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We extend the penalty immersed boundary (pIB) method to investigate the interaction between circular rigid
particles and a surrounding viscoelastic Oldroyd-B fluid. The basic idea of the pIB method is the splitting of an
immersed boundary, which here is a rigid body, notionally into two Lagrangian components: one is a massive
component carrying all mass of the rigid body, and the other is massless. These two components are connected by a
system of stiff springs with zero rest length. The massive component has no direct interaction with the surrounding
fluid and behaves as though in a vacuum, following the dynamics of a rigid body, in which the acting forces and
torques are generated from the system of stiff springs that connects the two Lagrangian components. The massless
component interacts with the surrounding Oldroyd-B fluid: it moves at the local fluid velocity and exerts force
locally on the fluid. We verify the pIB method combined with Oldroyd-B fluid model by investigating the effects
of the wall and elasticity of the fluid on the lateral position of a circular particle falling under the influence
of gravity and by studying convergence of the numerical solutions. We also simulate the interaction between
multiple circular particles and the surrounding Oldroyd-B fluid and compare the dynamics of the particles in

various flow conditions.

1. Introduction

We investigate the interaction between circular rigid particles and
a surrounding non-Newtonian fluid. The motion of particles in non-
Newtonian fluids is not only of theoretical interest, but is also important
in many applications to industrial processes involving particle laden ma-
terials [1,2]. It is well known that, whereas an ellipse or a long particle
falls with its broad side normal to the falling direction in a Newtonian
fluid, it falls with its broad side parallel to the falling direction in a vis-
coelastic liquid [3,4]. Moreover, multiple particles, which are dropped
in a channel, are lined up along the flow direction when the viscoelastic
Mach number is less than 1 and the elasticity number is greater than 1
[5-7].

Compared to numerical methods for simulating particulate flows in
Newtonian fluids which have been very successful, simulation methods
for the motion of particulate flows in a viscoelastic fluid is still compli-
cated and challenging. There have been recent works on the simulation
of the sedimentation of particles in viscoelastic fluids, such as Oldroyd-
B fluids [3,5-9], Oldroyd-B fluids with shear thinning [3,10], and vis-
coelastic fluids of the FENE-Dumbbells model [11]. Feng et al. [8] used
the finite element method to study the 2D sedimentation of circular par-
ticles in an Oldroyd-B fluid and obtained chains of two particles aligned
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with the direction of sedimentation, which was observed in the actual
experiments [12]. The authors in [3] used an arbitrary Lagrangian—
Eulerian (ALE) moving mesh technique to investigate the cross-stream
migration and orientations of elliptic particles in Oldroyd-B fluids with
and without shear thinning. In [5], a fictitious domain/distributed La-
grange multiplier method for particulate flow of Oldroyd-B fluids was
developed for fixed structured mesh to observe chains of two particles
aligned with the direction of sedimentation. Yu et al. in [10] developed a
different fictitious domain/distributed Lagrange multiplier method with
finite difference methods to investigate the sedimentation of particles in
an Oldroyd-B fluid with shear thinning.

We here combine the idea of the penalty immersed boundary (pIB)
method and a finite difference Oldroyd-B fluid solver to investigate the
interaction between circular rigid bodies and a surrounding viscoelastic
Oldroyd-B fluid. The immersed boundary (IB) method has been widely
used to investigate the problems in which an elastic boundary or body
is immersed in and interacts with a surrounding Newtonian fluid [13-
15]. Kim and Peskin [16,17] have introduced an extension of the IB
method which can easily handle an elastic boundary or a rigid body
with mass. We call it the penalty immersed boundary (pIB) method and
have shown in [16,17] that the pIB method can be applied to many
problems in which mass of the elastic boundary or rigid body plays an
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important dynamical role. For more examples of the application of the
pIB method, see [18-20].

The pIB idea for a rigid body in Newtonian or Oldroyd-B fluid uses
two representations for a rigid body: a massless component and a mas-
sive component which are connected by stiff springs. The massless com-
ponent moves at the local fluid velocity and exerts force locally to the
fluid. The force that it applies to the fluid is the force generated from the
stiff springs that link it to its massive counterpart. On the other end of
the spring, the massive component moves as though in a vacuum follow-
ing the dynamics of a rigid body in which forces and torques acting on
the massive component are the gravitational force and those generated
from the springs that connect it to the massless counterpart [17].

In the pIB method, we separate the dynamics of a rigid body only
through a system of stiff springs from the whole system that, otherwise,
would strongly couple the rigid body dynamics to the fluid dynamics
(here, Oldroyd-B fluid) through constraints. By doing that, we allow the
equations for the fluid motion itself to be as simple as possible. Par-
ticularly, we keep the density of the fluid equations to be uniformly
constant. As the stiffness of the springs that link the massless compo-
nent to the massive component goes to infinity, the massive component
accompanies the massless component and provides it with mass. For the
quantitative verification of this behavior, see [16].

There are two kinds of direct numerical methods often used to simu-
late the viscoelastic particulate flows involving full fluid equations: one
is to use the dynamic and kinematic boundary conditions to interact the
rigid body dynamics with fluid dynamics [3,8,9,21]. This method needs
projection and remeshing techniques since the body is moving, and re-
quires an iterative method to update the fluid velocity, and the transla-
tional and angular velocities of the body. The second type of methods
is to imbed the rigid body into a simple fluid domain and to give some
constraints for rigid body motion on the particle region. Our present
pIB method and the distributed Lagrange multiplier/fictitious domain
method are in this category. Whereas the latter uses the distributed La-
grange multiplier to enforce the constraint on the rigid body motion
[5,7,10,22], the pIB method uses the penalty force which is generated
from the stiff springs connecting the two Lagrangian descriptions of the
rigid body.

In order to verify that the present pIB method for viscoelastic partic-
ulate flows is a robust and efficient numerical technique to simulate a
rigid body interacting with a surrounding Oldroyd-B fluid, we simulate
a freely falling circular particle in an Oldroyd-B fluid with which we
perform a convergence study to show that the pIB method is first-order
accurate and investigate the effects of wall and elasticity on the lateral
equilibrium position of the descending particle. We also study the in-
teraction of multiple (two, three, and six) circular particles falling in a
channel filled with an Oldroyd-B fluid and show that the particles form
a chain that descends parallel to the flow when the elasticity number
(or relaxation time) is large enough, which is well-known in literature.

2. Equations of motion

We consider a 2D viscoelastic incompressible fluid containing a rigid
body which has two Lagrangian descriptions: one is denoted by X(r, s, t)
where (r, s) are curvilinear coordinates and t is time which has no mass
and plays the same role as an immersed boundary in a more traditional
IB method with massless boundary assumption, and the other, which we
denote Y(r, s, t), carries all of the excess mass and is connected to X(r,
s, t) by a system of stiff springs, see the left picture of Fig. 1. The excess
mass is the difference between the mass of the body and the mass of the
fluid it displaces. The different points of the massive boundary Y(r, s, t)
have no direct connection to the fluid and move together as though a
rigid body in a vacuum, with the only forces and torques applied on the
body being the force of gravity, and those generated from the springs
that connect the massless description to the massive description of the
rigid body.
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Let p and pg be the fluid density and viscosity, respectively, then
the equations of the motion for 2D Oldroyd-B fluid interacting with an
immersed body are the following:

p(g—ltl+(u~V)u)=—Vp+;45Au+V~A+f, )

V.u=0, 2)
2

A, (u-V)A - VuA —A(Vu)” + Ia- ﬁd(u), 3)

ot r r

F(r,s,t) = K(Y(r,s,t) — X(r, s,1)), “4)

f(x,1) = /F(r, s,1)6(x — X(r, s,1))drds, [®)]

0X

E(r, s,t) =uX(r, s, t),1) = /u(x, H6(x — X(r, s,1))dx. (6)

The equations of motion of the rigid body itself will be given later.

Egs. (1)—(3) are the Oldrody-B model for a viscoelastic fluid in which
r, is a relaxation time, y, is the polymer contribution to the zero-shear-
rate viscosity, and d(u) = %(Vu + (Vw)T) is the fluid deformation tensor.
Here the unknowns are the velocity field, u(x, t); the fluid pressure, p(x,
t); the extra stress tensor (2 x 2 matrix), A(x, t); and the external force
per unit area applied by the immersed body X(r, s, t) to the fluid, f(x,
t). Note that the domain on which Egs. (1)—(3) are defined includes the
domain occupied by the rigid body. In the IB method, there is always
fluid everywhere. Anything immersed in the fluid is regarded as a part
of the fluid in which forces are applied and in which additional mass
may be present.

Eq. (4) defines the force density F which is applied by the massless
component X(r, s, t) of the immersed body to the fluid so that F(, s,
t)drds is the force transmitted to the fluid by the area element drds of the
body. The force density F is generated by the stiff springs that connect
the massive and massless descriptions of the immersed body. As the
stiffness parameter K, which is called the “penalty” parameter of the
method, gets large, the energy penalty increases that must be paid to
separate the two descriptions Y(7, s, t) and X(r, s, t) by any given amount.

The interaction Egs. (5) and (6) express the local character of the
interaction through the two-dimensional Dirac delta function §(x) =
5(x)8(y). Eq. (5) relates the two corresponding force densities f(x, t)dx
and F(r, s, t)drds, which can been seen by integrating each side of
Eq. (5) over an arbitrary region Q. Eq. (6) is the equation of motion
of the massless component X(r, s, t) of the immersed body. It simply
says that the body X(r, s, t) moves at the local fluid velocity, i.e., by
no-slip condition.

If the force density F in Eq. (4) were a function of the massless com-
ponent X(r, s, t) only, that is, if Y(7, s, t) were given, then Egs. (1)-(6)
would be complete. However, since the force density F is also a function
of the unknown massive representative Y(r, s, t) of the rigid body, we
need to take into account the rigid-body dynamics. To do that, let Y, ()
be the center of mass of the body and {E; (t), E5(t)} be the orthonormal
basis for a coordinate system fixed to the body with its origin at the
center of mass. Then we can write the position of the material point r, s
of the body as

Y(r,s,t) = Yo, () + ¢ (r, )E[(t) + c5(r, )E» (1)

=Y () + EDC(r,s), @)

where £(7) is a 2 x 2 matrix of which the ith column is E;(t), and C(r,
s) is a 2 x 1 vector-valued function of which the ith component is ¢;(r,
s). Since the coordinates are fixed to the body, the coefficients c;(r, s)’s
are independent of time. Note that Eq. (7) allows for general curvilinear
coordinates r,s that are fixed to the body. We get the special case of
Cartesian coordinates by setting ¢,(r, s) = r and ¢,(r, s) = s.



Y. Kim et al.

massless boundary X(r,s,t)
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Fig. 1. Schematic view of massless boundary X(r, s, t), massive boundary Y(r, s, t), wall immersed boundary points W(s, t), and wall target boundary points W (s)
(left) in which the wall IB points (massless boundary) are connected to the wall target points (massive boundary) by a system of stiff springs with zero rest length.
The staggered MAC grid in 2D (right) in which the fluid velocities are defined at the cell edges, the pressure and the diagonal elements of the extra stress tensor are
defined at the cell centers, and the off-diagonal elements of the extra stress tensor are defined at the cell vertices [26].

Now the equations of motion of the rigid body Y(r, s, t) are a dynam-
ical system for the variables Y, (t), £(7), Vo, (t), and L(t), where V., (t)
is the velocity of the center of mass and L(t) is the angular momentum
of the body. These variables are expressed in the laboratory frame of
reference. The equations for Y., (t) and V() are

dY,
d;m = Vem(), (3)
dv,
d:m = —/F(r,s,t)drds—Mgez, )

where F is the restoring force in Eq. (4), e, is a unit vector in the posi-
tive y direction, and g is the gravitational acceleration. Here and in the
following, any integral with respect to r, s is understood to extend over
the whole of the immersed body. In Eq. (9), M is the excess mass of the
body, i.e., the difference between its mass and the mass of the fluid dis-
placed. Later on, we shall need the density of the excess mass, which we
denote by m(r, s). This is the difference between the density of the rigid
body and the (constant) fluid density and, of course, M = / m(r, s)drds.
Note that the motion of Y.,(t) depends on only the gravitational force
and the total force generated by the stiff springs that connect the mas-
sive and massless descriptions of the immersed body. Thus the massive
body Y(r, s, t) has no direct interaction with the surrounding fluid.
The rotational motion of the rigid body can be summarized as

T() = / (Y(r, 5,0) = Yo () X (=F(r, 5, t))drds, (10
dL
=T, an
Q@) = L(t)/ Py, (12)
dE,
— =RIQOIE®. =12, 13)

where T(t), L(t), and Q(t) represent the total torque acting on the rigid
body, its angular momentum, and the angular velocity, respectively. In
(10), the cross product a x b is the determinant of the matrix which has
two column vectors a and b. In (13), R[6] represents the orthogonal
matrix that describes the rotation through the angle 0, i.e.,

—sin@
cosf )

In (12), the time-independent value Py, which is called the initial mo-

ment of inertia, can be computed as P, = f m(r,s)CTCdrds. For the

cos

14
sin 6 (14

R[0] = (
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detailed derivations for the formula in 3D case, the readers can refer to
Kim and Peskin [17].

The mathematical formulation of the pIB method for a two-
dimensional viscoelastic fluid interacting with a rigid body is fully de-
scribed by Egs. (1)-(13). Consider the case in which K — o in Eq. (4).
Then the massless body X(r, s, t) coincides with the massive body Y(r, s,
t) and obeys rigid-body kinematics. Even though K cannot be infinite in
practice, we can choose K to be so large that Y(r, s, t) and X(7, s, t) move
as closely as we like. However, a large value of K may generate compu-
tational instability, and thus there is a trade-off between the size of K
and the time step restriction. This issue will be discussed in Section 4.1.

3. Numerical implementation

For the numerical implementation to solve Egs. (1)-(13), we adopt a
‘formally’ second-order IB method which was used in [23,24] and gen-
eralize it to consider the dynamics of the massive body that is connected
to the massless body by stiff springs [16-18]. This method is based on
the framework of a second-order Runge-Kutta method in which each
time step is divided into two substeps: the preliminary and final sub-
steps. The preliminary substep computes data at time level n + % using
data at time level n by a first-order accurate Euler method. Then the
final substep uses the data at time levels n and n + % to update the data
at time level n + 1 by a second-order accurate midpoint rule.

Here we use a superscript to denote the time level. Let At be the
time step, X"(r, s) is shorthand for X(r, s, nAt), and all other variables
can be written in similar shorthands. A subscript is used to denote the
spatial discretization of the immersed body. Thus X”, k = 1,..., N,, de-
note the marker points representing the immersed body where N is the
total number of points used in the discretization. We shall later use the
notation XZ (X,’(”1 s XZ,z)'

Before describing the spatial and temporal iteration of the numer-
ical scheme, we need the initialization of some variables. Initially the
massive points Yz are exactly the same as the immersed body points X?,
and the initial orthonormal frame {E?, E)} is chosen to be the standard
basis for the 2D space. Then the corresponding orthonormal matrix £°
is the 2 x 2 identity matrix, and thus Eq. (7) determines the coordinates
Gy, for the point Y9 as C, = Y) — YO . where YO is the center of mass
of the body at time 0.

Let my be the excess mass density of the marker point Xg of the body.
Then the total excess mass M of the body can be computed as

Ny
M = m; ArAs,
k=1

15)
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where Ar and As are the spatial meshwidths for the immersed body. The

initial moment of inertia P, used in (12) is independent of time and can

be computed as follows:
Ny

Py = Z ka{CkArAs.
k=1

16)

3.1. Spatial discretizaions for Oldroyd-B fluid

We discretize the physical domain by setting up a grid with mesh-
width h = Ax; = Ax, on which the fluid variables are defined. The grid
of cell centers, denoted g, is given by

({20}

where i =0,...,N,—1 and j = 0,...,N, — 1. Here we use a staggered
marker-and-cell (MAC) grid [25] in which the fluid velocity u = (u;,u,)
are defined at the cell faces, the pressure p and the diagonal elements
of the extra stress tensor A are defined at the cell centers, and the
off-diagonal elements of A are defined at the cell vertices [26]. More
precisely, for a = 1,2, the component of the velocity u, is defined on
the grid g, =gy — gea, where e, is a unit vector in the o direction.
The pressure p and the diagonal elements A;’s of the extra stress ten-
sor live on gj, and the off-diagonal elements Al-]-’s, i#j, are defined on

a7

theg ;| =gy - g >« €+ A two-dimensional staggered MAC grid is illus-
trated in the right picture of Fig. 1.
Now we define two finite difference operators as follows:

¢(x+ gea) —¢(x— g%)
7 ,

(D) (x) = (18)

d(x+ he,) — (x — hey)

(2) —
(Dn( ¢)(X) - 2h ’

19)

where a = 1,2. Note that these operators in ath direction correspond to
the partial derivatives of ¢(x) with respect to x,. Thus the discrete diver-
gence and Laplace operators are defined by D;;)u pand Lu, = D;I)D;l)
respectively, where we use the summation convention.

The fluid mesh and the immersed boundary mesh are connected by
a smoothed approximation to the Dirac delta function. It is denoted &
and is of the following form:

Uy

5s00 = 12w (21w (32), 20)
h h
where the function y is given by
3—2\r|+\/é+4|rw’ i |r<1
v() = 32UVIRIAE e g g @D
0, it 2<rl.

The motivation and derivation for this particular choice is discussed in
[13].

With the help of the function §;,, we can interpolate a function ¢ ] x)
defined only on x € g, to be a function defined on y €g,. To be precise,
we define the interpolation operator I, by

U bp¥) = Y, bs(X)8,(x = y)h?,

xegﬁ

(22

where yeg,. Let S(u)¢, denote the application of the discrete con-
vective operator to a function ¢,, then it is the discretization of %((u-
V)¢, +V - (ug,)), and the explicit form of the skewsymmetric convec-
tive operator is

2

Y (Uattp) DY by + DD (L up)by)-
p=1

S, = !

2 (23)

Note that the discrete functions used to define S(u)¢, are all defined at
points x € g,, and thus S(u)¢,, is a function of x€ g, .
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The af element of the deformation tensor d(u) = %(Vu + (V') can
be discretized as

1
dop(w) = 5 (DPuy + D). (24)

We can see that (d,xﬂ(u))(x) is a discrete function defined at the points
x € gy when a = g and at the points x € g_; when a # f.

We also need to define the spatial discretization of the term VuA +
A(VwT in Eq. (3) of which the af element can be written as

g A, +—A

i ay>
ox, ox,
where we use the summation convention. The af element of the dis-

cretization of this operator, which we denote as C,4(u, A), can be defined
as

Crxﬂ(u’A) = (Diz)(]g“a»([g'qyﬂ) + (Diz)([guﬁ))(lgAay)’
where g =0 when a = §, and g = —1 when a#f. Thus C,5(u,A)(x) is

a discrete function defined at the points x€ g, when « = § and at the
points x € g_; when a # .

0
“ @5)

(26)

3.2. Time-stepping scheme

The temporal iteration is based on the framework of a second-order
Runge-Kutta method in which each time step is divided into two sub-
steps: the preliminary substep to compute data at time level n + % using
data at time level n and the final substep to update the data at time
level n + 1 using the data at time levels n and n + % The step-by-step
procedure of the time-stepping scheme proceeds as follows.

Step 1: Update the positions of the massless boundary XZ+E and mas-
1
sive body Y:+ 2.
n+d At
Xeo =Xiat S Y WX 6ux = XA, a=1,2, @7
XEgy
1
Yo = Yo, + 5VE, @9
Q"=L"/P,, (29
1
B =r[SerE =12, (30)
+1 +1 1
Y, =Y, +€"IC, 3D

where V! and L™ are the velocity of the center of mass and the angular

momentum, respectively, which are known values at time nAt, like u”.
1
. +3 1
Step 2: Calculate the force densities FZ 2 and £""2, and the total

1
toque T"*2.,
n+i n+l Vl+1
2 2 2
F,'?= K(Yk - X ) (32)
1 1 1
7= TR e (x- X ) arks a2 (33)
k
1 1 1 1
™=y <Yz+2 - YZ:f) x <—F:+2 > ArAs. (34)
k

1
Note that each component f:+2 (x) of the force density f "3 is defined
atxeg,.
1
Step 3: Given the computed force density £"*2, we solve the dis-
cretized version of the Oldroyd-B model (1)-(3) and compute the ve-
1

. + 1
locity V:m2 and the angular momentum L"*z.
1
n+5 _oan
. <Aa s Aa s
1

1
n+s
i +SMAL, - Caﬂ(u”,A")> + A7 = 2m, dyy), (35)
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n+z
u 2 _ un 1 L 5 3
p( am/z —~ +S(u")u2> +DVp 2 = Lty T+ DDA £y
(36)
1
1) n+z _
20 2o 37
rlJrl At n+l At
LTS D) AUTCCE o8 o
k
1 1
L' =1"+ %T"*i, 9

where a, f = 1,2. Eq. (35) is defined for xe g, when ¢ = fand x € g_,
when a # §. Egs. (36) and (37) hold for x e g, and x € g, respectively.
Step 4: Update the massless boundary XZ“ and massive body body
Yn+l .
k

1 1
XpH =X 4 MY uy P06, -X, R, a=

1,2, (40)
XEgy
YISy Ay 41
cm T Tcm +AVen ™, ( )
1 1
Q"2 =L"3 /P, 42)
1
EMt! = RIAtQ"IE!, =12, 43)
L GARED (ALl o (44)

Step 5. Update the fluid velocity, the velocity of the center of mass,
and the angular momentum of the rigid body: for a, f = 1,2,

4n+1 A" . 1 ' '
1 +3 1 1
r,( - = S(” 2)“Zﬂz ap( A 2)> ‘1Z+1

At B
ntd
=24, dgy(u" ), (45)
utl —yn 1ol
/)( a = a +S(un+2)ua 2) +D(a1)pn+l
1 1 ntl
= Sus L™+ + S DINAT + ALY+ 2, (46)
(1), n+l _
DMt =0 47
A o, ntd
Vil =Vin+ 57 Y (-F, P)ArAs— Atge,. (48)
k=1
1
L™ = "+ At T™ 2. (49)

This completes the time-stepping scheme.
3.3. Implementation of fixed walls

In order to solve the Oldroyd-B Egs. (35)-(37) and (45)-(47), we use
the assumption of periodic boundary conditions and adopt the discrete
Fourier transform (implemented by the FFT algorithm). This is because
the fluid equations can be solved efficiently by using the FFT algorithm.
(Note, however, that there is no fundamental restriction on the fluid
solver and the boundary conditions in the present method.) Though we
use periodic boundary conditions in all two space directions for compu-
tational efficiency, we can break the periodicity and make fixed walls.

In order to model fixed walls, we utilize the “target boundary” idea.
We designate target boundary points W (s) in the place where we want
the internal walls to be. To avoid fluid leakage through the wall, the
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target boundary points should be spaced about half a mesh width apart
(or closer). The target boundary points neither move nor interact with
the fluid directly, but they are connected by a system of stiff springs
to the immersed boundary points W(s, t) that move at the local fluid
velocity and apply force locally to the fluid, see the left picture of Fig. 1.
When the wall boundary W(s, t) moves apart from the target boundary
W, (s), a restoring force comes into play to keep them as close to each
other as possible. The restoring force F,, (s, t) acting on the wall boundary
W(s, t) is defined as

F,(s,1) = K,,(Wy(s) — W(s, 1)), (50)

where K, is a large stiffness constant. This provides a feedback mech-
anism for computing the boundary force needed to force the immersed
boundary to stay in the stationary internal walls. Note that the target
boundary idea for enforcing the no-slip condition still allows the use of
FFT, since we do so not by changing the boundary conditions per se but
instead by applying forces that effectively prevent the fluid from mov-
ing at the specified locations. This idea has been successfully used to
simulate a stationary boundary in many previous works [27-29].

4. Numerical results

We verify the present pIB method for viscoelastic particulate flows
by simulating some simple systems. First, we simulate a circular parti-
cle falling under the influence of gravity in 2D space and compute the
following dimensionless parameters:

Reynolds number, Re = pU D/(u, + u,), 5D

Deborah number, De =U r,/D, (52)
D/2)*(p; —

drag coefficient, Cp, = w (53)

%pUD
where U is the terminal descent velocity and D is the diameter of the
particle.

We then validate the present method further by a convergence study,
which shows that it is first-order accurate. Although we use second-
order accurate discretizations in space and time, the method of this pa-
per is only first-order accurate spatially, since it is applied to problems of
which solutions lack sufficient spatial smoothness for the formal second-
order accuracy of the method to be realized in practice. Next, we con-
sider two circular particles which simultaneously descend in a channel
filled with an Oldroyd-B fluid. The simulation results will be compared
with those in the literature. Finally, we simulate the sedimentation of
several particles in a viscoelastic fluid.

In the traditional IB (pIB) method, it is conventional that the distance
between two neighboring marker points should be approximately less
than half a meshwidth. Throughout this section, we distribute the mass
uniformly over the rigid circular particle with the grid spacing being Ar
in the x direction and As in the y direction, which both are less than h/2,
and thus the center of mass is the geometrical center of the rigid body.
See the upper-left panel of Fig. 2 which shows a schematic view for the
maker points (‘+’) representing the circular particle. Note, however,
that mass could be distributed non-uniformly, which would affect the
moment of inertia.

4.1. A falling circular particle and convergence study

We begin by investigating the case of a single circular particle falling
in a channel filled with an Oldroyd-B fluid with p = 1.0 g/cm?, r, = 1.0s,
u, =0.05 g/(cm-s), and Uy =0.15 g/(cm-s). We choose a computational
domain [—0.75,0.75] x [0, 6] cm?; however, the channel width is 1.0 cm
by setting up two vertical walls at x = —0.5 cm and x = 0.5 cm. The parti-
cle diameter and density are D = 0.25 cm and p; = 1.01 g/cm? (thus the
excess mass density m = 0.01 g/cm?), respectively, and the gravity with
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Fig. 2. The upper-left shows a schematic view for the maker points (‘+’) representing the circular particle with the grid spacings Ar and As. The two lower-left
panels show the vorticity contours (1st column) of flow past a freely falling circular particle and the trace contours (2nd column) of the extra stress tensor A at ¢t =8
s. The upper right panel, which plots the maximum distance between the two descriptions of the particle, shows that ||X — Y]||, is less than h/25. The right-middle
and right-bottom panels show the x and y components of velocity V., (t) and the angular velocity «(t), respectively.

g =980 cm/s? acts in the negative y-direction. The simulation begins at
t = 0 by releasing the particle at the initial position (-0.15 cm, 4.0 cm).
The meshwidth is 2 = 1.5/256 cm, and the time step is At = 10~ s. This
case is identical to the one presented in [7] except that we here use pe-
riodic boundary conditions for the fluid equations instead of Dirichlet
boundary conditions used in [7].

The 1st column of Fig. 2 shows vorticity contours at = 8 s for the
freely falling particle in the Oldroyd-B fluid from which we can see the
counter vortices in the left and right sides of the particle. The 2nd col-
umn depicts the trace contours of the extra stress tensor A at t =8 s
which is used to show the distribution of normal stress. We can see that
the trace of the extra stress tensor is large around the particle with its
maximum at the left and right sides of the particle and decreases to be
0 as we go far away from the particle.

The present pIB method uses the penalty parameter K which forces
the two descriptions of the body to be close to each other. A large K
causes a large force for any given displacement and may then lead to
a computational instability which can be avoided by reducing the time
step At. We choose the parameter K to ensure the distance between the
two Lagrangian descriptions to be less than one-tenth the meshwidth,
ie, [IX=Y||, < h/10, and adjust the time step At to avoid numerical
instability for a large K. This can be achieved here by setting K = 2.56 x
108 g/(cm*s?) and At = 107 s. The upper right panel of Fig. 2, which
plots the maximum distance between the two descriptions X and Y of
the particle, shows that ||X — Y||, is less than h/25.

The two lower-right panels of Fig. 2 show the time evolution of the
x and y components of the velocity V ., (t) (middle) of the particle and
the angular velocity w(t) (bottom), respectively. The body accelerates
downwards until it reaches its steady descent velocity around at7 = 3.0s,
called the terminal velocity. After reaching the terminal velocity, the
body falls with an approximately constant velocity V,, = —0.179 cm/s
which leads Re = 0.2244, De = 0.716, and Cj, = 21.506. These values are
comparable to the data in [7]. A large overshoot of the descent velocity
and the angular velocity, followed by steady velocities, can be observed
in the figure, which is consistent with other observations [6-8]. We can
also see from the right-bottom panel that the particle rotates counter-
clockwise which indicates the rolling of the particle near wall [5,7].
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We now perform a convergence study to verify that the rigid body
dynamics in an Oldroyd-B fluid is correctly solved by the present pIB
method. Here we vary the mesh sizes of the x and y directions of the
domain as (N, N,) = (64,256), (128,512), (256,1024), and (512,2048)
so that the mesh width becomes h = 1.5/N, correspondingly. We also
choose Ar = As =0.64/N, and At =2.56-10"3/N, which are propor-
tional to h, so that the refinements for the fluid mesh width, the
boundary mesh width, and the time step duration are done by the
same factor, see the upper-left panel of Fig. 2. When we refine the
mesh width and time step, we increase the penalty parameter as K =
3.90625 x 103N?2 g/(cm*s?). Note that the penalty parameter K increases
as timestep is refined in the manner that KAt? is constant. The fact that
this relationship between K and At preserves the numerical stability of
the scheme despite the increase of K was proved by Lai [30].

The left panel of Fig. 3 shows the descent velocity V., (t) as functions
of time for the four N,’s. We can see that the velocities are close for
the four cases of N,. Especially, the difference of the descent velocities
between the cases of N, = 256 and 512 is smaller than those between
the cases of other pairs with coarser resolutions, which might imply the
convergence behavior of the solutions.

To get a more quantitative measure of convergence, we compare the
velocity fields computed on the four different mesh widths. Since we do
not have the exact solution for the problem, the estimation of the con-
vergence ratio requires three numerical solutions for three consecutive
grid sizes N,’s. We first define the discrete L, norm of a scalar valued
function y defined on the Cartesian grid as [y [, = (X, ; lv; 2A)1/2, Let
(uy,, vn,) be the velocity field for N, X N, Cartesian grid, then the right
panel of Fig. 3 shows the convergence ratios of the computed fluid veloc-
ity which is computed by (||uy_— “2Nx||§ +llon, - UZNX“%)I/Z/(HuZNX -
ugn |13+ lvay, — vy 113)"/2 for each of the cases N, = 64 (dashed line)
and 128 (solid line). One can see from the figure that the convergence ra-
tios for the fluid velocity are around 2, which indicates that the present
method is first-order accurate. As remarked above, the IB method is
typically first-order accurate, despite its formal second-order accuracy.
There are some special situations in which actual second-order accuracy
is achieved [16], but these seem to be those that avoid a delta-function
layer of force at the solid-fluid interface. Such a delta-function layer is
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Fig. 4. Velocity fields (left two columns) and traces of the extra stress tensor A (right two columns) at time ¢ = 96 s in the cases with two different relaxation times:

r, = 1.0 s (1st and 3rd columns) and 4.0 s (2nd and 4th columns).

needed here, despite the thickness of the solid, to enforce the no-slip
condition at a rigid boundary.

4.2. Elasticity effect on a falling circular particle

We here vary the relaxation time r, to investigate the effect of elas-
ticity on the lateral equilibrium position. The elastic effect is measured
by the elasticity number E = De/Re. The parameters are chosen as p =
1.0 g/cm3, u, = 0.00425 g/(cm-s), and H, = 0.02975 g/(cm-s). The parti-
cle, which has the diameter D = 0.25 cm and density p; = 1.0007 g/cm?,
is released at the initial position (—0.15 cm, 15.0 cm) in the rectangular
domain [-0.5,0.5] X [0, 16] cm?.

Fig. 4 draws the velocity fields (left two columns) and the traces
of the extra tensor A (right two columns), at time 7 = 96 s when the
particles reach their terminal velocity. The figure compares two cases
with two different relaxation times: r, = 1.0 s (1st and 3rd columns) and
4.0 s (2nd and 4th columns). While the velocity field with r, =1.0 s
has two counter-rotating vortices around the particle, the velocity field
with r, = 4.0 s has only one at the right of the particle. This is because
the particle in the latter case is too close to the left wall for the flow
to form a vortex at the right side. The trace of A is positive around the
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particle with its maximum on the sides of the particle in both cases. We
can also see that the magnitude of the trace and the region of positive
trace are larger in the flow with a larger relaxation time (compare the
right two columns).

We also investigate the effects of the elasticity and wall by releasing
the particle at different distances from the wall. We choose the same pa-
rameters used in the previous simulations and also in [7]; however, the
relaxation time r; is chosen as 0, 1.0's, 2.0's, 4.0 s, 8.0 5, and 16.0 s, and
the particle is released from two different lateral positions x = —0.15 cm
and —0.25 cm. Note that, when r, = 0, the fluid is Newtonian, and we use
the fluid viscosity to be p; + u, = 0.00425 + 0.02975 = 0.034 g/(cms).

The upper panel of Fig. 5 shows the descent velocity of the par-
ticle released at x = —0.15 cm in terms of time. Two different time
scales are used in the x-axis to see more clearly the initial behaviors
of the particles. The overshoot of the descent velocity gets smaller as
the relaxation time gets smaller and disappears when the flow is New-
tonian as shown in the upper-left panel. Independent of the relaxation
time and the initial overshot, all the flows reach their terminal veloc-
ities which are inversely proportional to the relaxation time r, when
r: <4.0 s; however, the terminal velocity decreases as the relaxation time
increases when r, > 4.0 s. (Compare the terminal velocities for r, = 4.0 s,
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Fig. 5. The descent velocity of the particle released at x = —0.15 cm as functions of time (upper) and the lateral position of the particle normalized by the particle
radius r (lower) which is released at x = —0.15 cm (solid lines) and x = —0.25 cm (dotted lines). The initial time scale (left) is larger than the later one (right).
Independent of the initial released position, there exists a lateral equilibrium position which depends only on the relaxation time and which is closer to the wall as

the relaxation time r, gets larger.

Table 1
Reynolds, Deborah, elasticity numbers, drag coefficients, and the lateral equi-
librium position of the center of mass.

T, 0 1.0s 2.0s 4.0s 8.0s 16.0s
Re 0.291 0.328 0.381 0.397 0.348 0.273
De 0 0.178 0.415 0.864 1.516 2.374
E 0 0.554 1.088 2.176 4.352 8.704
Cp 6.80 6.046 5.196 4.99 5.687 7.261
Lateral position 0 -0.883r  —1495r -1.739r  -1.857r —-1.872r

8.0 s, and 16.0 s.) Table 1 shows the induced steady non-dimensional
quantities for each of the relaxation times. As the relaxation time r, in-
creases, Deborah (De) and elasticity (E) numbers increase. While the
Reynolds number (Re) increases up to r, = 4.0 s and then decreases as
the relaxation time r, increases, the drag coefficient (Cp) has the oppo-
site behavior.

The lower panel of Fig. 5 shows the lateral position of the center of
mass Y, (t) of the particles normalized by the particle radius r. The lines
with the same markers (or same color) represent an Oldroyd-B fluid with
the same relaxation time. The pair of lines with the same markers rep-
resents two different initial lateral positions: x = —0.15 cm (solid line)
and —0.25 cm (dotted line). Each pair of lines with the same markers
goes to the same lateral position, i.e., the particles in the fluid with the
same relaxation time reach almost the same lateral equilibrium position
independent of the initial lateral position. We can also observe some
initial overshot of the lateral position when r,>2.0 s, i.e., the particle
is pushed away from the wall initially, then attracted to drift toward
the wall again, and gradually approach the eccentric equilibrium posi-
tion [7]. The initial overshot of the lateral position gets larger as the
relaxation time r, gets larger.

The lateral equilibrium position depends only on the relaxation time
and gets closer to the wall as the relaxation time r, (and thus elasticity
number E) gets larger, see also Table 1. These behaviors are also in good
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agreement with the ones observed in [7,8,31]. However, we find that
the lateral equilibrium position has a limit even though the relaxation
time further increases. When r, = 8.0 s and 16.0 s, Table 1 shows that the
two lateral equilibrium positions are —1.857 r and —1.872 r, respectively.
The lateral equilibrium positions for larger relaxation times are found
to be very close to these values: in particular, —1.859 r for r, = 20.0 s and
—1.834r for r, =24.0 s.

It is interesting to see from Table 1 that, as we increase the relaxation
time r;, the drag first decreases and then increases. Especially, the drag
coefficient is largest at r, = 16.0 s. The reason for this might be that the
particle in the case with r, = 16.0 s is so close to the wall that the velocity
gradient close to the particle surface and, accordingly, the shear stress
(and thus the drag) on the particle surface increase [32,33]. The gap
between the wall and the particle is only 1.128 7 at r, = 16.0 s.

4.3. Sedimentation of multiple circular particles

In this subsection, we investigate the interaction between multiple
circular particles falling freely in a steady fluid. Throughout this section,
we choose a computational domain [—0.5,0.5] X [0, 16] cm? filled with
an Oldroyd-B fluid. As the first test case, we release two identical par-
ticles which have diameter D = 0.125 cm and density p; = 1.01 g/cm?
at the initial positions (—0.15 cm, 13.0 cm) and (0.15 cm, 13.001 cm).
The Oldroyd-B fluid has the following properties: p = 1.0 g/cm?, r, =
1.0 s, u, =0.05 g/(cm-s), and Hy =15 g/(cm-s). The meshwidth is
h=1/128 cm, the time step is At = 1.6 x 107> s, and the final time is
128 s.

The left two columns of Fig. 6 show the motion of the falling parti-
cles in a Newtonian fluid (1st column) and in the Oldroyd-B fluid with
r, = 1.0 s (2nd column) at the selected times: r = 12.8 s, 25.6 s, 38.4 s,
51.2s,64.0s, 76.8 s, 89.6 s, and 102.4 s. The Newtonian fluid has the
viscosity u, +pu, =0.05+0.15=0.2 g/(cm-s). We can see from the 2nd
column that the two particles undergo drafting until kissing, tumbling of
the combined particles until they are aligned with the falling direction,
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Fig. 6. The left two panels compare the interaction between two descending particles in the Newtonian fluid (1st column) and in the Oldroyd-B fluid with r, = 1.0 s
(2nd column) at the selected times: 7 = 12.8 s, 25.6 s, 38.4 s, 51.2 s, 64.0 s, 76.8 s, 89.6 5, and 102.4 s. The right six panels show the snapshots of the doublet at
several times, showing the phenomenon of drafting, kissing, tumbling, and chaining for two particles in the Oldroyd-B fluid.

and descending without separation. This is a well known behavior of
two descending circular particles in an Oldroyd-B fluid [5,6,12]. Unlike
these interactions of two particles in a non-Newtonian fluid, the parti-
cles in a Newtonian fluid go through a slow drafting, tumbling without
kissing, and separation again. Note that the particles attract, kiss, and
chain only when the relaxation time is larger than a critical value. When
we simulate the interaction of two particles in the Oldroyd-B fluid with
r, = 0.1 s (not shown here), they behave as in a Newtonian fluid.

The right six panels of Fig. 6 show the snapshots of the doublet at
various moments of time, showing the phenomenon of drafting, kissing,
and chaining for two particles in the viscoelastic fluid. Although the two
particles (and generally multiple particles) can collide, it is important to
note that no special method to detect and prevent collision was required
during the computation. Non-penetration of immersed bodies X(r, s, t)
is an automatic feature of the IB method and follows (if the time step is
sufficiently small) from the continuity of the interpolated velocity field
in which the immersed bodies move. Indeed, when collisions seem to
occur in an IB computation, there is always a small gap that remains
between the colliding bodies. The gap size is of the same order of mag-
nitude as the meshwidth h of the fluid computation.

To see more quantitatively the chaining behavior of the two particles
in the Oldroyd-B fluid, we draw Fig. 7 in which the upper panels depict
the time evolution of the x (left) and y (right) components of the centers
Y. () of the two particles, and the lower panels show their descent
(left) and angular (right) velocities, V., (t) and w(t). We can see from
the upper panels that the chain of the two particles is formed at around
t =40 s and descends approximately on the centerline of the domain.
After around ¢ = 90 s, the angular velocity «(t) becomes almost 0, and
the descent velocity V., (t) converges approximately to a constant value.
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The average terminal velocity of the chain is —0.0746 cm/s with the
Reynolds number Re = 0.0467, Deborah number De = 0.597, and the
elasticity number E =12.8.

When the chain of two particles fall, they are aligned with the falling
direction at the centerline of the domain in the Oldroyd-B fluid with
r, = 1.0's, as shown in the 2nd column of Fig. 6. We find, however, that,
when the relaxation time gets larger, the combined particles fall with
some tilt angle from the falling direction, and the lateral position of the
particles moves to the wall. See the left panel of Fig. 8 in which we draw
two descending particles in the Oldroyd-B fluid with r, = 4.0 s at various
times: r =38.4 s, 51.0 s, 64.0 s, and 76.8 s. We can see that the lateral
equilibrium position of the combined particles exists off the centerline
of the domain and that the angle 6 between the line connecting the two
particles and the positive y-axis is non-zero.

The upper-right panel of Fig. 8 shows the average value of the lateral
positions of the two particles as functions of time for various relaxation
times. When the relaxation time is small (r, = 1.0 s or 2.0 s), the lateral
position of the combined particles converges to the centerline of the
domain; however, as the relaxation time r, gets larger over r, = 2.0 s, the
lateral equilibrium position gets closer to the wall. This is a reminiscence
of the effect of the elasticity on the lateral equilibrium position of a
single descending particle in Section 4.2.

The lower-right panel of Fig. 8 shows the angle § between the line
connecting the two particles and the positive y-axis as functions of time
for various relaxation times. The angle 6 is drawn after + = 45.0 s when
the two particles are chained. When the relaxation time is small (r=1.0 s
or 2.0 s), the tilt angle 6 oscillates and converges to 0, i.e., the particles
are aligned with the falling direction. When the relaxation time is larger
than 2.0 s, the tilt angles stay at some positive values which depend on
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Fig. 8. The interaction between two particles falling in Oldroyd-B fluid with r, = 4.0 s at some chosen times (left), the average value of the lateral positions of the
two particles as functions of time (upper-right), and the angle 6 between the line connecting the two particles and the positive y-axis as functions of time for various
relaxation times. When r, > 2.0 s, the tilt angles stay at some positive values which depend on the relaxation time, and the lateral equilibrium position gets closer to

the wall as the relaxation time gets larger.

the relaxation time r;, see the graphs for r,=4.0 s, 6.0 s, and 8.0 s. This
result is a reminiscence of the recent observations that there exists an
equilibrium tilt angle of a single ellipse or ellipsoid falling in a chan-
nel which is determined through the competition between inertia force
and normal stress [3,34]. The dependence of tilt angle of two chained
particles on elasticity and Mach numbers was also investigated in [35].

The next test case concerns three circular particles sedimenting in
a channel filled with an Oldroyd-B fluid which has the following prop-
erties: p = 1.0 g/ecm3, yu, = 0.0325 g/(cm-s), u, =0.2275 g/(cm-s), and
two different relaxation times r, = 1.5 s and 3.0 s. Then three par-
ticles, which are identical and have diameter D =0.2 cm and den-
sity p; = 1.005 g/cm3, are released at the initial positions (0.3 cm,

41

15.0 cm), (—0.02 cm, 15.0 cm), and (0.26 ¢cm, 15.0 cm). The meshwidth
is h = 1/128 cm, the time step is Ar = 3.2 x 107 s, and the final time is
160 s.

Fig. 9 compares the interaction of the three particles in a Newtonian
fluid (upper panels) and Oldroyd-B fluids with the relaxation time r, =
1.5 s (middle panels) and 3.0 s (lower panels). We can see that the three
particles form a chain along the falling direction only in the Oldroyd-
B fluids, which verifies the well-known observations and experiments
[7]. Whereas the chain is preserved in the Oldroyd-B fluid with a high
relaxation time (r, = 3.0 s, lower panels), one of three particles breaks
the chain to get far away from the chain of the other two particles in the
Oldroyd-B fluid with a low relaxation time (r, = 1.5 s, middle panels).
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Fig. 10. The time evolution of the x (upper-right) and y (upper-left) components of the three particles freely falling in the Oldroyd-B fluid with r, = 3.0 s, and their
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of this article.)

The upper panels of Fig. 10 show the time evolution of the x and y
components of the centers Y., (t) of the three particles in the Oldroyd-B
fluid with r, = 3.0 s, and the lower panels show their descent (left) and
angular (right) velocities, V() and @(t). We can see from the upper
panels that the chain of the three particles is formed around t =40 s
which falls approximately on the centerline of the domain. The angular
velocities w(t) approach 0, and the descent velocities V,,(t) are approx-
imately a constant. The average terminal velocity is 0.053 cm/s which
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induces Re = 0.04, De = 0.792, and E = 19.5. Notice the non-smooth
fluctuations of w(t) in the lower-right panel, see also Fig. 7. These non-
smooth fluctuations of w(t) are likely due to the large penalty stiffness
and exist both in Newtonian and Oldroyd-B fluids. One might worry
about the non-smooth oscillation introduced into the system by the large
value of the penalty stiffness K. As you can see, however, the fluctuation
amplitude seems to be quite small in Figs. 7 and 10 and can be damped
out further as the temporal and spatial resolutions are refined.
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Fig. 11. Velocity fields and the interaction of the six particles in a Newtonian fluid (upper panels) and an Oldroyd-B fluid with the relaxation time r, = 1.3 s (lower
panels) at some selected times. The six particles, which form a chain along the falling direction, descend at the centerline of the channel only in the Oldroyd-B fluid

(lower panels).

We consider as the final test case six circular particles descend-
ing in a channel filled with an Oldroyd-B fluid which has the fol-
lowing properties: p = 1.0 g/cm?, r, = 1.3 s, u, = 0.0325 g/(cms), and
H, = 02275 g/(cm-s). Then six identical particles, which have diame-
ter D =0.25 cm and density p; = 1.01 g/cm3, are released at the ini-
tial positions (—0.27 c¢cm, 14.0 cm), (0, 14.0 cm), (0.28 cm, 14.0 cm),
(-0.28 ¢cm, 14.3 cm), (0, 14.3 cm), and (0.27 cm, 14.3 cm). The mesh-
width is 2 = 1/128 cm, and the time step is At = 1.5 x 1075 s.

It is well known that, when the elasticity number E is larger than
the critical value (O(1)) and the Mach number M is less than the critical
value (O(1)), the particles in this case will form a chain that is paral-
lel to the falling direction [5-7]. Fig. 11 compares the interaction of
the six particles in a Newtonian fluid (upper panels) and an Oldroyd-B
fluid with r, = 1.3 s (lower panels). While the particles in the Newto-
nian fluid scatter and descend close to the wall, those in the Oldroyd-B
fluid are lined up along the falling direction at the centerline of the
domain, which is comparable to the observations in [7]. The average
terminal velocity of the six combined particles is 0.125 cm/s which in-
duces Reynolds number Re = 0.12, Deborah number De = 0.65, and
elasticity number E = 5.4.

5. Summary and conclusions

We have introduced an extension of the penalty immersed boundary
method that can handle a rigid body immersed in an Oldroyd-B fluid.
This method conceptually separates the rigid body into two parts, one
of which has the mass density of the ambient fluid, while the other one
carries the excess mass of the body. The part with the mass density of
the ambient fluid is modeled as a part of the fluid, and the other part is

43

modeled as a rigid body. The two parts are linked by a system of stiff
springs, which effectively force their motions to agree.

This approach has the virtue of simplicity. The Oldroyd-B fluid equa-
tions are defined and solved on the whole computational domain (in-
cluding the region occupied by the particles) with constant density and
viscosity, which makes it possible to use some efficient numerical solvers
such as FFT. (The viscosity within the particle regions has no physi-
cal consequences, since the motion there is effectively like rigid body
motion anyway.) To simplify the fluid-particle interaction, we virtually
decouple the rigid body solver from the fluid equations by introducing
the massive boundary Y which follows the rigid body dynamics and is
linked to the fluid dynamics via the massless boundary X. This form of
linkage is done by a spring force that connects X and Y in a satisfactory
manner and gives feedback to the fluid dynamics. The method is easy to
implement as an add-on to any Oldroyd-B fluid solver for the uniform
density, uniform viscosity case.

Another advantage of the present pIB method is that it can be applied
to more general problems of non-Newtonian fluid dynamics of rigid im-
mersed bodies, possibly of complicated geometry or with mass density
distributed in a non-uniform manner, either by themselves or in combi-
nation with the kinds of elastic immersed boundaries that have always
been the application domain of the immersed boundary method.

We have applied this new extension to some benchmark problems,
including sedimentation of multiple circular particles and shown that
the multiple particles in an Oldroyd-B fluid are lined up along the flow
direction, which verifies the known observations and experiments. We
have also investigated the effects of the elasticity and wall by releasing
a single particle at different distances from the wall and shown that
the lateral equilibrium positions of the falling particle depend on the
elasticity number, which was also well observed in literature. Additional
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validation has been provided in the form of a convergence study, which
confirms the expected first-order accuracy of the scheme.

Since the purpose of this paper has been to introduce and illus-
trate the new method, we have not yet pursued the applications begun
here in as much detail as they deserve. For example, two particles set-
tling in a channel filled with a Newtonian fluid go through from steady
motions to periodic motions including periodic-doubling and chaotic
states as the Reynolds number increases in a low Reynolds number flow
regime [36,37]. In an Oldroyd-B fluid, two kinds of particle dynamics
are observed: (i) a periodic interaction in a small elasticity number flow,
and (ii) the formation of a two-disk chain in a larger elasticity number
flow [35]. The dependence of the interaction between two particles on
Reynolds, elasticity, and Mach numbers needs further investigations.
The sedimentation of particles with various shapes both in 2 and 3 di-
mensional Oldroyd-B fluids will also be the subject of future work.
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