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a b s t r a c t 

A new finite difference method based on Cartesian meshes and fast Poisson/Helmholtz solvers is pro- 

posed to solve the coupling of a fluid flow modeled by the incompressible Navier–Stokes equations and 

a porous media modeled by the Darcy’s law. The finite difference discretization in time is based on the 

pressure Poisson equation formulation. At each time step, several augmented variables along the interface 

between the fluid flow and the porous media are introduced so that the coupled equations can be de- 

coupled into several Poisson/Helmholtz equations with those augmented variables acting as jumps of the 

unknown solution and some directional derivatives. The augmented variables should be chosen so that 

the Beavers–Joseph–Saffman (BJS) or Beavers–Joseph (BJ) and other interface conditions are satisfied. It 

has been tested that a direct extension of the augmented idea in [27] does not work well when the fluid 

flow is modeled by the Navier–Stokes equations. One of the new ideas of this paper is to enforce the di- 

vergence free condition at the interface from the fluid side. In this way, the Schur complement matrix for 

the augmented variables is over-determined and the least squares solution is used for the coupling prob- 

lem. The new augmented approach enables us to solve the Navier–Stokes and Darcy coupling efficiently 

with second order accurate velocity and pressure in the L ∞ norm for tested problems. The proposed new 

idea in enforcing the divergence free condition at the interface from the fluid side has also been uti- 

lized to solve the Stokes and Darcy coupling equations and shown to outperform the original method 

in [27] . In additional to the detailed accuracy check for the present method, some interesting numerical 

simulations for Navier–Stokes and Darcy coupling have been conducted in this paper as well. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In this paper, we intend to find numerical solutions for the cou-

pling of a fluid flow and porous media. For self-contained purpose,

we state the governing equations, the boundary and interface con-

ditions, and the physical parameters in detail although they have

appeared in the literature. 

The fluid flow is modeled by the incompressible Navier–Stokes

equations, 

ρ f 

(
∂u f 

∂t 
+ u f · ∇u f 

)
+ ∇p f = μ f �u f + F , 

∇ · u f = 0 , 

x ∈ � f , (1)
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here u f is the fluid velocity, p f is the pressure, and F = (F 1 , F 2 ) is

n external body force. The physical parameters μf > 0 and ρ f > 0

re the viscosity and density of the fluid, respectively, which are

ssumed to be constant in �f . The porous media is modeled by

he Darcy’s law as 

 D = − K 

μD 

∇p D = −K 1 ∇p D , 

 · u D = 0 , 

x ∈ �D , (2)

here u D and p D are the corresponding fluid velocity and the

ressure in the porous media, and K is the permeability which

s assumed to be a constant in this paper. For simplicity, we set

 1 = K/μD . Note that, the numerical method presented in this pa-

er can be extended to add a fluid source term such as ∇ · u D = φ
n the porous media region without much difficulties. 

Fig. 1 illustrates the coupling problem in which a porous me-

ia is modeled by the Darcy’s law inside of a closed interface

while an incompressible fluid flow is modeled by the Navier–

https://doi.org/10.1016/j.compfluid.2018.03.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2018.03.032&domain=pdf
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Fig. 1. A diagram of a fluid flow and porous media. In the diagram, n and τ are the 

unit normal and tangential directions, respectively. 
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tokes equations outside of the interface. We assume that the ve-

ocity is prescribed along the outer boundary ∂�f (either no-slip

r given flow boundary conditions). Our method can also handle

he case where the fluid flow is inside while the Darcy’s law is

utside. In such a case, the velocity normal component u D · n is

sually prescribed along the outer boundary ∂�D . Notice that, it

s equivalent to impose the normal derivative of the pressure as
∂ p D 
∂n 

= −u D · n /K 1 . The well-posedness and regularity of the above

oupling problem has been investigated in the literature such as in

25] and the references therein. 

The relation of velocity and pressure across the interface of the

uid flow and the porous media has been studied and is well-

nown nowadays. The normal velocity is continuous, which leads

o 

 f · n = u D · n , (3)

here again we assume that n is the unit normal direction at the

nterface pointing outward to the fluid side. The stress acting on

he interface should be balanced which leads two more interface

elations 

 p ] = 2 μ f n · D f · n , (4) 

α√ 

K 

( u f − u D ) · τ = 2 τ · D f · n or 
α√ 

K 

u f · τ = 2 τ · D f · n , (5) 

here D f = 

1 
2 

(∇ u f + ∇ 

T u f 

)
is the deformation tensor, τ is the

nit tangent vector, and 

√ 

K 
α is the friction constant arising from

he experimental data and dimensional analysis [25] . For conve-

ience, we denote K 2 = 

α√ 

K 
. The jump in the pressure is defined as

 p ] = p f − p D and this definition will be applied to other variables

hroughout the paper. Thus we have [ u · n ] = 0 and [ ∇ · u ] = 0 . The

econd equation in (5) is so called the Beavers–Joseph–Saffman

BJS) condition while the first one is called the Beavers–Joseph

BJ) condition. Most numerical methods in the literature use the

JS equation as a valid approximation while our augmented ap-

roach can handle the more complicated tangential slip condition

s shown in the first equation in (5) or non-homogeneous cases

s shown in some of our numerical examples. In the remaining of

he paper, for the sake of simplicity, we omit the subscripts f and

 in notations of u f , u D , p f and p D if there is no confusion since

he present coupled equations will be solved as one whole system.
Note that if we know [ u ·τ] and [ u · n ] (which is zero accord-

ng to the first interface condition), we can get the jump relations

f the velocity for each component. At a point X = (X, Y ) on the

nterface, let θ be the angle between the normal direction of the

nterface and the x -axis, see the diagram in Fig. 1 . Then the unit

ormal direction is n = ( cos θ, sin θ ) . If we define 

 u · τ] = q 5 , (6) 

nd combine with [ u · n ] = 0 , we get 

 = [ u ] cos θ + [ v ] sin θ, (7) 

 5 = −[ u ] sin θ + [ v ] cos θ . (8) 

y solving the jumps of [ u ] and [ v ] from the above system, we

btain 

 u ] = −q 5 sin θ, [ v ] = q 5 cos θ . (9) 

here are many applications of the interactions between a fluid

ow and a porous media, which has attracted a lot of atten-

ions in the literature. Earlier works have been focused on solving

tokes and Darcy coupling equations, particularly using finite ele-

ents or domain decomposition methods, see for example, [1–5,7–

0,12,14–17,19,20,23–25,32–36] and the references therein. For the

avier–Stokes and Darcy coupling, theoretical analysis and numer-

cal methods, particularly finite element methods have been catch-

ng up, see for example, [5,11,13,18] for an incomplete list and the

eference therein. 

In the above mentioned literature, almost all the numerical

ethods are based on finite element formulations or domain de-

omposition methods. In [27] , an alternative approach based on a

nite difference discretization and a Cartesian mesh was proposed

or solving the Stokes and Darcy coupling. The idea of the ap-

roach is to transform the original coupling problem to three Pois-

on equations with a source and dipole distributions correspond-

ng to the jumps in the solution and the normal derivative of the

oisson equations. Some augmented variables are introduced along

he interface so that the solutions of the velocity and pressure sat-

sfy original interface conditions as shown in Eqs. (3) –(5) . One of

dvantages is that a fast Poisson solver can be utilized on the rect-

ngular domain. The method produces second order accurate ap-

roximation for the velocity but first order accurate approximation

or the pressure. 

In this paper, we propose a Cartesian finite difference method

o solve Navier–Stokes and Darcy coupling equations based on

ome of ideas in [27] . We first rewrite the Navier–Stokes equa-

ions in the fluid domain using the equivalent pressure Poisson

quation formulation introduced by Johnston and Liu [21,22] , and

hen also rewrite the Darcy’s equations in the porous media do-

ain by taking the divergence operator to the velocity field so that

he coupling equations can be written as one whole system, see

he details in next section. We attempted to use the augmented

pproach in [27] combined with a Navier–Stokes solver to simu-

ate the Navier–Stokes and Darcy coupling problems. The attempt

orked only for a few time steps before the computed solution ei-

her blows up or loses accuracy. After some careful analysis and

umerical experiments, we came to the idea to enforce the diver-

ence free condition at the interface from the fluid side as an extra

ugmented equation (constraint). Thus the resultant Schur comple-

ent matrix for the augmented variables in discretization is over-

etermined and the least squares solution is used for the coupling

roblem. That is why the new method is called the least squares

ugmented immersed interface method. 

Below we briefly summarize the novelty of this paper. 

• With this new least squares augmented IIM approach, we have

developed a finite difference scheme to efficiently solve the
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Navier–Stokes and Darcy coupling equations with second order

accuracy both in the velocity and pressure. 
• With the new method, we have obtained some interesting sim-

ulation results for time dependent problems that cannot be

solved using the method in [27] for Stokes and Darcy coupling.

The method in this paper is different from that in [27] for

Stokes and Darcy coupling equations not only for solving different

couplings, but also in the methodology with the new idea in en-

forcing the divergence condition along the interface. In this paper,

we also present some comparison results of the two approaches.

For stationary Stokes and Darcy coupling equations, both meth-

ods can work. However, as the mesh gets finer, the five-equations

method in [27] may be less accurate compared with that obtained

from the new (six-equations) approach as the augmented variable

may loose accuracy due to the larger condition number of the

Schur complement. 

The rest of the paper is organized as follows. In the next sec-

tion, we explain the theoretical aspects of the least squares aug-

mented method for the Navier–Stokes and Darcy coupling equa-

tions. The mathematical equivalence of the original and trans-

formed problems will also be discussed. In Section 3 , we intro-

duce the time discretization for the transformed equations based

on a variant of the pressure Poisson equation formulation and de-

rive the resultant Schur complement matrix. Numerical accuracy

check and the comparisons with previous method will be given in

Section 2.2 , while some interesting flow simulations with various

shapes and orientations of the interface will be given in Section 5 .

Conclusions and acknowledgements are given in the last two sec-

tions. 

2. The least squares augmented method for Navier–Stokes and 

darcy coupling equations 

In this section, we explain the theoretical basis of the proposed

numerical method. We transform the original governing equations

(1) and (2) to an equivalent form so that we get several Pois-

son/Helmholtz equations that are easier to solver separately. Note

that, the theoretical justification of the transform for the Navier–

Stokes part is based on the pressure Poisson equation formula-

tion discussed in [21,22] . By applying the divergence operator to

the momentum equation of the Navier–Stokes equations and the

Darcy’s law, the entire problem can be re-written as 

�p = 

{∇ · F − ρ∇ · ( u · ∇u ) , x ∈ � f , 

0 , x ∈ �D , 
(10)

[ p ] = q 1 , [ p n ] = q 2 , on �;

�u = 

⎧ ⎨ 

⎩ 

1 

μ

(
p x − F 1 + ρ

(
∂u 

∂t 
+ u · ∇u 

))
, x ∈ � f , 

−K 1 �p x , x ∈ �D , 

(11)

[ u ] = −q 5 sin θ, [ u n ] = q 3 , on �;

�v = 

⎧ ⎨ 

⎩ 

1 

μ

(
p y − F 2 + ρ

(
∂v 
∂t 

+ u · ∇v 
))

, x ∈ � f , 

−K 1 �p y , x ∈ �D , 

(12)

[ v ] = q 5 cos θ, [ v n ] = q 4 , on �, 

∇ · u = 0 , (13)

where p n = ∇p · n = 

∂ p 
∂n 

is the normal derivative of p and [ p n ] =
∂ p f 
∂n 

− ∂ p D 
∂n 

. Similar definitions are applied to [ u n ] and [ v n ]. Here,
 1 , ..., q 5 are introduced augmented variables along the interface �.

he augmented variables are part of unknowns with co-dimension

ne whose solutions satisfy the interface conditions (3) –(5) . In the

arcy’s region, we also have the Darcy’s law 

 D = −K 1 
∂ p D 
∂x 

, v D = −K 1 
∂ p D 
∂y 

, (14)

n addition to ∇ · u D = 0 . In this way, we decouple the original

roblem to three separated Helmholtz/Poisson equations literately

nd an explicit expression (14) . Note that from above equations,

e cannot conclude ∇ · u f = 0 until it is true along the interface

nd the boundary from the fluid side. That is the starting point of

he new method. 

.1. Augmented equations 

The above Navier–Stokes and Darcy governing equations are

oupled by six interface conditions along the interface �, 

 p ] = 2 μ n · D f · n , (15)

 2 

(
u f − u D 

)
· τ = 2 τ · D f · n , or K 2 u f · τ = 2 τ · D f · n , (16)

∂ p f 

∂n 

= μ�u f · n + 

(
F − ρ

(
∂u f 

∂t 
+ u f · ∇u f 

))
· n , (17)

∂ p D 
∂n 

= − 1 

K 1 

(u D · n ) , (18)

 u · τ] = q 5 , (19)

 · u f = 0 . (20)

he first five equations are similar to those for the Stokes and

arcy coupling described in [27] . However, we impose extra aug-

ented equation (20) on the interface. Since there are only five

ugmented variables q 1 , ..., q 5 , in discretization, we would have

ore equations than unknowns. That is why the new method is

alled the least squares augmented method. 

.2. Equivalence of the original and transformed governing equations 

The well-posedness of the Stokes and Darcy; and the Navier–

tokes and Darcy coupling has been well addressed in the litera-

ure, for example, [25] . Assume that the original models are well-

osed with suitable regularity in each sub-domain; that is, the so-

utions exist and are unique except for the pressure up to a con-

tant. Then the solutions to the transformed problem Eqs. (10) –

14) with augmented Eqs. (15) –(20) also exist since they are all de-

ned from original variables and satisfy the transformed equations

hich are exactly derived from the original governing equations.

n other words, the solutions to the original problem are also so-

utions to the transformed problem if the regularity conditions are

atisfied in each sub-domain. More precisely, let u and v , and p

e the solution to the original problem. From these quantities, we

efine q 1 = [ p] , q 2 = [ p n ] , . . . , q 5 = [ u ] · τ according to (10) –(13) .

rom the definitions of u and v, p , and q 1 , . . . , q 5 , they satisfy the

ransformed Eqs. (10) –(14) and augmented Eqs. (15) –(20) . Thus the

xistence of the solutions to the transformed systems has been es-

ablished. 

The uniqueness of the solution is more subtle. The issue has

een addressed to some extent for the Stokes and Darcy coupling

n [27] . The key is whether the incompressibility condition is sat-

sfied up to the boundary. The argument in [27] is that the incom-

ressibility condition along the boundary/inteface is redundant at

east numerically and therefore can be discarded. Theoretically, it
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m

A 1 

1 A direct application of IIM will lead to O (1) local truncation errors near the in- 
s still an open question that the velocity of the transformed sys-

em is divergence free. In our new approach, we simply enforce the

ivergence free condition along the interface for the transformed

quations. Thus the solution to the transformed system is also a

olution to the original problem since all original equations now

re satisfied. The sensitivity of new formulation still needs to be

nvestigated. 

. The algorithm for the Navier–Stokes and Darcy coupling 

In this section, we explain the method for the Navier–Stokes

nd Darcy coupling. The Navier–Stokes solver is the one based on

he pressure Poisson equation formulation developed in [21,22,31] .

he algorithm is described in detail in this section. 

We assume the entire computational domain � = � f ∪ �D is a

ectangle [ a , b ] × [ c , d ]. We use a uniform grid, 

x i = a + ih x , i = 0 , 1 , . . . M, h x = 

b − a 

M 

; (21) 

y j = c + jh y , j = 0 , 1 , . . . N, h y = 

d − c 

N 

, (22) 

here the velocity and pressure are all defined at the collocated

rid points ( x i , y j ). Note that, it is possible to use the MAC (mark-

nd-cell) grid, which usually provides better results and does not

equire the boundary condition for the pressure. However, the

resence of an arbitrary interface would make the programming

uch more complicated when using the MAC grid. In our numeri-

al experiments shown in later sections, we do not encounter any

tability issue when we use the collocated grid since the Reynolds

umber considered here is modest. The augmented equations at

he interface and the boundary also make numerical schemes more

table. The interface between the flow and porous media is dis-

retized by a set of control points (X l , Y l ) , l = 1 , 2 . . . N b connected

y a cubic spline [28] . The jump and interface conditions, and the

ugmented variables are all defined at those control points in the

iscretization. We use a time marching scheme to obtain approxi-

ate solutions at different time level t k with a known initial con-

ition at t 0 = 0 . Here the time step size is a constant for sim-

licity although we can use an adaptive one. From time step t k 

o t k +1 = t k + �t, we denote the discrete solution (approximation

o p, u , and v ) at time step t k as { P k 
i j 
} , { U 

k 
i j 
} , and { V k 

i j 
} which to-

ether form a vector ˜ u 

k with dimension O (3 MN ), where M and

 are the number of grid lines in the x - and y -directions, respec-

ively. We also denote the discrete solution (approximation to q 1 ,

 2 , . . . , q 5 ) at time step t k as Q 

k 
1 ,l 

, Q 

k 
2 ,l 

, . . . , Q 

k 
5 ,l 

, l = 1 , 2 , . . . , N b ,

hich together to form a vector Q 

k ∈ R 5 N b . 

.1. Time marching scheme from time t k to t k +1 . 

Assume that we have already computed the velocity (U 

k 
i j 
, V k 

i j 
) ,

he pressure P k 
i j 
, at time level k , we use the Crank–Nicholson type

iscretization and the augmented idea to compute the solutions at

he next time level t k +1 . 

Given an augmented vector Q 

k +1 , we solve the pressure in

q. (10) using the IIM to get { P k +1 
i j 

} from the following, 

�p k +1 = 

{
∇ · F k +1 / 2 − ρ∇ · ( u · ∇u ) 

k +1 / 2 
, x ∈ � f , 

0 x ∈ �D , 
(23) 

[ p k +1 ] = q k +1 
1 , 

[
∂ p k +1 

∂n 

]
= q k +1 

2 , on �. (24) 
t

n the expressions above, we use a second order Adams-Bashforth

cheme to approximate the non-linear term as 

 · ( u · ∇u ) 
k +1 / 2 = 

3 

2 

∇ · ( u · ∇u ) 
k − 1 

2 

∇ · ( u · ∇u ) 
k −1 

. (25) 

Once we obtain the pressure, we can solve the Helmholtz equa-

ions (11) –(13) to get the predicted velocity from the following, 

u 

∗ − 2 ρ

μ�t 
u 

∗ = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

2 

μ

(
p k +1 

x − ρ

�t 
u 

k 
)

− �u 

k 

+ 

2 

μ

(
ρ(u · ∇u ) k +1 / 2 − F k +1 / 2 

1 

)
, x ∈ � f , 

−K 1 �p k +1 
x + 

2 K 1 ρ

μ�t 
p k +1 

x , x ∈ �D , 

(26) 

[ u 

∗ ] = −q k +1 
5 sin θ, 

[
∂u 

∗

∂n 

]
= q k +1 

3 , on �;

v ∗ − 2 ρ

μ�t 
v ∗ = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

2 

μ

(
p k +1 

y − ρ

�t 
v k 

)
− �v k 

+ 

2 

μ

(
ρ(u · ∇v ) k +1 / 2 − F k +1 / 2 

2 

)
, x ∈ � f , 

−K 1 �p k +1 
y + 

2 K 1 ρ

μ�t 
p k +1 

y , x ∈ �D , 

(27) 

[ v ∗ ] = −q k +1 
5 cos θ, 

[
∂v ∗

∂n 

]
= q k +1 

4 , on �;

ote that in the Darcy’s region, we add the term − 2 ρ
μ�t 

u 

∗ to the

eft so that the right hand side becomes 
2 K 1 ρ
μ�t 

∇p k +1 (since u =
K 1 ∇p). Thus, the intermediate velocity can be solved by a fast

elmholtz solver in the entire rectangular domain 

1 

Finally, we can proceed with the projection step to ensure the

ivergence free condition for the computed velocity, 

 

 

 

 

 

 

 

�ψ 

k +1 = 

∇ · u 

∗

�t 
, x ∈ �

∂ψ 

k +1 

∂n 

∣∣∣∣
∂�

= 0 , 
[
ψ 

k +1 
]

= 0 , 

[
∂ψ 

k +1 

∂n 

]
= 0 , on �;

(28) 

 

k +1 = u 

∗ − �t ∇ ψ 

k +1 . (29)

Although we have the updated velocity in the whole domain �,

e still replace the velocity by the Darcy’s law in �D as 

 

k +1 
D = −K 1 

∂ p k +1 
D 

∂x 
, v k +1 

D = −K 1 

∂ p k +1 
D 

∂y 
, (30)

o that the Darcy’s law can be exactly satisfied. The previous step

s to make use of a fast Helmholtz solver for the velocity in the

uid region. The discretization of the first and second order deriva-

ives involved above is based on the standard centered five-point

nite difference formulas. 

.2. Augmented variables and the Schur complement matrix 

The solutions to the three Poisson/Helmholtz equations (23) –

27) with jumps in the solution and the normal derivative in the

atrix-vector form can be written as 

 ̃

 u 

k +1 + B Q 

k +1 = 

˜ F k +1 (31) 
erface because of O (h/ �t) = O (1) , and thus a first order accurate solution globally. 
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for some vector ˜ F k +1 
1 

and sparse matrices A and B . 

The next step is to evaluate the residual of the augmented

equations (15) –(20) . This step involves local interpolations and it

is equivalent to discretize the interface conditions (15) –(20) . 

At each control point X l , we interpolate the discrete solution

{ P k +1 
i j 

} , { U 

k +1 
i j 

} , and { V k +1 
i j 

} to get their values, normal and tangen-

tial derivatives from each side of the interface, P k +1 , ±
l 

, ( ∂P 
∂n 

) k +1 , ±
l 

,

( ∂P 
∂τ

) k +1 , ±
l 

and so on. Note that, for a Poisson/Helmholtz equa-

tion with known jump conditions in the solution and the normal

derivative, the computed solution and first order partial deriva-

tives at grid points have been proved to be second order accu-

rate using the IIM [6] . From the second order accurate values at

grid points, we also get second order accurate values at the con-

trol points since the coefficients of the interpolations are O (1). 

The discretization of the interface conditions (15) –(20) can be

formally written as 

R (Q 

k +1 ) = C ˜ u 

k +1 + D Q 

k +1 − ˜ F k +1 
2 (32)

for some sparse matrices C and D . The solution ( ̃ u 

k +1 
, Q 

k +1 ) satis-

fies R (Q 

k +1 ) = 0 and Eq. (31) so we have the following system of

equations, 

[
A B 

C D 

][ 

˜ u 

k +1 

Q 

k +1 

] 

= 

[ 

˜ F k +1 
1 

˜ F k +1 
2 

] 

. (33)

Therefore, the Schur complement for Q 

k +1 is 

(D − CA 

−1 B ) Q 

k +1 = 

˜ F k +1 
2 − CA 

−1 ˜ F k +1 
1 = F̄ k +1 , or 

SQ 

k +1 = F̄ k +1 . (34)

It has been shown in [29] and other related papers, that the

matrix-vector multiplication SQ 

k +1 given Q 

k +1 is simply 

SQ 

k +1 = R (Q 

k +1 ) + F̄ k +1 = R (Q 

k +1 ) − R (0 ) , (35)

where R (Q 

k +1 ) = SQ 

k +1 − F̄ k +1 . The right hand side of SQ 

k +1 = F̄ k +1 

can be computed from −R (0 ) corresponding to the residual of the

interface conditions with zero value of augmented variables which

results from the three regular Poisson/Helmholtz equations on the

rectangular domain. In our numerical tests, we form the matrix S ,

but not A, B, C , and D , by using Q 

k +1 = e i , i = 1 , 2 , . . . , 5 N b . The

coefficient matrix has a rectangular form with the dimension of

6 N b × 5 N b . We then use the singular value decomposition (SVD) to

find the least squares solution of the system. We outline the nu-

merical algorithm from time step t k to t k +1 as follows. 

Step 1: Find the right hand side of the Schur complement F̄ k +1 

by setting Q 

k +1 = 0 , solving the transformed problem (10) –(14) to

get ˜ u 

k +1 (0 ) , and using ˜ u 

k +1 (0 ) and Q 

k +1 = 0 to interpolate inter-

face quantities needed in Eqs. (15) –(20) . The residual of the in-

terface conditions is the right hand side of the Schur complement

with a negative sign. 

Step 2: For i = 1 , 2 , . . . , 5 N b , we set Q 

k +1 = e i , the i -th unit vec-

tor, solve the transformed problem (10) –(14) to get ˜ u 

k +1 (Q ) , and

then interpolate ˜ u 

k +1 (Q ) to get the residual of the interface con-

ditions (15) –(20) . The i -th column of the Schur complement is the

residual of the interface conditions (15) –(19) plus the right hand

side F̄ k +1 . Note that, for a fixed interface and constant time step

size, this step just needs to be done once initially. 

Step 3: Solve the Schur complement system to get the solution

Q 

k +1 using the SVD decomposition. 

Step 4: Solve the transformed problem (10) –(14) with com-

puted Q 

k +1 to get the pressure and velocity ˜ u 

k +1 
. 
.3. Some implementation details 

There are some major differences between the algorithm for

olving the Navier–Stokes and Darcy coupling and that for the

tokes and Darcy coupling. We outline a few as below. 

For the Stokes and Darcy coupling, we need to solve three Pois-

on equations. For the Navier–Stokes and Darcy coupling, we need

o solve a Poisson equation for the pressure, but two Helmholtz

quations for the predicted velocity u 

∗. The coefficient − 2 ρ
μ�t 

is of

/ �t ∼ 1/ h in the Navier–Stokes equations but it should be zero for

he Darcy’s equation. This O (1/ h ) jump in the coefficient of the u 

∗

erm in the Helmholtz equations would lead to O ( h ) error in the

olution, see for example, [26,29] . However, there is no such issue

or the Stokes and Darcy coupling. In present approach, we add the

erm − 2 ρ
μ�t 

u 

∗ to both sides of the Darcy’s equation. In this way,

e can get rid of the discontinuity in the coefficient, and still are

ble to use the fast Helmholtz solver in the entire rectangular do-

ain. The value of u 

∗ in the Darcy’s region is just a ghost value to

ake the computation in the whole domain more accurate and ef-

cient. After u 

∗ in the flow region has been computed, we replace

he value in Darcy’s region by u 

k +1 = −K 1 ∇p k +1 . 

Using the pressure Poisson equation formulation, how to com-

ute �u · n along the boundary ∂� and the interface � is crucial

o the stability of the algorithm. A direct interpolation from u to

et �u often leads to instability. There are a few discussions in the

iterature about how to compute �u · n if the velocity is known

long rectangular boundaries, see for example, [21,30] . It is quite

hallenging for curved boundaries/interfaces and different bound-

ry/interface conditions. We use the relation 

�u f = ρ

(
∂u f 

∂t 
+ u f · ∇u f 

)
+ ∇p f − F f (36)

o get the value of �u f at grid points, then interpolate them to get

he values at the control points needed for the augmented equa-

ions. Note that the right hand side only involves first order deriva-

ives of those fluid quantities. 

Again, using the pressure Poisson equation formulation, it has

een discussed in the literature that it is not necessary to per-

orm the projection step. We have tested both approaches with

nd without the projection step. The method with the projection

ives better results even though not significantly. Furthermore, the

nforcement of the incompressibility condition would ensure the

quivalence of the original and transformed problems as discussed

arlier. Note that, for fixed interfaces and time independent inter-

ace conditions (15) –(20) , the Schur complement matrix S is a fixed

ime-independent matrix so the SVD decomposition just needs to

e performed once. 

. Numerical accuracy tests and comparisons 

In this section, we show some numerical accuracy tests for the

resent algorithm and the comparison with previous one in [27] .

e use a uniform mesh with h x = h y = h = 4 /N for various N so

hat we can utilize a fast Poisson/Helmholtz solver. The computa-

ional domain is [ −2 , 2] × [ −2 , 2] . The interface is expressed using

he cubic spline package [28] . Throughout this section, the inter-

ace � is a unit circle x 2 + y 2 = 1 and all physical parameters such

s ρ , μ, K 1 , K 2 are all set to be one for simplicity, unless other-

ise stated. The errors of the computed solutions are defined in

 

∞ norm as 

‖ E p ‖ 

N 
∞ 

= max 
i, j 

∣∣p(x i , y j , T ) − P K i j 

∣∣, (37)

‖ E u ‖ 

N 
∞ 

= max i, j 

√ (
u (x i , y j , T ) − U 

K 
i j 

)2 + 

(
v (x i , y j , T ) − V 

K 
i j 

)2 
, (38)
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Fig. 2. Velocity plot of a fluid flow and a porous media (inside the domain) modeled by the Navier–Stokes and Darcy coupling. (a) and (b), the interfaces are ellipses. (c) 

and (d), the interface is r = 0 . 5 + 0 . 1 sin 5 θ in the polar coordinates. For smaller K ’s, the porous media acts as some sort of obstacles while for larger ones, the flow can go 

through easily. In all the simulations, the final time is T = 6 . 5 . The inflow condition is u = 1 , v = 0 . K = K 1 . 
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or a mesh size N by N , where K is the final time step correspond-

ng to the final time T = K�t . The order of accuracy is given ap-

roximately by 

rder = log 2 
(‖ E p ‖ 

N 
∞ 

/ ‖ E p ‖ 

2 N 
∞ 

)
(39) 

or the pressure and similarly for the velocity. Unless otherwise

tated, we choose the number of control points N b = N. 

.1. Accuracy check against analytic solutions 

To validate our numerical algorithm, we first compare the com-

uted solutions against analytic solutions. The first example has a
iscontinuous tangential slip for the velocity field while the pres-

ure is continuous along the interface �. The normal derivative

f the pressure is also discontinuous across the interface. On the

ther hand, the second example has a continuous tangential ve-

ocity but the pressure is discontinuous along the interface. The

ormal derivatives of the velocity components are also discontinu-

us across the interface. The discontinuities are varying along the

nterface in the second example. Notice that, both examples have

ontinuous normal velocity along the interface since it is one of

he required interface conditions as discussed earlier. We demon-

trate that our present algorithm can handle both cases well so

ore general examples can work without any difficulty. 
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Fig. 3. Velocity plot of a porous media and a fluid flow (inside the domain) modeled by (a) the Darcy and Stokes coupling; and (b) the Darcy and Navier–Stokes coupling. 

The parameters are μ = 0 . 2 , K 1 = 0 . 05 , K 2 = 1 . 3 with the mesh N = 100 and N b = 80 . The interface is r = 0 . 5 + 0 . 1 sin 5 θ in the polar coordinates; (c)–(d) simulation results 

for the Darcy and Navier–Stokes coupling with the interfaces, x 2 / 0 . 4 2 + y 2 / 0 . 6 2 = 1 and r = 0 . 5 + 0 . 2 sin 5 θ, respectively. The parameters are set as μ = 0 . 02 , K 1 = 0 . 5 , and 

K 2 = 1 . 3 . The initial data is obtained using the solution of the Darcy and Stokes coupling. 

 

 

 

 

I  

N  

t  

f

D  

f  
4.1.1. Example 1 

The analytic solution of the Navier–Stokes equations is 

u f = g(t) 
(

y (x 2 + y 2 − 1) + 2 y 

)
, 

v f = g(t) 
(
− x (x 2 + y 2 − 1) − 2 x 

)
, 

p f = g(t) 
(

x 2 + y 2 
)
, (40)

defined outside of the unit circle x 2 + y 2 = 1 while the analytic so-

lution for the Darcy’s system is u D = v D = 0 , and p D = g(t) . At the

interface x 2 + y 2 = 1 , we have 

n = [ x, y ] T , τ = [ −y, x ] T , p f = g(t) , p D = g(t) , 
u f = 2 y g(t) , v f = −2 x g(t) , 

u D = 0 , v D = 0 , 
∂u f 

∂n 

= 4 y g(t) , 
∂v f 
∂n 

= −4 x g(t) , 

∂u f 

∂τ
= 2 x g(t) , 

∂v f 
∂τ

= 2 y g(t) , 

n · D f · n = 0 τ · D f · n = 0 . (41)

t is easy to check that the above solutions u f and u D satisfy the

avier–Stokes and Darcy’s equations, respectively, with the source

erm F in the Navier–Stokes equations being computed directly

rom the analytic solution. The interface condition (4) , [ p] = 2 μ n ·
 f · n with μ = 1 is satisfied. The BJS condition (the second inter-

ace condition in Eq. (5) ) is also satisfied. However, the solution
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Fig. 4. Navier–Stokes and Darcy coupling with a sharp angled interface with different parameters at T = 3 . 5 . In (a)-(b), the fluid flow is outside and the Darcy’s law is inside 

of the interface; while in (c)-(d), the fluid flow is inside while the Darcy’s law is outside of the interface. The parameters are μ = 0 . 1 , K 1 = 0 . 02 , and K 2 = 10 −4 in (a); 

μ = 0 . 1 , K 1 = 0 . 02 , and K 2 = 10 −3 in (b); μ = 0 . 02 , K 1 = 0 . 25 , and K 2 = 1 . 3 in (c); and μ = 0 . 02 , K 1 = 0 . 5 , and K 2 = 10 −4 in (d). The corners do have significant influences 

on the flow patterns. 
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t s  
oes not satisfy the first condition (BJ) in Eq. (5) since τ · D f · n = 0

hile −(u f − u D ) · τ = 2 g(t) . Nevertheless, the present algorithm

an deal with either interface conditions in Eq. (5) . 

In Table 1 , we show a grid refinement analysis for g(t) = sin t

t the final time T = 5 . In the table, the first column is the mesh

ize in both x - and y - directions; the second, fourth columns are

he maximum errors of the pressure and velocity, while the third

nd fifth columns are corresponding order of accuracy, respectively.

he sixth and seventh columns are the condition numbers of the

chur complement matrix defined as cond(S) = 

max i σi 
min i σi 

, where σ i 

re non-zero singular values of the Schur complement matrix, with
nd without the augmented equation ∇ · u f | � = 0 along the inter-

ace, respectively. One can observe that the condition number with

he constraint is significant smaller than that of without it, which

ould also affect the accuracy for the computed velocity and the

ressure. In Table 1 (a), we have the same number of control points

n the interface as the mesh size, that is, N b = N. The average or-

ers for the pressure and velocity are 2.0231 and 3.2327, respec-

ively. With the cubic spline representation of the interface, we

an use fewer control points without affecting the accuracy for the

ressure and the velocity. For an interface with a modest curva-

ure, our cubic spline package has order of accuracy O (h 3 ) , where
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Fig. 5. Darcy and Navier–Stokes coupling with an interface and various parameters and different locations of the interface. The Darcy’s law is defined outside of the interface. 

(a), μ = 0 . 1 , K 1 = 0 . 5 , K 2 = 10 −4 . (b), μ = 0 . 002 , K 1 = 0 . 02 , K 2 = 10 −3 . The interface is rotated counterclockwise by π /6. (c), μ = 0 . 002 , K 1 = 0 . 02 , K 2 = 10 −3 . The interface is 

rotated by π /3 counterclockwise. (d), μ = 0 . 002 , K 1 = 0 . 02 , K 2 = 10 −3 . The interface is rotated by 3 π /4 clockwise. 

Table 1 

A grid refinement analysis of Example 1 at time T = 5 . The parameters are μ = 1 , ρ = 1 , K 1 = 1 , K 2 = 1 . (a) the re- 

sults with N b = N. (b) the results with fewer control points N b < N . The CPU times are 0.5462, 1.5884, 5.9216, 34.272, 

226.9478 s for (b), respectively. 

(a) The average order of accuracy for the pressure and velocity are 2.0231 and 3.2327, respectively. ( N b = N) 

N ‖ E p ‖ N ∞ order ‖ E u ‖ N ∞ order cond-6eq cond-5eq 

16 1.8890 1 . 9839 e − 01 8 . 0806 e + 01 1 . 2104 e + 02 

32 5 . 6152 e − 01 1.7502 2 . 1319 e − 02 3.2182 2 . 9443 e + 02 1 . 3904 e + 03 

64 1 . 4805 e − 01 1.9232 1 . 7205 e − 03 3.6313 1 . 0435 e + 03 1 . 7704 e + 04 

128 3 . 5373 e − 02 2.0654 1 . 4974 e − 04 3.5223 7 . 0632 e + 03 3 . 6746 e + 05 

256 6 . 9209 e − 03 2.3536 2 . 5414 e − 05 2.5588 7 . 0651 e + 04 1 . 2520 e + 07 

(b) The average order of accuracy for the pressure and velocity are 2.0221 and 3.2110, respectively. ( N b < N ) 

N N b ‖ E p ‖ N ∞ order ‖ E u ‖ N ∞ order cond-6eq cond-5eq 

16 16 1 . 8890 e − 00 1 . 9839 e − 01 8 . 0806 e + 01 1 . 2104 e + 02 

32 22 5 . 7256 e − 01 1.7221 2 . 2640 e − 02 3.1314 2 . 0234 e + 02 7 . 3228 e + 02 

64 30 1 . 4790 e − 01 1.9528 1 . 7365 e − 03 3.7046 7 . 7313 e + 02 6 . 7254 e + 03 

128 42 3 . 5359 e − 02 2.0645 1 . 5333 e − 04 3.5015 3 . 0480 e + 03 8 . 4892 e + 04 

256 68 6 . 9394 e − 03 2.3492 2 . 6986 e − 05 2.5064 1 . 0844 e + 04 1 . 0888 e + 06 
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Fig. 6. Navier–Stokes and Darcy coupling with an interface and various parameters and different locations of the interface. The Darcy law is defined inside of the interface. 

(a), μ = 0 . 1 , K 1 = 0 . 02 , K 2 = 10 −3 . (b), μ = 0 . 1 , K 1 = 0 . 02 , K 2 = 10 −3 . The interface is rotated by π /3 clockwise. (c), μ = 0 . 1 , K 1 = 0 . 02 , K 2 = 10 −3 . The interface is rotated by 

π /6 counterclockwise. (d), μ = 0 . 05 , K 1 = 0 . 1 , K 2 = 10 −3 . The interface is rotated by π /4 counterclockwise. 
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 s is the mesh size of the spline interpolation. Thus to maintain

econd order accuracy, we need to have roughly O (h 3 s ) ∼ O (h 2 ) , or

 b ∼ N 

2/3 . In our simulation, we use roughly N b ∼ 16 + N 

2 / 3 . The

umber 16 is used to make sure that there are enough initial

oints on the interface. In Table 1 (b), we perform the same exper-

ments but with fewer control points N b which leads to smaller

chur complement matrix and obviously the condition number

ecomes slightly smaller. However, the average accuracy orders

.0221 for the pressure and 3.2110 for the velocity remain about

he same. 

In Table. 2 , we also show how well the interface conditions are

atisfied. We can see that all the residuals are relatively small and

ecrease quadratically for this example. If only five equations are
 o  
sed, the residuals are then proportional to cond ( S ) ε, where ε is

he machine precision and cond ( S ) is the condition number of the

chur complement. 

.1.2. Example 2 

In the previous example, although the velocity has a tangential

lip along the interface but it is a constant in the Darcy’s region.

ere, we present an example with a continuous tangential velocity

ut discontinuous pressure along the interface. More importantly,

he velocity and pressure are non-trivial in both regions and the

ormal derivatives of the velocity components are also discontinu-

us across the interface. The analytic solution of the Navier–Stokes
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Table 2 

The residual of the six interface conditions (15) –(20) of the computed solution. The last row is the average 

convergence order of the six interface equations. 

N ‖ E 1 ‖ N ∞ ‖ E 2 ‖ N ∞ ‖ E 3 ‖ N ∞ ‖ E 4 ‖ N ∞ ‖ E 5 ‖ N ∞ ‖ E 6 ‖ N ∞ 

32 3 . 4972 e − 03 1 . 8503 e − 03 2 . 8119 e − 03 4 . 7202 e − 03 9 . 7248 e − 04 3 . 3883 e − 03 

64 1 . 2280 e − 03 5 . 2899 e − 04 5 . 1238 e − 04 2 . 1042 e − 03 2 . 7033 e − 04 1 . 0480 e − 03 

128 2 . 0427 e − 04 8 . 3986 e − 05 8 . 6997 e − 05 5 . 9738 e − 04 7 . 5299 e − 05 1 . 5937 e − 04 

256 2 . 6319 e − 05 1 . 2165 e − 05 2 . 1739 e − 05 9 . 6036 e − 05 1 . 5473 e − 05 1 . 8553 e − 05 

order 2.5026 2.5091 2.2540 2.0640 2.0642 2.6538 

Fig. 7. Contour plots of the pressure and the magnitude of the velocity for the geometry with μ = 0 . 05 , K 1 = 0 . 1 , K 2 = 10 −3 . 

Table 3 

A grid refinement analysis of Example 2 at time T = 0 . 5 . The 

parameters are μ = 1 , ρ = 1 , K 1 = 1 , K 2 = 2 . The average or- 

der of accuracy for the pressure and velocity are 1.8785 and 

2.5533, respectively. 

N ‖ E p ‖ N ∞ order ‖ E u ‖ N ∞ order 

16 1 . 5906 e − 01 4 . 4836 e − 02 

32 2 . 8863 e − 02 2.4623 1 . 1977 e − 02 1.9044 

64 9 . 6539 e − 03 1.5800 2 . 3634 e − 03 2.3413 

128 3 . 1556 e − 03 1.6132 3 . 6471 e − 04 2.6960 

256 8 . 7707 e − 04 1.8471 4 . 8521 e − 05 2.9101 

512 2 . 3669 e − 04 1.8897 6 . 4358 e − 06 2.9144 
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equations is 

u f = g(t) 
(
y (x 2 + y 2 − 1) + 2 x 

)
, 

v f = g(t) 
(
−x (x 2 + y 2 − 1) − 2 y 

)
, 

p f = 3 g(t) 
(
x 2 − y 2 

)
, (42)

defined outside of the unit circle x 2 + y 2 = 1 while the analytic

solution for Darcy’s system is u = 2 x g(t) , v = −2 y g(t) , and p =
−g(t)(x 2 − y 2 ) . Again, the source term and the boundary condition

are determined from the analytic solution. All the interface condi-

tions are satisfied (after a careful computation) except for the BJS

condition which now becomes 

2 τ · D f · n = 2 

(
u f − u D 

)
· τ + 2 g(t)(8 xy + 2) . (43)

That is, we have K 2 = 2 and a non-homogeneous BJS condition. Our

method is flexible in dealing with different interface conditions by

simply modifying the interpolation scheme. In Table 3 , we show

a grid refinement analysis for the above example with g(t) = e −t .
he solution is computed up to T = 0 . 5 . The average order of ac-

uracy for the pressure and velocity are 1.8785 and 2.5533, respec-

ively. 

.1.3. Comparison results for the Stokes and Darcy coupling 

In this subsection, we show some comparison results obtained

rom the present method and the one in [27] for solving the Stokes

nd Darcy coupling equations. We use the same analytic solutions

s presented in previous Example 1 and 2 with g ( t ) ≡ 1 so that the

roblems become stationary ones that satisfy the Stokes and Darcy

oupling equations. We can conclude that the new method outper-

orms the previous one in all aspects including accuracy. 

In Table 4 , we compare the maximum norm errors in the com-

uted pressure and velocity and their average accuracy orders

hrough a grid refinement analysis for Example 1 with g ( t ) ≡ 1. Al-

hough the errors (in the pressure and velocity) obtained by the

resent method are slightly smaller than the ones obtained by the

revious method; however the average order of accuracy for the

ressure obtained by the present method is almost second order

ompared to the first order obtained using the method in [27] . Fur-

hermore, as before, the condition number of the Schur comple-

ent matrix for the present method is significantly smaller than

he one in [27] as shown in Table 4 (c). 

It is well-known that using Cartesian grid methods to solve

he interface problems, the computed errors do not necessarily de-

rease monotonically because the relative location of the underly-

ng grid and the interface keeps changing with different meshes.

ore precisely speaking, if the error happens to be O ( h 2 ) ∼ C h 2 ,

hen the error constant C , while it is O (1), will depend on the mesh

ize h . That is why the order often fluctuates and we use the aver-

ge order of accuracy instead. 



Z. Li et al. / Computers and Fluids 167 (2018) 384–399 395 

Table 4 

A comparison of numerical results obtained by the present method and the one 

in [27] for Example 1 with g(t) = 1 . (a) The average of the accuracy order for 

the pressure is 1.7839 (present) and 1.2145 [27] , respectively. (b) The average of 

the accuracy order for the velocity is 1.9688 (present) and 2.0241 [27] , respec- 

tively. (c) A list of the condition number of the Schur complement matrix. 

(a) Comparison of the pressure error and accuracy order. 

N = N b ‖ E 6 eq 
p ‖ N ∞ (present) order ‖ E 5 eq 

p ‖ N ∞ [27] order 

32 9 . 1289 e − 03 2 . 7892 e − 02 

64 1 . 9969 e − 03 2.1927 6 . 0515 e − 03 0.37889 

128 9 . 9901 e − 04 0.9918 3 . 2848 e − 03 0.88149 

256 3 . 6806 e − 04 1.4406 3 . 2848 e − 03 0.88149 

512 6 . 4588 e − 05 2.5106 9 . 6182 e − 04 1.7720 

(b) Comparison of velocity error and accuracy order. 

N ‖ E 6 eq 
u ‖ N ∞ (present) order ‖ E 5 eq 

u ‖ N ∞ [27] order 

32 2 . 1160 e − 02 3 . 2203 e − 02 

64 5 . 8094 e − 03 1.8649 1 . 4188 e − 02 1.1825 

128 1 . 4762 e − 03 1.9765 2 . 6563 e − 03 2.4172 

256 3 . 3356 e − 04 2.1459 1 . 2963 e − 03 1.0350 

512 9 . 0142 e − 05 1.8877 2 . 5613 e − 04 2.3395 

(c) Comparison of the condition number. 

N = N b cond 6 eq (present) cond 5 eq [27] 

32 5 . 1733 e + 02 1 . 6935 e + 06 

64 3 . 1495 e + 03 1 . 8021 e + 06 

128 3 . 3617 e + 04 1 . 2956 e + 08 

256 2 . 5181 e + 05 2 . 2210 e + 09 

512 2 . 3641 e + 06 1 . 5831 e + 11 

Table 5 

A comparison of numerical results obtained by the present method and the pre- 

vious one in [27] for Example 2 with g(t) = 1 . (a) The average of accuracy order 

for the pressure is 1.9546 (present) and 1.0290 ( [27] ), respectively. (b) The av- 

erage of accuracy order for the velocity is 2.0089 (present) and 1.3991 ( [27] ), 

respectively. (c) A list the condition number for the Schur complement matrix. 

(a) Comparison of pressure error and accuracy order. 

N = N b ‖ E 6 eq 
p ‖ ∞ (present) order ‖ E 5 eq 

p ‖ ∞ [27] order 

32 1 . 9872 e − 02 4 . 5180 e − 02 

64 4 . 6398 e − 03 2.0986 1 . 9400 e − 02 1.2196 

128 1 . 1274 e − 03 2.0411 7 . 4437 e − 03 1.3820 

256 3 . 9083 e − 04 1.5284 3 . 7226 e − 03 0.9997 

512 8 . 8040 e − 05 2.1503 O (1) –

(b) Comparison of velocity error and accuracy order. 

N ‖ E 6 eq 
u ‖ ∞ (present) order ‖ E 5 eq 

u ‖ ∞ [27] order 

32 4 . 0806 e − 03 2 . 1728 e − 02 

64 4 . 7210 e − 04 1.4227 7 . 7453 e − 03 1.4881 

128 5 . 9990 e − 05 2.1886 2 . 5090 e − 03 1.6262 

256 6 . 2950 e − 06 2.1895 1 . 3202 e − 03 0.9263 

512 1 . 7430 e − 06 2.2348 O (1) −

(c) Comparison of the condition number. 

N = N b cond 6 eq (present) cond 5 eq [27] 

32 1 . 4182 e + 02 1 . 9853 e + 03 

64 6 . 0734 e + 02 1 . 9853 e + 03 

128 2 . 5750 e + 04 3 . 6590 e + 05 

256 2 . 6958 e + 05 7 . 6613 e + 06 

512 2 . 0434 e + 06 1 . 2118 e + 08 
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Table 5 shows the comparison between those two methods for

xample 2 with g(t) = 1 . As we can observe that from Table 5 (b),

he error difference in the velocity is more profound. The aver-

ge accuracy orders for the pressure obtained from the present

ethod and the one in [27] are 1.9546 and 1.0290; while for

he velocity are 2.0089 and 1.3991, respectively. Furthermore, the

ethod in [27] failed to yield meaningful results with the fine grid

 N = 512 ) since both the pressure and velocity have O (1) errors
ue to the bad conditioning of the linear system that eventually

estroys the convergence. This comparison once again shows the

ut-performance of the present method over the one in [27] . 

For stationary Stokes and Darcy coupling equations, both the

ve-equation and six-equation approaches work well for computed

elocity as long as double precision is used. The trade-off of the

ix-equation approach is more computational complexity in solving

he discrete problem. We need to solve a rectangular linear system

f equations for the augmented variables. Nevertheless, the addi-

ional computational cost is well worthy because (1) the equiv-

lence of the original and transformed problem is almost auto-

atically established; (2) the extra augmented equation makes the

inear system more well-conditioned; (3) the computed pressure

s also second order accurate in the L ∞ norm in addition to sec-

nd order accurate velocity, see for example, Table 1 –5 ; (4) with-

ut this extra constraint, the method in [27] barely works for the

avier–Stokes and Darcy coupling. Numerically, we use the projec-

ion step to enforce the divergence condition in the interior of the

ow and enforce the divergence condition at the boundary and in-

erface as an additional augmented equation. 

. Flow simulations 

Now we perform some flow simulations of the Navier–Stokes

nd Darcy coupling in which a given flow entering the domain

rom the left side of the rectangular domain ( [ −2 , 2] × [ −2 , 2] ).

ome similar simulations have been done for the Stokes and Darcy

oupling in [27] . In Fig. 2 , we show results for different parame-

ers and interfaces in which the porous media is inside the inter-

ace. The inflow condition is u = 1 , v = 0 . For small Reynolds num-

ers and velocities, the results are similar to the Stokes and Dacry

oupling. In Fig. 2 (a), the interface is x 2 / 0 . 6 2 + y 2 / 0 . 4 2 = 1 , μ = 1 ,

 1 = 0 . 02 , K 2 = 1 , and the final time is T = 6 . 5 . The flow is nearly

angent to the interface. In Fig. 2 (b), the setup is the same except

hat the ellipse is rotated. In general, the larger K 1 , the easier that

he fluid can go through the interface. In Fig. 2 (c), we deliberately

hoose very small K 2 = 10 −6 so that the velocity is almost contin-

ous in the tangential direction of the interface r = 0 . 5 + 0 . 1 sin 5 θ
n the polar coordinates. The interface is nearly invisible to the

uid. The other parameters are μ = 1 , K 1 = 0 . 02 , and the final

ime T = 6 . 5 . In Fig. 2 (d), we show the result for the same inter-

ace with μ = 1 , K 1 = 0 . 02 , K 2 = 1 . 3 , and the final time is T = 6 . 5 .

n Fig. 3 , we show some simulation results for a porous media flow

utside while a fluid flow inside the interface with different fixed

nterfaces. We compare the result of the Darcy and Stokes cou-

ling in Fig. 3 (a) with that of the Darcy and Navier–Stokes coupling

n Fig. 3 (b) at the final time T = 0 . 5 . The parameters are μ = 0 . 2 ,

 1 = 0 . 05 , K 2 = 1 . 3 , and the interface is r = 0 . 5 + 0 . 1 sin 5 θ in the

olar coordinates. We observe that the flow patterns are slightly

ifferent near the left and right intrusions of the interface while

hey are similar in other parts of the domain. Fig. 3 (c) shows a

imulation with μ = 0 . 02 , K 1 = 0 . 5 , and K 2 = 1 . 3 . The interface is

 

2 / 0 . 4 2 + y 2 / 0 . 6 2 = 1 . Fig. 3 (d) shows a simulation with a five star-

hape interface r = 0 . 5 + 0 . 2 sin 5 θ that has deeper petals. The pa-

ameters are μ = 0 . 02 , K 1 = 0 . 5 , and K 2 = 1 . 3 , and the final time

 = 0 . 5 . 

Once again, in Table 6 we show how well the interface condi-

ions are satisfied for the simulation of Fig. 3 (b). We can see that

ll the residuals are relatively small and decrease between linearly

nd quadratically. 

Next, we carry out numerical experiments of a coupling flow

ith an interface that has corners as shown in Fig. 4 with differ-

nt parameters at the final time T = 3 . 5 . The interface is repre-

ented by a closed cubic spline interpolation and thus the corners

re smoothed out to some extent but we have enough points near

he corners to keep it sharp. In Fig. 4 (a) and (b), the Navier–Stokes
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Table 6 

A grid refinement analysis for the residual of interface relations for the simulation of Fig. 3 (b). The last row is 

the average convergence order for the six interface equations. 

N ‖ E 1 ‖ N ∞ ‖ E 2 ‖ N ∞ ‖ E 3 ‖ N ∞ ‖ E 4 ‖ N ∞ ‖ E 5 ‖ N ∞ ‖ E 6 ‖ N ∞ 

32 6 . 3003 e − 02 4 . 6426 e − 02 2 . 0108 e − 01 1 . 4004 e − 02 1 . 0080 e − 01 4 . 8634 e − 02 

64 2 . 0564 e − 02 1 . 2779 e − 02 4 . 5375 e − 02 2 . 4405 e − 03 1 . 8869 e − 02 1 . 5302 e − 02 

128 5 . 6672 e − 03 2 . 5794 e − 03 2 . 6441 e − 02 1 . 4941 e − 03 7 . 0059 e − 03 3 . 5652 e − 03 

256 1 . 7352 e − 03 8 . 7961 e − 04 9 . 4399 e − 03 6 . 9989 e − 04 1 . 9501 e − 03 9 . 5656 e − 04 

order 1.7274 1.9073 1.4710 1.4409 1.8973 1.8893 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

A grid refinement analysis for Fig. 6 (b) against the solution 

at a fine grid N = 512 . The average order of accuracy for the 

pressure and velocity are 1.5172 and 1.6115, respectively. We 

do see the convergence order of the velocity increases as the 

mesh gets finer. 

N ‖ E p ‖ N ∞ order ‖ E u ‖ N ∞ order 

32 3.4617 5 . 5640 e − 01 

64 2.3213 0.5765 2 . 4552 e − 01 1.1803 

128 1.2955 0.8414 7 . 8180 e − 02 1.6510 

256 1 . 4760 e − 01 3.1337 1 . 9502 e − 02 2.0032 

t  

r  

t  

fl  

t  

O  

s

 

T  

o  

a  

t  

v  

c

 

fi  

a  

p  

c

 

o  

o  

g  

t

5

 

a  

[  

w  

b  

c  

w  

b  

a  

m

 

e  

t  

D  

w  

t  
flow is outside the triangle while the Darcy’s law is inside. We

can see that some corners act as a sink with large velocity there.

In Fig. 4 (a), the parameters are μ = 0 . 1 , K 1 = 0 . 02 , and K 2 = 10 −4 .

The largest velocity appears at the top corner. In Fig. 4 (b), the tri-

angle has been rotated by π /4 counterclockwise. The parameters

are μ = 0 . 1 , K 1 = 0 . 02 , and K 2 = 10 −3 . The largest velocity appears

now at the bottom corner. In Fig. 4 (c)-(d), we have the Darcy’s

law outside the triangle while the Navier–Stokes flow is inside.

In Fig. 4 (c), the parameters are μ = 0 . 02 , K 1 = 0 . 25 , and K 2 = 1 . 3 .

The bottom corner acts like a sink. In Fig. 4 (d), the parameters

are μ = 0 . 02 , K 1 = 0 . 5 , and K 2 = 10 −4 , which makes the velocity

a smaller jump in the tangent direction. While the flow gets more

penetrated in, the behavior is similar to the case in Fig. 4 (c). 

5.1. Effect of the shape and orientation of the interface on the flow 

Next, we show some simulation results on the effect of the

shape and orientation of the interface. We start with the case that

the Darcy’s law is outside and a fluid flow is inside. We show an

interface that has large curvature at some parts which looks like

corners. Some part of the interface is convex while other part is

concave. We also rotate the interface in different directions to in-

vestigate how the orientation of the interface affects the flow. As

we observe already that the larger K 1 is, the easier the flow can

penetrate through the interface; the smaller K 2 is, the closer of the

velocity in two regions across the interface since there is less jump

in the velocity in the tangential direction. In Fig. 5 , we have an in-

terface with symmetry in the x -axis. In Fig. 5 (a), the parameters

are μ = 0 . 1 , K 1 = 0 . 5 , K 2 = 10 −4 . The flow penetrate the part of in-

terface that is closer to the left boundary. The velocity is larger in

the fluid region at the part of the interface that is closer to the left

and right boundary. The velocity remains symmetric with respect

to the x -axis. In Fig. 5 (b), the interface is same as in Fig. 5 (a) but

is rotated by π /6 counterclockwise. The parameters are μ = 0 . 002 ,

K 1 = 0 . 02 , K 2 = 10 −3 . Once again, we observe that the velocity is

larger in the fluid region near the part of the interface that is

closer to the left and right boundary but not to the top or bottom

boundary. In Fig. 5 (c), the parameters are μ = 0 . 002 , K 1 = 0 . 02 ,

K 2 = 10 −3 . The interface is rotated by π /3 counterclockwise. In

Fig. 5 (d), the parameters are μ = 0 . 002 , K 1 = 0 . 02 , K 2 = 10 −3 . The

interface is rotated by 3 π /4 clockwise. In the last two plots, we

observe that the main stream of the flow is along the elongated

directions of the fluid region. The the corner-liked geometry has

little effect on the flow since it is in a concave part of the inter-

face. 

In Fig. 6 , we have an interface that has the same shape as in

Fig. 5 (a) except that the interface is scaled down to have more flow

region outside, which has more influences on the flow. In Fig. 6 (a),

the parameters are μ = 0 . 1 , K 1 = 0 . 02 , K 2 = 10 −3 . The magnitude

of the velocity is large in the fluid region near the protrusion part

of the interface. The flow remains symmetric with respect to the

x -axis. In Fig. 6 (b), the interface is same as in Fig. 6 (a) but is ro-

tated by π /3 clockwise. The parameters are μ = 0 . 1 , K 1 = 0 . 02 ,

K 2 = 10 −3 . In Fig. 6 (c), the parameters are μ = 0 . 1 , K 1 = 0 . 02 , K 2 =
10 −3 . The interface is rotated by π /3 counter clockwise. In Fig. 6 (d),
he parameters are μ = 0 . 005 , K 1 = 0 . 1 , K 2 = 10 −3 . The interface is

otated by π /4 counter clockwise. In Fig. 6 (c) and (d), we observe

hat the protrusion of the interface facing the upstream affects the

ow pattern more significantly than that of the protrusion facing

he downstream. The symmetry is also lost due to the rotations.

nce again the corner-liked geometry has little effect on the flow

ince it is a concave part of the interface. 

For the flow problem, analytic solutions are not available. In

able 7 , we show a grid refinement analysis against the solution

btained from a fine grid N = 512 × 512 with N b = 256 . We observe

 super-linear convergence for both the pressure and velocity. We

hink the second order convergence is affected by the large cur-

ature at some part of the interface. As the mesh gets finer, the

onvergence also improves. 

In Table 8 , we show how well the interface conditions are satis-

ed for the simulation of Fig. 6 (b). We can see that all the residuals

re relatively small and decrease in a super-linear fashion. Com-

ared with the results earlier, the larger curvature may affect the

onvergence. 

For a similar geometry and set-up, we show the contour plots

f the pressure and the magnitude of the velocity in Fig. 7 . We

bserve that the pressure and magnitude of the velocity have large

radient (denser contour lines) near the interface, particularly at

he places where the interface has large curvatures. 

.2. Simulations with time transient behaviors 

Finally, we show an example with a time dependent bound-

ry condition, which cannot be solved by the method proposed in

27] for the stationary Stokes and Darcy coupling. We assume that

e have a time-dependent source/sink inflow from the left. The

oundary condition at the left boundary ( x = −2 ) is u (−2 , y, t) =
os (πy/ 4 + πt/ 2) and v = 0 . At the top and bottom boundaries,

e set u (−2 , ±2 , t) = cos (±π/ 2 + πt/ 2) and v = 0 . At the right

oundary, we use a simple Neumann boundary condition 

∂u 
∂x 

= 0

nd 

∂v 
∂x 

= 0 . The parameters are μ = 0 . 1 , K 1 = 0 . 02 , K 2 = 10 −3 . The

esh size is N = 128 and N b = 90 . 

In Fig. 8 , we show several snapshots of the velocity at differ-

nt times, t = 3 , t = 3 . 5 , t = 4 , t = 4 . 5 , t = 5 , t = 5 . 5 , t = 5 . 75 , and

 = 6 . We also check how well the interface relations are satisfied.

ue to the corner singularity where the normal derivative is not

ell defined, we obtain only O (1) convergence for the residual of

he interface relations which is predictable. in Fig. 9 , we show the
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Fig. 8. The snapshots of the Navier–Stokes and Darcy coupling with a triangle interface. The Navier–Stokes flow is defined outside of the interface while the Darcy’s law is 

defined inside. The time-dependent inflow condition is applied from the left boundary. μ = 0 . 1 , K 1 = 0 . 02 , K 2 = 10 −3 . 
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Table 8 

A grid refinement analysis for the residual of interface relations for the simulation of Fig. 6 (b). The last row is 

the average convergence order for the six equations. 

N ‖ E 1 ‖ N ∞ ‖ E 2 ‖ N ∞ ‖ E 3 ‖ N ∞ ‖ E 4 ‖ N ∞ ‖ E 5 ‖ N ∞ ‖ E 6 ‖ N ∞ 

32 6 . 0957 e − 02 2 . 5018 e − 02 1 . 8512 e − 01 1 . 0282 e − 02 1 . 0788 e − 01 6 . 6820 e − 02 

64 1 . 9720 e − 02 7 . 4305 e − 03 3 . 5630 e − 02 1 . 2220 e − 03 1 . 3194 e − 02 1 . 4806 e − 02 

128 5 . 1510 e − 03 2 . 8693 e − 03 2 . 1406 e − 02 2 . 1599 e − 03 9 . 3172 e − 03 4 . 0977 e − 03 

256 2 . 6799 e − 03 1 . 8443 e − 03 1 . 5249 e − 02 9 . 6179 e − 04 2 . 1174 e − 03 2 . 0506 e − 03 

order 1.5025 1.2539 1.2006 1.1394 1.8903 1.6754 

Fig. 9. Contour plots of the pressure and the magnitude of the velocity at t = 2 with the set-up in Fig. 8 . 
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contour plots of the pressure and the magnitude of the velocity.

The pressure tends to composed of two smooth functions since the

pressure is the solution of a Poisson equation in each sub-domain,

while the velocity tends to have more variations due to the corner

singularity and the non-linear effect which cause the flow separa-

tion along the edges and vortex shading away from the edges. The

simulations may have potential values for controlling of fluid flows

through porous media materials. 

6. Conclusions 

In this paper, we propose a new Cartesian finite difference

method for solving a coupled system of a fluid flow modelled by

the Navier–Stokes equations and a porous media modelled by the

Darcy law, respectively. Numerical results show that both the com-

puted pressure and velocity are second order accurate in the max-

imum norm for the problems with known analytic solutions. The

new method can also guarantee the equivalence of the solutions

between the original and the transformed problem under certain

regularity assumptions though the sensitivity analysis of the new

system is still an open question. The new approach has also been

applied to the Stokes and Darcy coupling, which outperforms the

method proposed in [27] in almost all the categories. For Navier–

Stokes and Darcy coupling equations, we observe that the shape

of the interface may have significant effects on the coupling espe-

cially in the fluid region. The fluid flow is likely to be elongated

along the direction of the objects of the porous media and has

more variations at corners due to the corner singularity and the

non-linear effect which can cause flow separations along edges and

vortex shedding away from edges. 
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