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UNCONDITIONALLY ENERGY STABLE SCHEMES FOR THE
INEXTENSIBLE INTERFACE PROBLEM WITH BENDING∗
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Abstract. In this paper, we develop unconditionally energy stable schemes to solve the inex-
tensible interface problem with bending. The fundamental problem is formulated by the immersed
boundary method where the nonstationary Stokes equations are considered, with the elastic tension
and bending forces expressed in terms of Dirac delta function along the interface. The elastic tension
is one of the solution variables which plays the role of Lagrange multiplier to enforce the inextensibil-
ity of the interface. Both the backward Euler and Crank–Nicolson methods are introduced and it can
be proved that the total energy, i.e., kinetic energy and bending energy, is discretely bounded. The
numerical results show that both schemes are unconditionally energy stable without any time-step
restriction. The backward Euler scheme is also applied to study the dynamics of vesicles suspended
in a shear flow.
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1. Introduction. The immersed boundary (IB) method proposed by Peskin
[1] has been successfully applied to various fluid-structure interaction problems. A
comprehensive review of the IB method is presented in [2]. The IB formulation utilizes
an Eulerian frame for the fluid velocity and a Lagrangian frame for the configuration
of the immersed elastic structure (immersed boundary or interface). The immersed
structure exerts certain forces into the fluid that drive the fluid flow, and at the same
time, the fluid flow carries the immersed structure to a new configuration. The fluid-
structure interaction between the fluid and the immersed structure is coupled through
a force spreading and a velocity interpolating operator by the usage of the smoothed
version of the Dirac delta function [2]. The IB formulation is efficient and easy to
implement because the immersed structure (regardless of complexity) is regarded as
a force generator to the fluid so the fluid variables can be solved in a static Eulerian
domain without generating any structure-conforming grid. Therefore, a variety of
efficient fluid solvers can be exploited.

Although substantial success has been achieved in the practical applications using
the IB method, it still possesses several deficiencies from the numerical point of view.
First, the IB method is restricted to first-order accurate even though second-order
accurate fluid solvers are used. Since the immersed elastic structure is usually one-
dimensional lower than the fluid space, the exerted force is singular (delta function
like) and smoothing the delta function in the regular finite difference scheme limits the
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B650 MING-CHIH LAI AND KIAN CHUAN ONG

method to being first-order accurate only. Although several attempts have been made
to improve the accuracy, including adaptive local mesh refinements near the immersed
boundary, those methods remain formally second-order accurate [3, 4, 5, 6, 7].

Another numerical issue arises from the stability. As revealed in the literature
[8, 9, 10, 2], the IB method suffers a stringent time-step restriction to maintain its nu-
merical stability. This restriction becomes severe when the elastic force is stiff, and the
force spreading is evaluated at the beginning of each time-step (explicit IB scheme).
Such a time-step restriction cannot be elevated effectively even if the fluid solver is dis-
cretized in a semi-implicit manner, i.e., explicit differencing of the advection term and
implicit differencing of the diffusion term. Rather than performing the force spreading
at the beginning of each time-step, one of the remedies is to perform the procedure
at each intermediate (semi-implicit IB scheme) stage or at the end of each time-step
(implicit IB scheme). However, there is always a trade-off between the stability and
the efficiency of those algorithms. The fully implicit IB schemes lead to a nonlinear
system of equations which limit the range of applicable solvers, while the semi-implicit
IB schemes result in a linear system of equations which provide the possibilities of
efficient solvers. In the past decade, there have been many attempts to reduce the
stiffness or to overcome the severe time-step restriction in the development of the fully
implicit IB scheme and the semi-implicit IB scheme [11, 12, 14, 15, 16, 17, 18]. It
was ultimately identified that numerical instability is attributed to a lack of energy
conservation [11, 12]. The semi-implicit IB schemes proposed by [11] are proven to be
unconditionally stable such that the discrete energy is bounded, considering the dis-
crete force spreading and interpolation operators are discretized at the same location
in space and time. Subsequently, within the context of unconditionally stable semi-
implicit IB schemes, several efficient algorithms and linear solvers are explored. For
instance, approximate projection methods [11], the double Schur complement [12], the
geometric multigrid method [18], and the projection method with preconditioners [19].

In past decades, the study of the morphological dynamics of biological cell mem-
branes and vesicles has been an active source of mathematical modeling in biology,
biophysics, and bioengineering. The biological system poses challenges to develop
efficient and accurate numerical schemes, and the IB method provides a versatile ap-
proach to tackle the problem [20, 21, 22, 23, 24, 25, 26]. In the present study, we shall
propose new semi-implicit IB schemes for solving the inextensible interface problem
with bending that were proven to be unconditionally stable, i.e., bounded discrete
energy. The present method and stability analysis differ from the first author’s pre-
vious work [13] in which the nearly inextensible approach is adopted and no bending
effect is considered there. The rest of the paper is organized as follows. In section
2, we introduce the formulation of incompressible Stokes equations with an immersed
inextensible interface. Then, we provide the continuous energy estimate in section 3.
In section 4, we develop semi-implicit IB schemes based on the backward Euler (BE)
and Crank–Nicolson (CN) schemes and show that those developed schemes are un-
conditionally energy stable. The details of numerical methods are described in section
5, followed by numerical results consisting of energy stability check, grid convergence
studies, and an application of vesicle dynamics in section 6. Finally, some conclusions
are presented in section 7.

2. Equations of motion. We begin by stating the governing equations for an
enclosed inextensible interface with bending immersed in a two-dimensional viscous in-
compressible fluid domain Ω. This model is motivated by the vesicle problem that has
attracted significant attention in past years. Throughout this paper, the inextensible
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ENERGY STABLE SCHEMES FOR INEXTENSIBLE INTERFACE B651

interface is also called the vesicle boundary. Here, we assume that the vesicle and the
fluid have the properties of matched density and viscosity. The equations of motion
in IB formulation can be written as

ρ
∂u

∂t
+∇p = µ∆u + S(Fσ) + S(Fb) in Ω,(2.1)

∇ · u = 0 in Ω,(2.2)

S(Fσ) =

∫
Γ

∂

∂s
(στ )δ(x−X(s, t)) ds,(2.3)

S(Fb) = −
∫

Γ

cb
∂4X

∂s4
δ(x−X(s, t)) ds,(2.4)

∂X

∂t
(s, t) = U(s, t) =

∫
Ω

u(x, t)δ(x−X(s, t))dx on Γ,(2.5)

∇s ·U =
∂U

∂s
· τ = 0 on Γ,(2.6)

where ρ is the density, u the velocity, p the pressure, and µ the viscosity. Here, the
vesicle boundary configuration Γ is an enclosed interface represented by Lagrangian
markers X(s, t) with s the arc-length parameter. Since the vesicle is inextensible
(2.6), the total arc-length of Γ is conserved. The notation τ (s, t) = ∂X

∂s is the unit
tangent vector and cb is the constant bending rigidity. The forces arising from the
vesicle boundary Γ have two terms, namely, the elastic tension force Fσ in (2.3) and
the bending force Fb in (2.4), which can be derived by taking the variational deriva-
tive of Helfrich type energy as shown in [27]. Note that the elastic tension σ(s, t)
is a self-adjusting unknown function (Lagrange multiplier) to enforce the inextensi-
bility constraint (2.6) which is exactly similar to the role of pressure to enforce the
fluid incompressibility (2.2). Certainly, the above governing equations should be ac-
companied with initial conditions for the velocity and vesicle boundary configuration,
and suitable velocity boundary condition on ∂Ω. For simplicity, the periodic bound-
ary condition is employed throughout the study, particularly in the following energy
estimates. As far as we know, the solvability of the whole continuous system of (2.1)–
(2.6) has not yet been rigorously investigated. Nevertheless, the well-posedness of the
steady problem, associated to the system in the absence of bending force (2.4), has
been studied recently by Liu, Song, and Xu [28] using weak formulation, and the inf-
sup condition has been established successfully. Certainly, the proof of well-posedness
of (2.1)–(2.6) is a very important theoretical problem and we shall leave it for future
work.

3. Continuous energy estimate. We define the inner product of functions on
Ω and Γ in the following:

(3.1) 〈u,v〉Ω =

∫
Ω

u(x, t) · v(x, t) dx, 〈f, g〉Γ =

∫
Γ

f(s, t) g(s, t) ds.

Thus, the L2 norm of functions on Ω and Γ can be defined as ‖u‖2Ω = 〈u,u〉Ω and
‖f‖2Γ = 〈f, f〉Γ, respectively. Note that the inner product on Γ can be extended to
the vector-valued functions by 〈f ,g〉Γ =

∫
Γ

f(s, t) · g(s, t) ds so that ‖f‖2Γ = 〈f , f〉Γ.
Taking the inner product of (2.1) by u and integrating in Ω yields

(3.2) ρ

〈
∂u

∂t
,u

〉
Ω

+ 〈∇p,u〉Ω = 〈µ∆u,u〉Ω + 〈S(Fσ) + S(Fb),u〉Ω.
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B652 MING-CHIH LAI AND KIAN CHUAN ONG

Invoking the incompressibility condition (2.2) and periodic boundary condition for
the velocity, the above equation can be simplified as

(3.3)
d

dt

ρ

2
‖u‖2Ω = −µ‖∇u‖2Ω + 〈S(Fσ) + S(Fb),u〉Ω.

In the IB formulation, the spreading operator acting on the elastic tension force
Fσ and the surface divergence operator of the velocity are skew-adjoint to each other;
see the references in [21, 30]. For completeness, we provide the derivation herein.

The spreading operator acting on the elastic tension force reads

〈S(Fσ),u〉Ω =

∫
Ω

(∫
Γ

∂

∂s
(στ )δ(x−X(s, t)) ds

)
· u(x, t) dx

=

∫
Γ

∂

∂s
(στ ) ·

(∫
Ω

u(x, t)δ(x−X(s, t)) dx

)
ds

= −
∫

Γ

σ

(
τ · ∂U

∂s

)
ds (applying the integration by parts)

=

∫
Γ

σ

(
−∂U

∂s
· τ
)

ds = 〈σ,−∇s ·U〉Γ = 0 (by (2.6)).(3.4)

As mentioned, analogous to pressure, the unknown elastic tension σ solely acts as
a Lagrange multiplier to enforce the inextensibility constraint (2.6) on the vesicle
boundary Γ.

The spreading operator acting on the bending force reads

〈S(Fb),u〉Ω =

∫
Ω

(
−
∫

Γ

cb
∂4X

∂s4
δ(x−X(s, t)) ds

)
· u(x, t) dx

= −
∫

Γ

cb
∂4X

∂s4
·
(∫

Ω

u(x, t)δ(x−X(s, t)) dx

)
ds

= −
∫

Γ

cb
∂4X

∂s4
·U(s, t) ds

= −
∫

Γ

cb
∂2X

∂s2
· ∂

2U

∂s2
ds (applying integration by parts twice)

= −
∫

Γ

cb
∂2X

∂s2
· ∂

2Xt

∂s2
ds (by (2.5))

= − d

dt

∫
Γ

cb
2

∂2X

∂s2
· ∂

2X

∂s2
= − d

dt

∫
Γ

cb
2

∣∣∣∣∂2X

∂s2

∣∣∣∣2 ds.(3.5)

By substituting (3.4)–(3.5) into (3.3), we obtain the following energy estimate:

(3.6)
d

dt

(
ρ

2
‖u‖2Ω +

cb
2

∥∥∥∥∂2X

∂s2

∥∥∥∥2

Γ

)
= −µ‖∇u‖2Ω.

where the total energy of the system consists of the fluid kinetic energy (the first
term) and the vesicle bending energy (the second term).

4. Numerical discretization. Now, we are ready to discretize (2.1)–(2.6) by
the IB method. For simplicity, we assume a computational rectangular domain Ω =
[0, Lx] × [0, Ly]. The fluid variables are defined on the staggered marker-and-cell
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(MAC) grid introduced by Harlow and Welsh [29]; precisely, the pressure is defined
at the cell center labeled as x = (xi, yj) = ((i− 1/2)∆x, (j − 1/2)∆y), i = 1, 2, . . . ,m
and j = 1, 2, . . . , n, while the velocity components u and v are defined at cell edges
(xi−1/2, yj) = ((i − 1)∆x, (j − 1/2)∆y) and (xi, yj−1/2) = ((i − 1/2)∆x, (j − 1)∆y),
respectively. Here, though it is not necessary, we assume a uniform mesh width
h = ∆x = ∆y. For the immersed vesicle boundary, we use a collection of M discrete
points sk = k∆s, k = 0, 1, . . .M−1, with mesh width ∆s comparable to the grid mesh
h. The Lagrangian markers are denoted by Xk = X(sk). Since the vesicle boundary
is closed, we define XM = X0. The elastic tension is defined at the “half-integer”
point given by sk−1/2 = (k − 1/2)∆s so we denote it as σk−1/2. For any function
φ(s) defined on the immersed interface, we introduce three different approximations
to the partial derivative ∂φ

∂s , namely, the forward, backward, and central difference
schemes, as

D+
s φ(s) =

φ(s+ ∆s)− φ(s)

∆s
, D−s φ(s) =

φ(s)− φ(s−∆s)

∆s
,

(4.1) Dsφ =
φ(s+ ∆s/2)− φ(s−∆s/2)

∆s
.

Thus, the unit tangent can be approximated by τ = DsX, which in turn is defined
at the “half-integer” points.

Let ∆t be the time-step size and the superscript index be the time-step level.
At the beginning of each time level n, the boundary configuration Xn

k , and the unit
tangent τnk−1/2 are all given. In the present study, our numerical discretization and
energy stability analysis are based on the unsteady Stokes equations instead of the
Navier–Stokes equations. For the latter case, the nonlinear advection term can be
treated explicitly during the time evolution with a moderate CFL condition. Al-
ternatively, the Navier–Stokes equations can be split into an advection part and an
unsteady Stokes part in which the advection equation is solved by the alternating
direction implicit method to maintain the unconditionally numerical stability [15].

Here we introduce two different time integrations, namely, the BE scheme,

ρ
un+1 − un

∆t
+∇hpn+1 = µ∆hu

n+1 + Snh (Fn+1
σ ) + Snh (Fn+1

b ) in Ωh,(4.2)

∇h · un+1 = 0 in Ωh,(4.3)

Snh (Fn+1
σ ) =

M∑
k=1

Ds

(
σn+1τn

)
k
δh(x−Xn

k )∆s,(4.4)

Snh (Fn+1
b ) = −cb

M∑
k=1

D+
s D
−
s D

+
s D
−
s Xn+1

k δh(x−Xn
k )∆s,(4.5)

Un+1
k =

∑
x

u(x)n+1δh(x−Xn
k )h2 ∀k,(4.6)

∇sh ·U
n+1
k = D−s Un+1

k · τnk−1/2 = 0 ∀k,(4.7)

Xn+1
k −Xn

k

∆t
= Un+1

k ∀k,(4.8)

and the CN scheme
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ρ
un+1 − un

∆t
+∇hpn+1/2 =

µ

2
∆h(un+1 + un) + S

n−1/2
h (Fn+1/2

σ ) + S
n−1/2
h (F

n+1/2
b ),

(4.9)

∇h · un+1 = 0,(4.10)

S
n−1/2
h (Fn+1/2

σ ) =

M∑
k=1

Ds

(
σn+1/2τn−

1/2
)
k
δh(x−X

n−1/2
k )∆s,(4.11)

S
n−1/2
h (F

n+1/2
b ) = −cb

M∑
k=1

D+
s D
−
s D

+
s D
−
s X

n+1/2
k δh(x−X

n−1/2
k )∆s,(4.12)

U
n+1/2
k =

∑
x

u(x)n+1 + u(x)n

2
δh(x−X

n−1/2
k )h2 ∀k,(4.13)

∇sh ·U
n+1/2
k = D−s U

n+1/2
k · τn−1/2

k−1/2 = 0 ∀k,(4.14)

Xn+1
k −Xn

k

∆t
= U

n+1/2
k ∀k.(4.15)

The spatial operators ∇h and ∆h are the standard second-order central difference
approximations to the gradient and Laplacian on the MAC grid. δh is the discrete

delta function. Note that X
n+1/2
k , X

n−1/2
k , and τ

n−1/2
k−1/2 in the CN scheme are lin-

early approximated by X
n+1/2
k = (Xn

k + Xn+1
k )/2, X

n−1/2
k = (Xn

k + Xn−1
k )/2, and

τ
n−1/2
k−1/2 = (τnk−1/2 + τn−1

k−1/2)/2, respectively. The spreading operator S
n−1/2
h used in

the CN scheme is for the linearization of S
n+1/2
h by lagging one discrete time-step ∆t

for the interface position at time t = (n − 1/2)∆t instead of t = (n + 1/2)∆t. This
is exactly like the BE scheme that uses the spreading operator Snh for the interface
position at t = n∆t instead of t = (n + 1)∆t. To be consistent, the discrete inex-
tensibility constraint in present schemes also uses the one time-step lagging interface
tangents, which linearizes the constraint as well. Here, we want to emphasize that
the lagged operator is popularly used in IB simulations. Lagging the spreading and
interpolation operators results in a linear system of equations which provides a vari-
ety of linear solvers applicable to the problem. Not lagging those operators results
in a set of nonlinear equations for the implicit system [7]. This time lagging tech-
nique might reduce accuracy; however, a predictor-corrector approach which uses the
lagged interface position to construct the spreading operator S in the predictor step
and the predicted interface to construct the same operator in the corrector step does
not exactly recover to full second-order accuracy. (This kind of predictor-corrector ap-
proach is called formally second-order accurate, and it is a fully second-order method
only when the sharp interface is replaced by an elastic shell with thickness [4, 7, 22].)
In fact, it is well known that the IB method is only first-order accurate due to the
discretization of the singular delta function force in the formulation [2]. The authors
have implemented the predictor-corrector IB method as in [4] for the vesicle in shear
flow and the results are not significantly better than the ones shown in Table 3, so
we omit them here. Hence, the time lagging technique is crucial for the discretization
of the IB problem because it not only yields a linear system for the resultant matrix
but also provides flexibility in solving the discretized equations and facilitates the
foundation of the present energy stability analysis, as seen below.
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4.1. Energy stability analysis. In this subsection, we follow the similar energy
analysis proposed in [11, 15] and perform the energy stability analysis for our present
schemes. We shall show that both methods are unconditionally stable in the sense
that total energy is decreasing.

To proceed, we define the kinetic energy K and bending energy B of the system as
(4.16)

K =
ρ

2
‖u‖2Ωh

=
ρ

2
〈u,u〉Ωh

, B =
cb
2
‖D+

s D
−
s X‖2Γh

=
cb
2
〈D+

s D
−
s X, D+

s D
−
s X〉Γh

,

where the associated discrete inner products are defined as

(4.17) 〈u,v〉Ωh
=
∑
x

u(x) · v(x)h2, 〈φ, ψ〉Γh
=

M∑
k=1

φk ψk ∆s,

respectively. Thus, the total energy is E = K +B.

Theorem 4.1. The BE scheme of (4.2)–(4.8) is unconditionally energy stable;
that is, the scheme satisfies En+1 ≤ En for each time-step n.

Proof. Taking the discrete inner product of (4.2) with un+1 + un, we obtain

Kn+1−Kn =
ρ

2
〈un+1,un+1〉Ωh

−ρ
2
〈un,un〉Ωh

=
ρ

2
〈un+1 + un,un+1 − un〉Ωh

=
ρ

2

(
−〈un+1 − un,un+1 − un〉Ωh

+ 2〈un+1,un+1 − un〉Ωh

)
= −ρ

2
‖un+1 − un‖2Ωh

+ 〈un+1, ρ
(
un+1 − un

)
〉Ωh

= −ρ
2
‖un+1 − un‖2Ωh

+ ∆t〈un+1,−∇hpn+1 + µ∆hu
n+1

+ Snh (Fn+1
σ ) + Snh (Fn+1

b )〉Ωh
.

Due to the discrete incompressibility condition (4.3) and the discrete inextensibility
condition (4.7), the terms of the pressure and the elastic tension are canceled out.
Precisely, we have 〈un+1,−∇hpn+1〉Ωh

= 0 (the proof can be performed easily by
using the condition (4.3) and the summation by parts) and 〈un+1, Snh (Fn+1

σ )〉Ωh
=

−〈σn+1,∇sh ·U
n+1〉Γh

= 0 (the proof can be found in [21]). Thus, the above equation
becomes

Kn+1−Kn = −ρ
2
‖un+1 − un‖2Ωh

+ µ∆t〈un+1,∆hu
n+1〉Ωh

+ ∆t〈un+1, Snh (Fn+1
b )〉Ωh

= −ρ
2
‖un+1−un‖2Ωh

−µ∆t〈∇hun+1,∇hun+1〉Ωh
+∆t〈un+1, Snh (Fn+1

b )〉Ωh
.(4.18)

Now we need to compute the last term 〈un+1, Snh (Fn+1
b )〉Ωh

,

〈un+1, Snh (Fn+1
b )〉Ωh

=
∑
x

(
−cb

M∑
k=1

D+
s D
−
s D

+
s D
−
s Xn+1

k δh(x−Xn
k )∆s

)
· un+1(x)h2

= −cb
M∑
k=1

D+
s D
−
s D

+
s D
−
s Xn+1

k ·

(∑
x

un+1(x)δh(x−Xn
k )h2

)
∆s

= −cb
M∑
k=1

D+
s D
−
s D

+
s D
−
s Xn+1

k ·Un+1
k ∆s
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= −cb〈D+
s D
−
s D

+
s D
−
s Xn+1,Un+1〉Γh

= −cb〈D+
s D
−
s Xn+1, D+

s D
−
s Un+1〉Γh

.(4.19)

Note that the last identity is obtained by 〈D+
s φ, ψ〉Γh

= −〈φ,D−s ψ〉Γh
using the fact

of summation by parts and the periodicity of the Γh.
The discrete bending energy is

Bn+1 −Bn =
cb
2
〈D+

s D
−
s Xn+1, D+

s D
−
s Xn+1〉Γh

− cb
2
〈D+

s D
−
s Xn, D+

s D
−
s Xn〉Γh

=
cb
2
〈D+

s D
−
s (Xn+1 + Xn), D+

s D
−
s (Xn+1 −Xn)〉Γh

= −cb
2
〈D+

s D
−
s (Xn+1 −Xn), D+

s D
−
s (Xn+1 −Xn)〉Γh

+ cb〈D+
s D
−
s Xn+1, D+

s D
−
s (Xn+1 −Xn)〉Γh

= −cb
2
‖D+

s D
−
s (Xn+1 −Xn)‖2Γh

+cb〈D+
s D
−
s Xn+1, D+

s D
−
s (Xn+1 −Xn)〉Γh

= −cb
2
‖D+

s D
−
s (Xn+1 −Xn)‖2Γh

+ cb∆t〈D+
s D
−
s Xn+1, D+

s D
−
s Un+1〉Γh

= −cb
2
‖D+

s D
−
s (Xn+1 −Xn)‖2Γh

−∆t〈un+1, Snh (Fn+1
b )〉Ωh

(by (4.19)).

Thus, the total energy between two successive time-steps can be written as
(4.20)

En+1 − En = −ρ
2
‖un+1 − un‖2Ωh

− µ∆t‖∇hun+1‖2Ωh
− cb

2
‖D+

s D
−
s (Xn+1 −Xn)‖2Γh

.

Thus, the total energy is decreasing, which shows the present BE scheme is uncondi-
tionally energy stable.

Theorem 4.2. The CN scheme of (4.9)–(4.15) is unconditionally energy stable;
that is, the scheme satisfies En+1 ≤ En for each time-step n.

Proof. Taking the discrete inner product of (4.9) with un+1 + un, we obtain

Kn+1 −Kn =
ρ

2
〈un+1,un+1〉Ωh

− ρ

2
〈un,un〉Ωh

=
ρ

2
〈un+1 + un,un+1 − un〉Ωh

=
∆t

2
〈un+1 + un,−∇hpn+1/2〉Ωh

+
µ∆t

4
〈un+1 + un,∆h(un+1 + un)〉Ωh

+
∆t

2
〈un+1+un, S

n−1/2
h (Fn+1/2

σ )〉Ωh
+

∆t

2
〈un+1+un, S

n−1/2
h (F

n+1/2
b )〉Ωh

= −µ∆t

4
‖∇h(un+1 + un)‖2Ωh

+
∆t

2
〈un+1 + un, S

n−1/2
h (F

n+1/2
b )〉Ωh

,

where the pressure term satisfies 〈un+1 + un,−∇hpn+1/2〉Ωh
= 0 by using (4.10) and

∇h · un = 0, and the elastic tension term satisfies

〈un+1 + un, S
n−1/2
h (Fn+1/2

σ )〉Ωh
= −

M∑
k=1

σ
n+1/2
k−1/2τ

n−1/2
k−1/2 ·D

−
s U

n+1/2
k ∆s

= −〈σn+1/2,∇sh ·U
n+1/2〉Γh

= 0.(4.21)

The proof of above equality can be easily extended from the derivation in [21].
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Now we need to compute the last term 〈un+1 + un, S
n−1/2
h (F

n+1/2
b )〉Ωh

,

〈un+1 + un, S
n−1/2
h (F

n+1/2
b )〉Ωh

=
∑
x

(
−cb

M∑
k=1

D+
s D
−
s D

+
s D
−
s X

n+1/2
k δh(x−X

n−1/2
k )∆s

)
· (un+1(x) + un(x))h2

= −cb
M∑
k=1

D+
s D
−
s D

+
s D
−
s X

n+1/2
k ·

(∑
x

(un+1(x) + un(x))δh(x−X
n−1/2
k )h2

)
∆s

= −2cb

M∑
k=1

D+
s D
−
s D

+
s D
−
s X

n+1/2
k ·Un+1/2

k ∆s (by (4.13))

= −2cb〈D+
s D
−
s D

+
s D
−
s Xn+1/2,Un+1/2〉Γh

= −2cb〈D+
s D
−
s Xn+1/2, D+

s D
−
s Un+1/2〉Γh

.

(4.22)

Note that the last identity is obtained by applying 〈D+
s φ, ψ〉Γh

= −〈φ,D−s ψ〉Γh
twice

again. The discrete bending energy is

Bn+1 −Bn =
cb
2
〈D+

s D
−
s Xn+1, D+

s D
−
s Xn+1〉Γh

− cb
2
〈D+

s D
−
s Xn, D+

s D
−
s Xn〉Γh

=
cb
2
〈D+

s D
−
s (Xn+1 + Xn), D+

s D
−
s (Xn+1 −Xn)〉Γh

= cb∆t〈D+
s D
−
s Xn+1/2, D+

s D
−
s Un+1/2〉Γh

= −∆t

2
〈un+1 + un, S

n−1/2
h (F

n+1/2
b )〉Ωh

(by (4.22)).

Thus the successive difference of total energy reads

(4.23) En+1 − En = −µ∆t

4
‖∇h(un+1 + un)‖2Ωh

,

which shows that the present CN scheme is unconditionally energy stable. Comparing
(4.20) and (4.23), the present BE scheme is more energy dissipative than the CN
scheme.

5. Numerical method.

5.1. Linear solver. The resultant linear system for the BE scheme (equations
(4.2)–(4.8)) is expressed as

(5.1)



(
ρ

∆tI − µ∆h

)
∇h −Sσ −Sb

∇Th 0 0 0

−STσ 0 0 0

−Ih 0 0 1
∆tI




un+1

pn+1

σn+1

Xn+1

 =



ρ
∆tu

n

0

0

1
∆tX

n

 .

Likewise, the resultant linear system for the CN scheme (equations (4.9)–(4.15)) is
expressed as
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(5.2)

(
ρ

∆tI −
µ
2 ∆h

)
∇h −Sσ − 1

2Sb

∇Th 0 0 0

−STσ 0 0 0

− 1
2Ih 0 0 1

∆tI




un+1

pn+1/2

σn+1/2

Xn+1

 =



(
ρ

∆tI + µ
2 ∆h

)
un + 1

2Sb(X
n)

0

STσ (un)

1
∆tX

n + 1
2Ih(un)

 .

In the staggered grid discretization framework, the discrete divergence operator of the
fluid velocity can be written as the transpose of the discrete gradient operator of the
pressure. Furthermore, the discrete surface divergence operator of the velocity can be
written as the transpose of the discrete spreading operator of the elastic tension [21].
At each time-step, the operator Sσ, STσ , Sb, and Ih are updated, as well as the corre-
sponding source terms. Notice that in the case of no-slip boundary conditions being
used, there will be an extra term in the right-hand side arising from the boundary
conditions for un+1.

There are several possible methods for solving the unsymmetric sparse linear
systems (5.1) and (5.2). The straightforward strategy is to apply Krylov subspace
methods directly, such as GMRES and BICGSTAB. However, it is very likely that
these sparse iterative linear solvers may fail to converge without an efficient precon-
ditioner. Another one is based on the double Schur complement [9, 7, 12] to which
Krylov subspace methods can be applied subsequently. It is realized that this ap-
proach also suffers from a lack of efficient preconditioners on top of operator splitting
errors. As a consequence, semi-implicit IB schemes with iterative linear solvers may
be more computationally expensive than the explicit IB methods. For the same sim-
ulation time, they may need more iterations to solve the linear system at a given
time-step than the number of time-steps that would be required by the explicit IB
schemes, although they grant a larger time-step than explicit IB methods [7, 12].

In the present study, the unsymmetric sparse linear systems (5.1) and (5.2) are
solved directly using the unsymmetric multifrontal method [31]. We assign the pres-
sure value at the first grid point to remove the rank deficiency of the system due to the
nonuniqueness of the pressure. As far as we are concerned, the option of semi-implicit
IB schemes with sparse direct linear solvers has not been explored. The primary ad-
vantages of direct solvers are highly robust and accurate. They do not require any
preconditioners, and they eliminate the need for any iterations within each time-step,
and hence convergence analysis. On the other hand, the major deficiencies of sparse
direct solvers are the programming complexity including explicit matrix entries at
each time-step, and the numerical LU factorization would lead to a large amount of
fill-in which occupies a large amount of computer memory. These shortcomings are
outweighed by their advantages over sparse iterative linear solvers for the present un-
conditionally energy stable schemes to solve the inextensible interface problem with
bending. Furthermore, semi-implicit IB schemes with sparse direct linear solvers could
serve as an important benchmark for developing potential fast solvers and efficient
preconditioners in the future.

5.2. Initial arc-length parametrization. In the present study, our initial in-
terface is always chosen as an ellipse so the initial arc-length parametrization is needed.
Let us consider the ellipse be parameterized by Xk = (Xk, Yk) = (a cos θk, b sin θk),
k = 0, 1, . . .M − 1, where a is the semiminor axis and b is the semimajor axis. Hence-
forth, the total arc-length L of the ellipse is given by
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L = 4b

∫ π/2

0

√
1− e2 sin2 θ dθ = 4bEm(e),

where Em(e) is the complete elliptic integral of the second kind and e =
√

1− (a/b)2

is the eccentricity. In the current implementation, Em(e) is computed numerically
using the piecewise minimax rational function approximation [32]. Since an ellipse is
fourfold symmetry, we first compute the position vector (Xk, Yk) of discrete points
sk with uniform arc-length on the first quadrant. Then the discrete points sk on the
other quadrants can be obtained subsequently. Let

qk = k
Em(e)

M/4
, k = 0, 1, . . .M/4− 1,

the corresponding θk is therefore given by θk = E−1
m (qk, e). The inversion of the

incomplete elliptic integral of the second kind E−1
m (qk, e) with respect to θk can be

evaluated by solving the transcendental equation Em(θk, e)−qk = 0 with the Newton–
Raphson method [33], i.e.,

(5.3) θl+1
k = θlk −

Em(θlk, e)− qk√
1− e2 sin2 θlk

,

where l is the iteration index and Em(θ, e) is the incomplete elliptic integral of the
second kind which is evaluated numerically by the half and double argument trans-
formations [34]. Practically, the solution of (5.3) converges to θk = E−1

m (qk, e) within
an error tolerance of 10−12 in five iterations. The overall procedure only requires it
to be carried out at the initialization stage before the time-marching simulation, and
it only imposes a negligible computation overhead.

5.3. Nonuniform fourth derivative operator. The exact inextensibility con-
straint (2.6) requires the initial uniform arc-length mesh to be always fixed as time
proceeds. However, in practical simulations, the immersed interface is observed to
elongate or shrink sluggishly, i.e., the distribution of discrete points sk with uniform
arc-length will not be sustainable. Consequently, the uniform fourth derivative opera-
tor D+

s D
−
s D

+
s D
−
s φk used in (4.5) for the BE scheme and in (4.12) for the CN scheme

should be modified accordingly with respect to local discrete arc-length ∆sk.
Here, we define the nonuniform fourth derivative operator based on Taylor series

expansion,

∂4φk
∂s4

≈
2∑

p=−2

ck+pφk+p

= ck−2φk−2 + ck−1φk−1 + ckφk + ck+1φk+1 + ck+2φk+2,(5.4)

where the stencil coefficients are given by

ck−2 =
24

∆sk−2(∆sk−2+∆sk−1)(∆sk−2+∆sk−1+∆sk)(∆sk−2+∆sk−1+∆sk+∆sk+1)
,

ck−1 = − 24

∆sk−2∆sk−1(∆sk−1 + ∆sk)(∆sk−1 + ∆sk + ∆sk+1)
,

ck =
24

∆sk−1∆sk(∆sk−2 + ∆sk−1)(∆sk + ∆sk+1)
,

ck+1 = − 24

∆sk∆sk+1(∆sk−1 + ∆sk)(∆sk−2 + ∆sk−1 + ∆sk)
,

ck+2 =
24

∆sk−2(∆sk+∆sk+1)(∆sk−1+∆sk+∆sk+1)(∆sk−2+∆sk−1+∆sk+∆sk+1)
.
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At each time-step, the local arc-length ∆sk is evaluated and the stencil coefficients are
updated. Note that (5.4) is equivalent to D+

s D
−
s D

+
s D
−
s φk when the local arc-length

∆sk = ∆s is uniform. More precisely, for the uniform arc-length mesh, (5.4) becomes

(5.5)
∂4φk
∂s4

≈ φk−2 − 4φk−1 + 6φk − 4φk+1 + φk+2

∆s4
≡ D+

s D
−
s D

+
s D
−
s φk.

Since the interface is closed, the interfacial markers Xk, k = 0, 1, . . .M − 1, are peri-
odic. Thus, the periodic boundary condition can be applied to the above difference
formula as φk = φk(mod)M . For instance, at k = 0, the fourth-order derivative is
calculated as

∂4φ0

∂s4
≈ cM−2φM−2 + cM−1φM−1 + c0φ0 + c1φ1 + c2φ2.

Similar treatments are also applied to the points at k = 1,M − 2,M − 1.

5.4. Discrete delta function. The two-dimensional discrete delta function is
represented by a tensor product of a kernel ψ(r),

(5.6) δh(x) =
1

h2
ψ
(x
h

)
ψ
(y
h

)
.

We employ the following kernel ψ(r) [35]:
(5.7)

ψ(r) =



3
8 + π

32 −
r2

4 , |r| < 0.5,
1
4 + 1−|r|

8

√
−2 + 8|r| − 4r2 − 1

8 sin−1
(√

2 (|r| − 1)
)
, 0.5 ≤ |r| < 1.5,

17
16 −

π
64 −

3|r|
4 + r2

8 + |r|−2
16

√
−14 + 16|r| − 4r2

+ 1
16 sin−1

(√
2 (|r| − 2)

)
, 1.5 ≤ |r| ≤ 2.5,

0, 2.5 ≤ |r|.

Equation (5.7) holds the advantage of suppressing numerical wiggles in the vicinity of
an interface caused by the IB method. We remark that various discrete delta functions
have also been utilized in the IB method, and the development of the discrete delta
function is an area of active research [36].

6. Numerical results.

6.1. Energy stability check. We first conduct a simple energy stability check
for the present BE and CN IB schemes developed in section 4. We set an initial vesicle
shape as an ellipse X(θ) = (0.2 cos θ, 0.5 sin θ) which is immersed in a quiescent fluid
domain Ω = [0, 2]× [0, 2]. For other parameters, we set ρ = 1, µ = 1, and cb = 0.01.
The simulations are time-marched from time t = 0 to t = 3.0 with a fixed mesh
size of h = 1/128 but differ on time-step sizes ∆t = 2h, h, h/2, h2 to check the
numerical stability. We choose the number of Lagrangian markers M such that ∆s
is proportional to h. One should be aware that the choice of the ratio ∆s/h is not
exhaustive, and it is usually a localized problem-dependent parameter. Nevertheless,
the current choice is realized to be one of the optimum ratios that are achieving
the desired accuracy without compromising both the area conservation and total arc-
length conservation, as well as alleviating the potential numerical wiggles, particularly
on the solution of pressure and elastic tension in the vicinity of the interface.

Figure 1 shows the transient dissipation profiles of total energy E normalized by
initial total energy E0 at t = 0. Both BE and CN produce consistent and nearly identi-
cal results. The total energy profiles are monotonically decreasing, which substantiates
that present BE and CN schemes are unconditionally energy stable. Figure 2 depicts
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(a) BE scheme
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(b) CN scheme

Fig. 1. Normalized total energy E/E0 dissipation profiles from time t = 0 to t = 3.0 with a
fixed mesh size of h = 1/128 and different time-step sizes ∆t = 2h, h, h/2, h2.

the vesicle shapes and elastic tension profiles of the BE scheme and the CN scheme
at t = 3.0 using the mesh of h = 1/128 and ∆t = h2. The simulation results of
the BE scheme and the CN scheme are congruent to each other qualitatively. It is
worth mentioning that the initial arc-length parametrization is able to alleviate the
numerical wiggles in the computed elastic tension as observed in [37, 20, 38]. In the
following subsection, we further investigate the convergence rate of solution variables
quantitatively.

6.2. Grid convergence study 1: Vesicle in a quiescent flow. It is well-
known that the IB method is usually limited to first-order accurate regardless of the
choice of fluid solvers. Therefore, in the remainder of this paper, we only focus on the
numerical results computed by BE scheme. First, we perform the grid convergence
study for the vesicle in a quiescent flow. Similar to the previous case, we set an initial
vesicle shape given by an ellipse X(θ) = (0.2 cos θ, 0.5 sin θ), immersed in a quiescent
fluid domain Ω = [0, 2] × [0, 2]. For a linear refinement, we use the time-step of
∆t = h = 2/m and differ the grid number m = n = 64, 128, 256, and 512. Since
the analytical solution is not available here, we use the numerical solution obtained
from the finest grid m = n = 512 as the reference solution and compute the error by
the difference between the computed and reference solutions. All the simulations are
computed from time t = 0 to t = 3.0.

Table 1 shows the grid refinement analysis of the BE scheme on the solution
variables, i.e., velocity components u and v, Lagrangian markers X and Y , and elastic
tension σ. The numerical results indicate that the rate of convergence is between first-
and second-order for all solution variables except for the elastic tension σ, which is
approximately first-order convergence. The grid convergence study shows slightly
better accuracy than the formal order of accuracy primarily due to the adoption
of the interpolated numerical solution from a fine mesh as the reference solution,
since the analytical solution is not available. In the authors’ practical experience,
the numerical results for the interface problems very often do not show clean order
of accuracy, especially when the interface is moving. Next, we examine the grid
convergence of the enclosed area A and total arc-length L to investigate the scheme’s
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Fig. 2. Vesicle shapes and elastic tension profiles of BE scheme and CN scheme.

Table 1
Grid convergence study 1: grid refinement analysis of BE scheme on the velocity components

u and v, Lagrangian markers X and Y , and elastic tension σ.

m = n = 64 m = n = 128 Rate m = n = 256 Rate

‖uh − uref‖∞ 1.852× 10−4 5.267× 10−5 1.81 1.967× 10−5 1.42
‖vh − vref‖∞ 1.699× 10−4 4.804× 10−5 1.82 1.610× 10−5 1.58
‖Xh −Xref‖∞ 9.677× 10−4 2.133× 10−4 2.18 3.990× 10−5 2.42
‖Yh − Yref‖∞ 1.222× 10−3 3.585× 10−4 1.77 9.181× 10−5 1.97
‖σh − σref‖∞ 5.331× 10−2 2.988× 10−2 0.83 1.504× 10−2 0.99

capability of preserving these quantities. Table 2 summarizes the grid refinement
analysis of these physical parameters. Here, A0 and L0 are the initial enclosed area
and initial total arc-length of the vesicle, respectively. Table 2 shows that these
relative errors are gradually decreased at an approximately first-order rate as the
grid is refined. Furthermore, the relative errors show that the percentage of area loss
and total arc-length loss are about 0.001% and 0.01%, respectively, when the grid
m = n = 256 is used. One can conclude that our present scheme preserves the total
area and total arc-length comparably well numerically.
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Table 2
Grid convergence study 1: grid refinement analysis of BE scheme on the enclosed area A, and

total arc-length L.

m = n = 64 m = n = 128 Rate m = n = 256 Rate

|Ah −A0|/A0 7.561× 10−5 3.001× 10−5 1.33 1.395× 10−5 1.11
|Lh − L0|/L0 3.252× 10−4 2.590× 10−4 0.33 1.553× 10−4 0.74

Table 3
Grid convergence study 2: grid refinement analysis of BE scheme on the velocity components

u and v, Lagrangian markers X and Y , and elastic tension σ.

m = n = 64 m = n = 128 Rate m = n = 256 Rate

‖uh − uref‖∞ 8.872× 10−2 3.141× 10−2 1.50 1.078× 10−2 1.54
‖vh − vref‖∞ 6.210× 10−2 2.831× 10−2 1.13 9.326× 10−3 1.60
‖Xh −Xref‖∞ 1.078× 10−1 3.482× 10−2 1.63 9.641× 10−3 1.85
‖Yh − Yref‖∞ 1.132× 10−1 3.978× 10−2 1.51 1.144× 10−2 1.80
‖σh − σref‖∞ 8.273× 10−1 1.959× 10−1 2.08 5.652× 10−2 1.79

Table 4
Grid convergence study 2: grid refinement analysis of BE scheme on the enclosed area A, total

arc-length L, and frequency ω.

m = n = 64 m = n = 128 Rate m = n = 256 Rate

|Ah −A0|/A0 1.228× 10−2 8.025× 10−3 0.61 4.523× 10−3 0.83
|Lh − L0|/L0 1.463× 10−2 8.419× 10−3 0.80 4.389× 10−3 0.94
|ωh − ωref | 4.809× 10−2 1.507× 10−2 1.67 4.207× 10−3 1.84

6.3. Grid convergence study 2: Vesicle in a shear flow. We now per-
form the grid convergence study on the BE scheme for the vesicle under shear flow
to further justify its numerical behavior under a more complex configuration. We
compute the dynamics of a vesicle with an initial shape given by an ellipse X(θ) =
(0.2 cos θ, 0.5 sin θ), immersed in a fluid domain Ω = [0, 4]× [0, 4] with a shear rate of
γ̇ = 1. The parameters are chosen the same as in the previous test. Also, we use the
time-step of ∆t = h/4 = 1/m and differ on the grid number m = n = 64, 128, 256,
and 512. Since the analytical solution is not available here, we use the numerical
solution obtained from the finest grid m = n = 512 as the reference solution and
compute the error by the difference between the computed and reference solutions.
All the simulations are computed from time t = 0 to t = 10.0.

Table 3 shows the grid refinement analysis of the BE scheme on the solution
variables, i.e., velocity components u and v, Lagrangian markers X and Y , and elastic
tension σ for the present vesicle under shear flow. Similar to the prior grid convergence
study, the numerical results demonstrate that the rate of convergence is between first-
and second-order for all the solution variables. Since the vesicle undergoes a tank-
treading motion in a shear flow, we examine the grid convergence of the evolution
frequency ω = 2π/

∫
Γ

dl
u·τ , on top of the enclosed area A, and total arc-length L.

Table 4 tabulates the grid refinement analysis of these derived parameters. As the
grid is linearly refined, the conservation of the enclosed area and total arc-length of the
vesicle are gradually improved at a first-order rate approximately while the evolution
frequency converges between first- and second-order rate.D
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Fig. 3. Condition number κ against mesh width h at t = 10: unsteady Stokes system ,
coupled unsteady Stokes system, and inextensible interface with bending .

We also compute the 1-norm condition number κ of the matrix in (5.1) using
Hager’s algorithm [39] for different grid mesh widths. Since the operator Sσ, Sb, and
Ih in the matrix are updated at each time-step due to the moving Lagrangian markers,
we only show the condition number versus mesh width at time t = 10 in Figure 3 (The
results at other times are similar, so we omit them here.). For comparison, we also
show the condition number of the pure stationary Stokes system without inextensible
interface which is a saddle point problem, and the condition number behaves like
O(h−4). Since the present model is for Stokes flow with an inextensible interface and
bending, the condition number of the resultant matrix expects to be larger than the
original pure Stokes system as seen in Figure 3.

6.4. Tank-treading motion of vesicle in a shear flow. We now are ready
to study the dynamics of a vesicle immersed in a shear flow. Since the exterior fluid
and the interior fluid of the vesicle are assumed to be homogeneous (ρ = 1, µ = 1),
it exhibits a tank-treading motion once it reaches the equilibrium [40, 41, 42]. We
define the reduced area V = A/(πR0)2 to classify the vesicle shape with R0 = L/2π
the length-scale. To characterize the vesicle dynamics in shear flow, we define the
dimensionless shear rate χ ≡ γ̇λ, where λ = µR3

0/cb is the time-scale. In the present
case study, we perform a series of simulations by varying the vesicle reduced area
V = 0.5, 0.6, 0.7, 0.8, 0.9, and the dimensionless shear rate χ = 1, 5, 10 in a fluid
domain Ω = [0, 4]× [0, 4]. We run the simulations using a time-step of ∆t = 0.25(h/χ)
and grid number m = n = 256. All the simulations are computed up to when the
steady state occurs.

Figure 4 depicts the equilibrium vesicle shapes with reduced area of V = 0.5,
0.6, 0.7, 0.8, 0.9 under shear flows with dimensionless shear rate of χ = 1, 5, 10.
Figure 4 also illustrates the elastic tension σ distributions by contour plots of 20
levels. The contour levels are scaled individually for each case with 10 levels in the
positive value (red end) representing extension and 10 levels in the negative value (blue
end) representing compression, while the inflection points, i.e., σ = 0, are represented
by the black end. We observe that, due to the shear-driven fluid flow, the greatest
values of the tension are in the middle of the vesicle for all the cases except the case
of V = 0.5, χ = 1 (Figure 4(a)). The greatest tension occurs slightly offset from the
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(a) V = 0.5, χ = 1 (b) V = 0.5, χ = 5 (c) V = 0.5, χ = 10

(d) V = 0.6, χ = 1 (e) V = 0.6, χ = 5 (f) V = 0.6, χ = 10

(g) V = 0.7, χ = 1 (h) V = 0.7, χ = 5 (i) V = 0.7, χ = 10

(j) V = 0.8, χ = 1 (k) V = 0.8, χ = 5 (l) V = 0.8, χ = 10

(m) V = 0.9, χ = 1 (n) V = 0.9, χ = 5 (o) V = 0.9, χ = 10

Fig. 4. The equilibrium vesicle shapes of V = 0.5, 0.6, 0.7, 0.8, 0.9 under shear flows of χ = 1,
5, 10. The elastic tension distributions are represented by 20 contour levels. The contour levels are
scaled individually with 10 levels in the positive value (red end) representing tension and 10 levels
in the negative value (blue end) representing compression, while the inflection point is represented
by the black end.

middle of the vesicle owing to the larger dented profile (biconcave-shaped) compared
to the others. On the other hand, the greatest values of the compression occur on
both ends of the vesicles parallel to the inclination angle. However, no compression
(hence inflection point) is detected for the case V = 0.9, χ = 5 (Figure 4(n)) and
V = 0.9, χ = 10 (Figure 4(o)). Instead, the lowest values of the tension occur on
these ends of the vesicle.

Figure 5 plots the inclination angle θ/π and the scaled tank-treading evolution
frequency ωλ/χ of the vesicle in term of reduced area V at their equilibrium shape.
It is observed that these two quantities are proportional to the reduced area V but
independent of the dimensionless shear rate χ. The present findings are congruent
with the literature such as [41, 43, 20].D
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Fig. 5. Inclination angle θ/π and scaled tank-treading evolution frequency ωλ/χ of the vesicle
in terms of reduced area V at their equilibrium shape under dimensionless shear rate χ = 1, 5, 10.

7. Conclusions. In the present study, we have developed semi-implicit IB
schemes (backward Euler (BE) and Crank–Nicholson (CN) schemes) to solve the in-
extensible interface problem with bending, that proved to be unconditionally stable,
i.e., bounded discrete energy. The fundamental problem is formulated by the nonsta-
tionary Stokes equations, in conjunction with the elastic tension force and bending
forces defined in terms of Dirac delta function along the interface. The elastic tension
acts as a Lagrange multiplier to enforce the inextensibility of the interface which is
analogous to the role of pressure to enforce the fluid incompressibility.

For the present semi-implicit IB schemes, the resultant unsymmetric sparse linear
systems are solved directly using the unsymmetric multifrontal method. Contrary to
the sparse iterative solvers, the sparse direct solvers are robust and accurate and
avoid the need for any preconditioners and iterations. These advantages are favored
for the present semi-implicit IB schemes and certainly outweigh their shortcomings,
i.e., explicit matrix entries and a significant amount of fill-in due to the numerical
LU factorization. We suggest that semi-implicit IB methods with sparse direct linear
solvers could serve as an important benchmark for the development of potential fast
solvers and efficient preconditioners.

We have verified that the proposed BE and CN schemes result in consistent
energy stable methods which significantly alleviate the time-step restriction. Further-
more, two grid convergence studies were conducted on the BE scheme. The numerical
results indicate that the convergence rates of the solution variables, i.e., velocity com-
ponents u and v, Lagrangian markers X and Y , and elastic tension σ, are between
first- and second-order. Since our numerical schemes enforce the discrete inextensi-
bility constraint rather than the exact inextensibility constraint, area and arc-length
conservation loss should be perceived in practical simulations. The numerical results
show that these errors are gradually decreased at an approximately first-order rate as
the grid is linearly refined.

Finally, the BE scheme is applied to study the tank-treading motion of a vesicle
immersed in a shear flow. We present the equilibrium vesicle shapes of different
reduced area V under different dimensionless shear rate χ, in conjunction with elastic
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tension σ distribution along the vesicle interfaces. Notably, the numerical wiggles
in the computed elastic tension profiles are alleviated effectively. It is also observed
that inclination angle θ/π and the scaled tank-treading evolution frequency ωλ/χ
are proportional to the reduced area V but independent of the shear rate χ. These
findings are congruent with the previous studies.
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