamics community to generate general flows such as
rotational, extensional, and composite flows. In 1934, Taylor
proposed a device [1] called the four-roll mill device. The
device is equipped with four rotating mills at the four corners
of a rectangular box and generates various flows from an
extensional flow to a rotational flow by adjusting the rotational
speed and direction of the four cylindrical rollers ω1 and ω2;
see Fig. 1.

Since the four-roll mill device can generate a broad
spectrum of flow types with a stagnation point at its center, it
has been widely used in the rheological studies of suspended
objects, such as the deformation and breakup of droplets
[2–5], the coalescence of droplets [6], and the orientation
and deformation of the polymer chains [7]. It attracts many
researchers to develop a microfluidic analog of the four-roll
mill [8,9], and several types of microfluidic devices [10–14]
have been proposed to study the dynamics of single stretching
DNA molecules [15,16], the flow-induced birefringence of
semidilute solutions of wormlike micelles [17], and the drug-
delivery systems and photonics [18–20].

Lee et al. [14] developed a microfluidic analog of the four-
roll mill device that could generate all flow types from the pure
extensional to pure rotational. Four pairs of inlet and outlet
with the same width are arranged symmetrically around a
central circular region. By adjusting the ratio of fluxes Q1/Q2,
this single device can produce the entire range of flow patterns;
see Fig. 1. Since this microfluidic four-roll mill device enjoys
a strong capability to produce various flows, it has been used
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to study the tumbling dynamics of DNA [21], the transition
among tank-treading, trembling, and tumbling motions of a
vesicle [22], the complex dynamics of deforming droplets in
the creeping flow [23], and the elongation and rotation of a
droplet [24].

We here use computational simulations based on the
immersed boundary (IB) method [25] to model a four-roll
mill device with which we can generate various flows from
an extensional flow to a rotational one. The IB method
was developed to study flow patterns around heart valves
and is a generally useful method for problems in which
elastic materials interact with a viscous incompressible fluid.
We put a vesicle or a bubble in the constructed four-mill
device to investigate their interaction with the surrounding
fluid. The dynamics of moving vesicles are determined by
their membrane elasticity (bending resistance), inextensibility,
and hydrodynamical force, whereas the bubble dynamics
are governed by the surface tension and the hydrodynamic
interaction. Thus, the IB method is a proper computational
technique to model these elastic suspensions in a viscous fluid
[26,27]. The novelty of the present work is that we use the
unified IB framework to design a four-roll mill device and
investigate the dynamics of vesicle and bubble in four-roll
mill flows.

It has been known for a while that a vesicle in a shear
flow has two types of motion: tank-treading (TT) and tumbling
(TU). This transition is of fundamental importance since it can
alter rheological properties of a vesicle solution by reducing
dissipation [28,29]. The selection between these two types
of vesicle motion depends on the reduced volume and the
viscosity contrast between the interior and exterior fluids
[30–33]. Even though we use the viscosity contrast one, we
can observe both the tank-treading and tumbling motions by
changing the flux ratio Q1/Q2 and thus the flow type [22].

When the flux ratio increases in the negative direction, the
magnitude of a vorticity tensor increases, which induces a rota-
tional motion of the vesicle: either tank-treading or tumbling.
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FIG. 1. Schematic diagrams of four-roll mill device in Ref. [1]
(left) and the microfluidic four-roll mill device designed here and in
Ref. [14] (right). A broad spectrum of flow types can be generated
by adjusting the angular velocity ratio ω1/ω2 (left) or the flux ratio
Q1/Q2 (right).

Unlike the vesicle dynamics, we cannot observe a tumbling
motion in the bubble dynamics. The bubble has only the surface
tension, which does not resist the tangential force from the
fluid, and thus the boundary of bubble follows simply the rota-
tional flow without tumbling. The inextensibility of the vesicle,
which resists both the tangential and normal force, plays a
significant role in the tumbling motion of the vesicle. When the
flux ratio increases in the positive direction, the magnitude of
a deformation (or extensional) tensor increases, which induces
an elongation and sometimes a breakup of a bubble [24].

In order to show that the four-roll mill device computa-
tionally modeled by the IB method is a robust and efficient
numerical tool to generate various flow types and to handle
an elastic suspension in a viscous fluid, we first perform a
convergence study, which confirms the consistent first-order
convergence for the velocity field in L2 norm. Then we
simulate a single vesicle or a bubble with various reduced
areas in the different flows with various flux ratios. We discuss
the transition between tank-treading and tumbling motions for
the vesicles and the elongation and rotation of the bubbles.

II. MODEL OF VESICLE AND BUBBLE
IN FOUR-ROLL MILL FLOWS

A. Equations of motion

We use the IB method [25] to simulate the dynamics of a
vesicle or a bubble in various flows, which are generated by a
two-dimensional device analogous to a four-roll mill [14]; see
the left panel of Fig. 2. Whereas the four-roll mill of Taylor [1]
generates a desirable flow by controlling the angular velocities
of the four rollers, our model based on the device proposed in
Ref. [14] does it by varying the fluxes in the inlet and outlet
regions.

Consider a two-dimensional square domain filled with an
incompressible viscous fluid that contains internal fixed walls.
In the IB framework, the fluid exists not only inside the internal
walls but also outside the walls. In order to model the fixed
walls, we utilize the “target boundary” idea. We designate
target boundary points Y0(s) in the place where we want the
internal walls to be. To avoid fluid leakage through the wall,
the target boundary points should be spaced about half a mesh
width apart (or closer). The target boundary points neither
move nor interact with the fluid directly, but they are connected
by a system of stiff springs to the immersed boundary points
Y(s,t) that move at the local fluid velocity and apply force
locally to the fluid; see Fig. 3. When the wall boundary Y(s,t)
moves apart from the target boundary Y0(s), a restoring force
comes into play to keep them as close to each other as possible.
The restoring force FK (s,t) acting on the immersed boundary
Y(s,t) is defined as

FK (s,t) = K[Y0(s) − Y(s,t)], (1)

where K is a large stiffness constant. This provides a feedback
mechanism for computing the boundary force needed to force
the immersed boundary to stay in the stationary internal walls.
This idea has been successfully used to simulate a stationary
boundary in many previous works [34–36].

In order to generate the desired velocity in the domain of
interest, which is enclosed by the fixed walls, we choose the
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FIG. 2. The flow generator analogous to the four-roll mill device. Poiseuille flows are derived with the normal fluxes inward to the domain
being −Q1 in �1 and Q2 in �2. The resulting velocity vector fields in the whole domain (middle panel) and in the central region (enclosed by
the dashed line in the left panel) containing vesicle or bubble (right panel).
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FIG. 3. Schematic view of wall target boundary, wall immersed
boundary, and the interface immersed boundary. The wall IB points
are connected to the target points by a system of stiff springs with zero
rest length, and the interface IB points represent the elastic boundary.

regions �1 and �2 (shaded regions in the left panel of Fig. 2)
that are used to prescribe the desired velocity in the following
way. Let �0 be the union of the four shaded regions. The way
of driving a flow in �0 is to apply an external force per unit
area equal to

f0(x,t) =
{
α[u0(x,t) − u(x,t)], x ∈ �0 = �1 ∪ �2

0, otherwise,
(2)

where u0(x,t) = [u0(x,t),v0(x,t)] is the desired velocity and
α is a constant. This force will become the body force in the
fluid equations. When α is large, the fluid velocity u is driven
rapidly toward u0 within �0.

The tangential component of the desired velocity u0(x,t)
to the wall is assumed to be zero in both �1 and �2. The
normal components of the velocity u0(x,t) in �1 and �2 are
assumed to be a Poiseuille’s flow of parabolic profiles with the
normal fluxes inward to the domain being −Q1 in �1 and Q2

in �2, see the flow profiles in the left panel of Fig. 2, which
also shows the resulting velocity vector fields in the whole
domain (middle panel) and in the central region (enclosed by
the dashed line in the left panel) containing vesicle or bubble
(right panel).

We model a vesicle and a bubble as a closed curve in
the two-dimensional domain; see Figs. 2 and 3. We assume
that the fluid inside the vesicle and bubble is the same as the
outside fluid. Whereas the elasticity of the vesicle is governed
by the inextensibility and the bending resistance, that of the
bubble is expressed only by the surface tension. Let X(s,t) be
a configuration of a vesicle or bubble at time t , then the elastic
forces FE(s,t) can be written, respectively, as

FE(s,t) = cs

∂

∂s

[(∣∣∣∣∂X
∂s

∣∣∣∣ − 1

)
τ

]
− cb

∂4X
∂s4

, (3)

FE(s,t) = ∂

∂s
(γ τ ), where τ (s,t) = ∂X

∂s

/∣∣∣∣∂X
∂s

∣∣∣∣, (4)

where cs , cb, and γ are constants [26,27]. The first term of
the right-hand side of Eq. (3) expresses the extension and
compression resistance of the vesicle. Thus when cs is large,

the vesicle can be almost inextensible. The second term of the
right-hand side of Eq. (3) expresses the bending resistance,
and Eq. (4) represents the surface tension force.

Let the fluid velocity and pressure be denoted by u(x,t)
and p(x,t), respectively, where x = (x,y) is a fixed Cartesian
coordinate system and t is time. Then the mathematical
formulations of this problem can be summarized as follows:

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + μ∇2u + f + f0, (5)

∇ · u = 0, (6)

f(x,t) =
∫

FK (s,t)δ[x − Y(s,t)]ds

+
∫

FE(s,t)δ[x − X(s,t)]ds, (7)

∂Y
∂t

(s,t) = u[Y(s,t),t] =
∫

u(x,t)δ[x − Y(s,t)]dx. (8)

∂X
∂t

(s,t) = u[X(s,t),t] =
∫

u(x,t)δ[x − X(s,t)]dx. (9)

Equations (5) and (6) are the familiar Navier-Stokes
equations for a viscous incompressible fluid with the constant
fluid density ρ and viscosity μ. Equations (7)–(9) involve
the two-dimensional Dirac δ function δ(x) = δ(x)δ(y), which
expresses the local character of the interaction between
forces and velocities along the immersed boundaries Y(s,t)
and X(s,t). Equation (7) expresses the relation between the
Eulerian force f(x,t)dx and the Lagrangian forces FK (s,t)ds

and FE(s,t)ds. Equations (8) and (9) are the equations of
motion of the immersed boundaries Y(s,t) and X(s,t), which
says that the boundaries move at the local fluid velocity.

We impose the open (or natural) boundary condition for the
fluid equations [Eqs. (5) and (6)] for all time on the boundary
of the computational domain, i.e., (μ∇u − pI) n = 0, where
I is the identity matrix and n is the unit normal vector to
the computational boundary [37–39]. This condition is similar
to the traction-free boundary condition, which implies that the
flow moves in and out of the domain without any internal stress.
Thus, in our case, while the fluid flows in and out of the domain
on the regions �1 and �2 with the prescribed velocity through
Eq. (2), the fluid moves naturally with no stress through the
outflow tracks, which are the four open regions that are neither
�1 nor �2 in Fig. 2.

One might ask why we derive the flows in �1 and �2 by
imposing the body force in Eq. (2) with the open boundary
condition, instead of simply applying velocity boundary
conditions on the fluid equations. We try to keep the fluid
solver as simple as possible. The boundary condition used
in our numerical scheme enables us to use Fourier transform
methodology to solve the fluid equations; see the Sec. II B for
the numerical implementation. The direct use of the velocity
boundary conditions, which are inhomogeneous along the
computational boundary, makes the Fourier transform methods
inapplicable and requires that an iterative method such as
multigrid be used instead.

B. Numerical implementation

For the numerical implementation of the system
Eqs. (1)–(9), we employ a first-order IB method. We use a
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superscript to denote the time level; thus, Xn(s) is a shorthand
for X(s,n	t), where 	t is the size of the time step, and
similarly for all other variables. The computational domain
� is discretized by a fixed uniform lattice of meshwidth h =
	x = 	y, and we use a staggered marker-and-cell (MAC)
scheme [40] in which the fluid velocity field u are defined
at the edges of the cells and the pressure p is defined at
the cell centers. The elastic IB variables Xn(s) and Fn

E(s) are
defined as functions of s with meshwidth 	s, and similarly
for the wall IB variables Yn(s) and Fn

K (s). Our goal is to
compute un+1, Xn+1, and Yn+1 from given data un, Xn, and Yn.
The step-by-step procedure of the numerical implementation
proceeds as follows.

Step 1. Calculate the force densities Fn
K (s) and Fn

E(s)
defined on the IB points Xn(s) and Yn(s), respectively. For
the detailed description of the discrete force densities; see
Refs. [26,27].

Step 2. Distribute these force densities defined on La-
grangian grid points into the force at Eulerian spatial grid
points to be applied in the Navier-Stokes equations. This is
done by a discretization of Eq. (7) as

fn(x) =
∑

s

Fn
E(s) δh[x − Xn(s)] 	s, (10)

where x = (x1,x2) is the fluid grid points, and δh(x) =
1
h2 φ( x1

h
)φ( x2

h
) with φ(r) of the form

φ(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3−2|r|+
√

1+4|r|−4r2

8 , if |r|�1

5−2|r|−
√

−7+12|r|−4r2

8 , if 1�|r|�2

0, if 2�|r|.

(11)

The motivation and derivation for this particular choice is
discussed in Ref. [25], and we spread the force density Fn

K (s)
in the same fashion.

Step 3. Given the computed force density fn(x), we solve the
discretized version of the fluid Eqs. (5) and (6) to update the
velocity and pressure. To do that, we employ the first-order
incremental pressure-correction projection method [37,38],
which can be summarized as follows:

ρ

[
ũn+1 − un

	t
+ (un · ∇h)un

]
+ ∇hp

n = μ	hũn+1 + fn,

(μ∇hũn+1 − pnI) n = 0 on ∂�, (12)

	hp̃
n+1 = ρ

	t
∇h · ũn+1, with p̃n+1 = 0 on ∂�,

(13)

un+1 = ũn+1 − 	t

ρ
∇hp̃

n+1, and pn+1 = p̃n+1 + pn,

(14)

where the discrete operators ∇h, ∇h·, and 	h are the standard
second-order finite differences in staggered MAC grid to
approximate the gradient, divergence, and Laplace operators,
respectively. One can see that we need to solve one Poisson
equation for the pressure-like variable p̃n+1 and two modified
Helmholtz equations for the velocity field ũn+1. Fortunately,
these elliptic solvers can be implemented efficiently using fast
Fourier transform (FFT) [41].

Step 4. Once un+1(x) is found in the fluid grid points, we can
update the boundary configuration Xn+1(s) by the following
interpolation of un+1(x):

Xn+1(s) = Xn(s) + 	t
∑

x

un+1(x) δh[x − Xn(s)] h2. (15)

The wall boundary Yn+1(s) can be similarly updated, and this
completes the time step.

III. RESULTS

A. Flow generations and convergence study

Throughout this paper, we choose the computational do-
main [−200,200] × [−200,200] μm2, which is filled with
a viscous incompressible fluid with the fluid viscosity
μ = 0.01 g/(cm s) and the density ρ = 1.0 g/cm3. The flux
Q2 in the region �2 is fixed as 2.5 × 105 μm2/s, and we
vary the flux Q1 in the region �1 to generate various flow
types. The mesh width is h = 	x = 	y = 400/512 μm,
which is uniform and fixed all the time, and the timestep is
	t = 5.0 × 10−7 s. The grid spacing 	s of the IB points for
the wall and elastic boundaries is around 0.36 μm, which is
less than h/2. The spring constant in Eq. (1) is set equal to
K = 8 × 104 dyne/cm2. This choice of K makes the max-
imum deviation of the immersed boundary from the target
boundary to be less than h/20; i.e., ||Y0(s) − Y(s,t)||∞ <

h/20. The constant α in Eq. (2) is chosen to be 2 × 10−6

dyne · s/μm3, which makes the error of the computed velocity
u from the desired velocity u0 to be less than 4%, in the region
�1 ∪ �2.

It is well known that the flow type in the central cavity of
the four-roll mill is dependent on the flux ratio f = Q1/Q2

which goes from −1 to 1. The flow type can be assessed by
the flow-type parameter ξ defined as

ξ = |E| − |�|
|E| + |�| , (16)

where |E| and |�| are the magnitudes of the deformation and
vorticity tensors, respectively. In an ideal four-roll mill device,
this parameter varies from −1 (rotational) to 1 (extensional).

Figure 4 shows three different types of flows; the exten-
sional flow with f = 1.0 (left panels), the shear flow with
f = −0.585 (middle panels), and the rotational flow with
f = −1.0 (right panels). The first row shows the contours of
the flow-type parameters ξ , the second and third rows draw the
streamlines of the velocity in [−130,130] × [−130,130] μm2

and in the central region [−60,60] × [−60,60] μm2, respec-
tively, with some indications of velocity vectors. Figure 4 is
comparable to Fig. 3 in Ref. [14] in which the authors used
a pseudo-3D model to investigate the dependence of the flow
type on the flux ratio.

Figure 5 depicts the averaged flow-type parameter ξ̄ over
a central disk with the radius 12.5 μm in terms of the flux
ratio f . We have found that the flow-type parameter ξ deviates
no more than 0.05 from the averaged value ξ̄ in this central
region, which implies that the flow-type parameter ξ is almost
homogeneous near the central stagnation point. We can see
from Fig. 5 that the flow type varies from purely rotational
(ξ = −1) to purely extensional (ξ = 1) by changing the flux
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FIG. 4. The contours of the flow-type parameters (first row), the streamlines of the velocity field in [−130,130] × [−130,130] μm2 (second
row), and the streamlines with some indications of the velocity vectors in [−60,60] × [−60,60] μm2 (third row). The columns from left to right
show an extensional flow with the flux ratio f = 1.0, a mixed shear flow with f = −0.585, and a rotational flow with f = −1.0, respectively.

ratio over the range of −1 � f � 1. Figure 5 is qualitatively
the same as Fig. 2 in Ref. [14]; however, our model achieves
the pure shear flow (ξ = 0) at f = −0.585, while the shear
flow appears at f = −0.763 in Ref. [14].

For the verification of our numerical method, we perform a
convergence study of the computed solutions. We put a vesicle
of a shape shown in Fig. 2 in the center of the domain and
generate flows with three different flux ratios f = 1.0, −0.585,
and −1.0. Then we vary the mesh size of the domain as
N = 128, 256, 512, and 1024 so that the mesh width
becomes h = 400/N μm, correspondingly. We also choose
	t proportional to h with 	t = 6.4 × 10−7h, so that the

refinements for the fluid mesh width, the boundary mesh width,
and the time-step duration are scaled by the same factor. When
we refine the mesh width and time step, we increase the spring
constant in Eq. (1) as K = 2.0 × (25N/64)2 dyne/cm2.

Since we do not know the exact solution of the problem, the
estimation of a convergence ratio requires three numerical so-
lutions for three consecutive N ’s. Let (uN,vN ) be the velocity
field, and let || · ||2 be the L2 norm. Figure 6 shows the con-
vergence ratios (||uN − u2N ||22 + ||vN − v2N ||22)1/2/(||u2N −
u4N ||22 + ||v2N − v4N ||22)1/2 as functions of time for each of
the cases N = 128 (line with “+”) and 256 (line with “◦”).
The flux ratios are f = 1.0 (left), −0.585 (middle), and −1.0
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FIG. 5. Flow-type parameter ξ̄ averaged over a central disk with the radius 12.5 μm in terms of the flux ratio f . The flow type varies from
purely rotational (ξ = −1) to purely extensional (ξ = 1) by changing the flux ratio over the range of −1 � f � 1. When the flow-type ratio
f = −0.585, the flow-type parameter ξ is almost 0.
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FIG. 6. Convergence ratios of the computed velocity field u(x,t) of the fluid. The convergence ratios (defined in the text) are plotted
as functions of time for three different flux ratios: f = 1.0 (left), −0.585 (middle), and −1.0 (right). In each panel, the line with “+” is
the convergence ratio obtained using the grids N = 128,256,512, and the line with “◦” is the ratio obtained with N = 256, 512, 1024. The
convergence ratio is near two (first-order accuracy) for all the different cases.

(right). The convergence ratio 2 implies that the scheme has
first-order accuracy, which is typical of the IB method as
applied to problems with thin elastic boundaries [42,43].

B. Vesicle dynamics

We now put a vesicle in the center of the four-roll mill
device as shown in Fig. 2 to investigate the vesicle motion
in various flow types. The initial configuration of the vesicle
is a closed curve with several different shapes. We choose
the vesicles so that they have the same perimeter L = 2πR0,
where R0 = 10 μm, but with different internal areas A, which
can define different reduced areas V = A

πR2
0
. We use the same

computational and physical parameters as those used in the

previous section for the four-roll mill device. The stiffness
and bending coefficients used in Eq. (3), which represents the
elasticity of the vesicle, are cs = 32 dyne/cm and cb = 10−10

dyne · cm2, respectively. With these values, the relative error
of the vesicle length is found to be less than 2 × 10−4.

It is known that a vesicle in a simple shear flow (ξ = 0)
undergoes a tank-treading tangential motion at its equilibrium
configuration [29–33]. As shown in Fig. 5, when the flux
ratio f is around −0.6, the four-mill device can generate
a simple shear flow with the flow-type parameter ξ = 0. If
the flux ratio f is away from 1 and thus the flow is not
dominantly extensional, we can also expect a tank-treading
motion of the vesicle, since there is a nonzero rotational
tensor of the fluid. Figure 7 shows the motions of the vesicle
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FIG. 7. The motion of the vesicle with the reduced area V = 0.7, together with the streamlines of the velocity field at t = 0.4 s. The
flows are generated with different values of the flux ratio: f = 0.9 (upper-left), 0.4 (upper-middle), 0.0 (upper-right), −0.4 (lower-left), −0.6
(lower-middle), and −0.67 (lower-right). Each vesicle reaches a stable tank-treading (TT) motion with some fixed inclination angle between
the long axis of the vesicle and the negative x axis.
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FIG. 8. The inclination angles (upper) and the angular velocities (lower) of the TT motion of the vesicles in terms of the flux ratio f for
various reduced areas V when the vesicles are in the steady TT motions.

with the reduced area V = 0.7, together with the streamlines
of the velocity field at t = 0.4 s. The flows are generated
with the flux ratio f = 0.9 (upper-left), 0.4 (upper-middle),
0.0 (upper-right), −0.4 (lower-left), −0.6 (lower-middle), and
−0.67 (lower-right). Each vesicle in this figure reaches a stable
TT motion with some fixed inclination angle between the long
axis of the vesicle and the negative x axis. When we decrease
the flux ratio further, we have observed the tumbling motion
of the vesicle, which is discussed below.

When a vesicle is in a steady TT state, the motion of the
vesicle can be characterized by both the inclination angle
between the long axis of the vesicle and the flow direction,
and the angular frequency of the TT motion. These two
values have been found to be strongly dependent on the
reduced area V and the flux ratio f . Figure 8 draws the
inclination angle (upper) and the angular frequency (lower)
in terms of the flux ratio f for various reduced areas
V when the vesicles are in their steady states. As the flux
ratio f increases to 1, independent of the reduced area of the
vesicle, the inclination angle increases and converges around
to 39◦, and the angular frequency of the TT motion decreases
to 0. For a fixed flux ratio, the inclination angle and the angular
frequency both increase as the reduced area V increases, which
agrees well with the results in Refs. [27,44,45].

It has been known for a while that a vesicle in a shear
flow has two types of motion: TT and TU. The selection
between these two types of vesicle motion depends on the
reduced volume (a flattened vesicle would tumble more easily
than a swollen one) and the viscosity contrast (the more
viscous the internal fluid in comparison to the external one

is, the easier is the tumbling) [29–33]. Even though we use
the viscosity contrast 1, we can also observe a tumbling
motion by decreasing the flux ratio f and thus by increasing
the magnitude of the rotational tensor |�|. As we can see
from Fig. 8, the inclination angle decreases as the flux ratio
decreases, and, at some critical value fc of the flux ratio, the
motion of the vesicles changes from TT to TU. Figure 9 shows
the critical flux ratio fc for the transition between TT and TU in
terms of the reduced area V . As the reduced area gets smaller,
the critical flux ratio becomes larger, i.e., the vesicle with small
reduced area needs small rotational tensor for the tumbling
motion, which implies that the flattened vesicle would tumble
more easily than a swollen one.

When the flux ratio f gets smaller than the critical flux ratio
fc, the vesicles get into a TU state. The left panels of Fig. 10
depict the configurations of a vesicle with the reduced area
V = 0.7 suspended in a flow with the flux ratio f = −0.8 at
some chosen times, which clearly shows the tumbling motion
of the vesicle. The right panel draws the time evolution of the
inclination angle of the vesicle with the reduced area V = 0.7
in flows with three different flux ratios: f = −0.7 (dotted
line), −0.8 (dashed line), and −0.9 (solid line). We can see
that, when the flux ratio decreases, the tumbling frequency
increases.

When a vesicle is in a steady tumbling state, the tumbling
frequency does not only depend on the flux ratio f as shown in
Fig. 10, but it also depends on the reduced area of the vesicle.
Figure 11 shows the tumbling frequency of the motion of the
vesicle in terms of the flux ratio f for various reduced areas V .
The tumbling frequency increases with the decreasing flux
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FIG. 10. The configuration of a vesicle with the reduced area V = 0.7 suspended in a flow with the flux ratio f = −0.8 at some chosen
times (left panels) and the time evolution of the inclination angle (right panel) of the vesicle with the reduced area V = 0.7 in flows with three
different flux ratios: f = −0.7 (dotted line), −0.8 (dashed line), and −0.9 (solid line).
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FIG. 12. The motion of a bubble with the surface tension γ = 0.0004 dyne at t = 0.8 s (upper-left), and t = 2.4 s (upper-middle), together
with the streamlines of the velocity field. The upper-right panel describes the velocity vectors on the bubble. The flow is purely rotational with
the flux ratio f = −1. The lower panel shows the rotational angle, which indicates that the bubble rotates uniformly with the angular frequency
ω = 0.8928 Hz.

ratio for all types of the vesicle. This is because the magnitude
of rotational tensor |�| is inversely proportional to the flux
ratio f . For a fixed flux ratio, as the reduced area gets smaller,
the tumbling frequency increases. We can again conclude that
the flattened vesicle would tumble more easily than a swollen
one.

We here have observed the transition between TT and TU
depending on the flux ratio. Recently, another stable state has
been found in which the vesicle deforms significantly and the
inclination angle oscillates with the inclination angle being less
than π/2 [22,46,47]. This is called a trembling state (TR) or
vacillating-breathing state, and the selection among the three
states TT, TR, and TU depends on the viscosity contrast, the
reduced area, and the bending rigidity of vesicle, the shear
rate, and so on [48,49]. In our model, however, we cannot
observe the trembling motion of the vesicle, even though we
change the bending rigidity from cb = 10−9 dyne · cm2 to
10−15 dyne · cm2. We suspect that the trembling motion of
a vesicle would occur only in 3D flow. The fluid flow in the
third direction perpendicular to the 2D plane of the main flow
enables the vesicle to tremble in an oscillatory manner with
a large shape deformation with combination of the elasticity
(bending rigidity) of the vesicle. Our 2D model does not have
these effects of the 3D flow; see Ref. [50], which also argues
that there is no TR of a vesicle in 2D flow.

C. Bubble dynamics

We here put a bubble in the center of the four-roll mill
device as shown in Fig. 2 and investigate the bubble dynamics
in various flow types. Since the bubble dynamics is governed
by the surface tension, the motions of the bubbles with different
reduced areas are almost the same, unlike the vesicles in

the previous section. Thus, we choose one type of bubble,
which has the same initial configuration as the vesicle with the
reduced area V = 0.7. While we use the same computational
and physical parameters as those used in the previous sections,
we vary the surface tension γ used in Eq. (4) from 0.0002 to
0.2 dyne to see the dependence of the bubble dynamics in
various flows on the surface tension.

The motion of a bubble depends on the magnitudes of
the deformation tensor |E| and the vorticity tensor |�|, and
the surface tension γ . When the flow is purely rotational
(ξ = −1) with the flux ratio f = −1, the bubble keeps the
circular shape and rotates, independent of the surface tension.
Figure 12 shows the motion of a bubble with the surface
tension γ = 0.0004 dyne at t = 0.8 s (upper-left) and t = 2.4
s (upper-middle), together with the streamlines of the velocity
field. The upper-right panel shows that the velocity vectors
on the bubble are all tangential, which indicates the rotational
motion of the bubble. The lower panel shows the angle of the
line connecting the bubble center and one chosen point on the
bubble (circle on the bubble) from the negative x axis; see
the upper-right panel of Fig. 12. We can see that the bubble
rotates uniformly with the angular frequency ω = 0.8928 Hz.
When the surface tension varies between 0.0002 and 0.2 dyne,
we have observed that the motions of the bubbles are almost
the same with the same angular frequency independent of the
surface tension. The only difference is that the initial transient
time to reach the steady rotational motion decreases as the
surface tension increases.

When the flow is purely extensional (ξ = 1) with the flux
ratio f = 1, the bubble can extend with the inclination angle
being fixed at around π/4. The deformation of droplets in
the extensional flow has long been studied [2–4,24,51,52].
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FIG. 13. The motion of bubbles with the surface tensions γ = 0.0004 dyne (upper) and γ = 0.004 dyne (lower) at t = 0.032 s (left), 0.064
s (middle), and 0.096 s (right). The flow is purely extensional (ξ = 1) with the flux ratio f = 1. The bubble with a small surface tension cannot
resist the extensional deformation of the flow and elongates in time, gets thinner, and finally breaks up (top panels). The bubble with a large
surface tension approaches to a stable elliptical shape.

Figure 13 shows the motions of the bubbles with two
different surface tension γ = 0.0004 dyne (upper) and γ =
0.004 (lower) at t = 0.032 s (left), 0.064 s (middle), and

0.096 s (right). The lower-middle panel of Fig. 13 draws the
streamlines of the velocity field, and the lower-right panel
indicates the velocity vectors on the bubble. When the surface
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FIG. 14. The length of the long axis of the elliptical bubble in terms of time for various surface tensions (upper) and the constant value of
the long axis in the stable state of the bubble in terms of the surface tensions (lower).
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FIG. 15. The motion of bubbles with the surface tensions γ = 0.0004 dyne (upper) and γ = 0.004 dyne (lower) at t = 0.4 s (left), 0.8 s
(middle), and 1.2 s (right). The flow is composite with extensional and rotational flows with the flux ratio f = −0.6.

tension is too small, the bubble cannot resist the extensional
deformation of the flow and elongates in time, gets thinner, and
finally breaks up (Fig. 13, top panels) [2]. When the bubble
has a surface tension large enough to resist the extensional
deformation, it approaches to a stable elliptical shape (Fig. 13,
bottom panels).

Since we fix the fluxes Q1 and Q2 with the ratio
Q1/Q2 = 1, the magnitude of the deformation tensor is a
constant, and thus the amount of the elongation of the bubble
is inversely proportional to the surface tension. The upper
panel of Fig. 14 shows the length of the long axis of the
elliptical bubble in terms of time for various surface tensions.
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FIG. 16. The length of the long axis of the elliptical bubble (upper) and the rotational angle (lower) in terms of time for various surface
tensions. The flow is composite with extensional and rotational flows with the flux ratio f = −0.6.
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FIG. 17. The length of the long axis of the elliptical bubble (upper) and the rotational angle (lower) in terms of the surface tension for
various surface tensions when the bubbles are in steady rotational states.

We have found that, when the surface tension is smaller than
0.0012 dyne, the bubble elongates with the increasing long
axis in time and eventually breaks up. The bubble with the
surface tension from 0.0012 dyne quickly approaches to the
stable state with a constant length of long axis, see the upper
panel. The constant value of the long axis in the stable state
of the bubble decreases as the surface tension increases, as
indicated in the lower panel of Fig. 14 [2,24].

When the flux ratio is larger than −1 and smaller than 1,
the flow is composite with extensional and rotational flows, as
shown in Fig. 5. Thus, the bubble in these flows goes through a
steady motion with both rotation and elongation depending on
the surface tension. Figure 15 shows the motion of bubbles with
the surface tensions γ = 0.0004 dyne (upper) and γ = 0.004
dyne (lower) at t = 0.4 s (left), 0.8 s (middle), and 1.2 s (right).
The streamlines of the velocity field and the velocity vectors
on the bubble are also drawn in the first two columns and in the
third column, respectively. We can observe that the bubble with
a smaller surface tension elongates more than the bubble with
a larger surface tension. The bubbles experience the rotational
tank-treading motion, as we can see from the position (marked
by ◦) of one chosen point of the bubble and from the velocity
vectors on the bubble.

Figure 16 depicts the length of the long axis of the elliptical
bubble (upper) and the rotational angle (lower) in terms of
time for various surface tensions. The flow is composite with
extensional and rotational flows with the flux ratio f = −0.6.
We can see from the figure that the bubbles spend some
transient time to reach a steady state when they have elliptical
shapes and rotate with constant angular velocities. As the

surface tension increases, the long axis gets shorter, and the
angular frequency becomes larger. Note that, unlike the vesicle
dynamics in the previous section, the rotational motion in the
bubble dynamics is always tank-treading without tumbling
motion even when the flux ratio f is −1. This is because the
bubble has only the surface tension, which does not resist the
tangential force from the fluid, and thus the boundary of bubble
follows simply the rotational flow without tumbling.

Even though the length of the long axis is inversely
proportional and the angular frequency is proportional to the
surface tension of the bubble when it is small, the changes in
the long axis and the angular frequency gets smaller when the
surface tension increases more above some value, compare the
graphs for γ = 0.002, 0.004, and 0.016 dyne in Fig. 16. When
we change the flow type by adjusting the flux ratio f , we have
found the same behavior as shown in Fig. 17, which shows the
length of the long axis of the elliptical bubble (upper) and the
rotational frequency (lower) in terms of the surface tension for
various flow types when the bubbles are in steady rotational
states. When the surface tension increases up to about
γ = 0.001 dyne, the long axis gets shorter, and the angular
frequency becomes larger. However, the surface tension larger
than γ = 0.001 dyne makes only a small difference in the
long axis and no difference in the angular frequency.

IV. CONCLUSIONS

We have introduced a computational model for a four-roll
mill device and used it to investigate the dynamics of a vesicle
and a bubble in four-roll mill flows. Using the immersed
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boundary method, we have showed that our computational
model is a robust and efficient numerical tool to generate a
broad spectrum of flow types by comparing the computed
flow types with those in literature and by convergence study.

Then we have simulated a single vesicle with various
reduced areas, which is positioned in the central cavity of the
four-roll mill device and observed the transition of the vesicle
motions between TT and TU. The critical flux ratio for the
transition is different for the vesicles with different reduced
areas. In the TT state, the rotational frequency decreases and
the inclination angle increases as the flux ratio increases for
all types of vesicle. In the TU state, the tumbling frequency
is also inversely proportional to the flux ratio. In both cases
of TT and TU, a flattened vesicle with a small reduced area
rotates faster than a swollen one with a large reduced area.

We have also simulated a single bubble in four-roll mill
flows. Unlike the vesicle dynamics, the rotational motion in
the bubble dynamics is always tank-treading without tumbling,
since the bubble has only the surface tension, which does not
resist the tangential force from the fluid. The inextensibility of
the vesicle, which resists both the tangential and normal force,
plays a significant role in the tumbling motion of the vesicle.
When the bubble has a small surface tension, it can elongate

and break up sometimes in a flow with the flux ratio close to 1.
The bubble with a large surface tension keeps its length of long
axis and angular frequency of TT motion for a fixed flux ratio.

Our simulation results have confirmed the existence of
the transition of the vesicle motions between TT and TU
depending on the flux ratio; however, there is no TR state,
which was found recently in literature. We conclude that the
TR motion of a vesicle would occur only in 3D flow. Thus,
the extension of the present model to 3D is needed to explore
more comprehensively the vesicle dynamics, which will be a
future work. The transition could also depend on the difference
of the fluid properties inside and outside the vesicle. The
investigation of the vesicle dynamics with various viscosity
contrasts and various nonuniform densities will also be the
subject of future work.
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