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In this paper, we improve our previous immersed boundary (IB) method for 3D triangulated 
vesicle in unsteady Navier-Stokes flow (Seol et al., 2016 [31]) from several aspects. 
Firstly, we adopt spherical harmonic representation for approximating vesicle configuration. 
By applying spectral differentiation, we are able to obtain high accuracy of geometric 
quantities such as the mean and Gaussian curvatures, and the surface Laplacian of mean 
curvature, which is not achievable via triangulation. The vesicle membrane (interface) 
immersed in 3D Newtonian fluid ensures the surface incompressibility constraint; thus, 
an unknown elastic tension acting as Lagrange multiplier must be introduced along 
the interface. To efficiently solve the problem, a logarithmic formulation of approximate 
elastic tension is explicitly utilized in a nearly incompressible interface approach. Then 
in computing the elastic tension force, we propose to use the divergence form instead of 
the commonly used non-divergence one. By doing so, we find that numerical stability can 
be improved significantly during vesicle relaxation and its transient motions. Moreover, to 
maintain the interfacial mesh quality, a mesh control technique via filtering of interfacial 
tangential velocity is coupled within the nearly incompressible interface approach. Upon 
these improvements, a series of numerical tests on the present scheme is performed 
to verify numerical accuracy, stability, and convergence of our method. As for practical 
experiments, the tank-treading and tumbling motions of prolate vesicle in shear flow 
are extensively studied by varying some dimensionless parameters such as the reduced 
volume, bending capillary number, viscosity contrast, and the Reynolds number. We further 
study three types of vesicle shapes, namely, bullet, parachute, and croissant in rectangular 
Poiseuille flow.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

A vesicle behaves like fluidic droplet enclosed by a phospholipid membrane immersed in a viscous incompressible fluid. 
The underlying dynamics are determined by the membrane bending resistance, interfacial incompressibility, and non-local 
hydrodynamic forces. The vesicle shares similar behaviors with the red blood cell (RBC), so its importance has received a 
great deal of attention since it can be used for various experimental purposes [25]. Some practical applications of vesicle in 
bioengineering include a micro-reactor [10] and a drug-delivery vehicle [32].
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A typical vesicle radius is about 10 μm which presumes the Stokes regime of vesicle dynamics. Its tank-treading and 
tumbling motions have been studied in Stokes flow extensively. For this, the boundary integral method (BIM) is widely used 
as in [22,39,40,47,4,9], since the fluid velocity via Green’s function satisfies the fluid incompressibility automatically. The 
interfacial incompressibility as an extra constraint can be further imposed by solving the unknown elastic tension.

In the human blood circulatory system, especially in normal arterioles, the Reynolds number of blood flow may be 
higher than one, see [28] and references therein for a review of hemorheology. The experimental observation indicates 
that the fluid flow surrounding vesicles (as a prototype of RBCs) can occur in the Navier-Stokes regime, thereby the inertia 
effect may give rise to transient motion of vesicle even when the Reynolds number is O (1). Thus, in order to study the 
vesicle dynamics including inertia effect, several numerical approaches have been developed, such as immersed boundary 
or front-tracking method [19,20,45,31,26], level-set method [29,21], diffuse interface or phase-field method [7,3,1], finite 
element method [2], lattice Boltzmann method [13,11,16], and hybrid method [23], just to name a few. In all of these 
methods above, a challenging issue is the simultaneous satisfaction of two local constraints; namely, the fluid and interfacial 
incompressibilities. To resolve this issue effectively, the present authors introduced a nearly incompressible interface in [31]
within the 3D immersed boundary framework [27], refer to similar approach in [45]. Other than this approach, a special 
algorithm shall be devised to enforce both incompressibilities, which requires to solve the whole fluid system with unknown 
elastic tension via iterative methods.

In this paper, we propose a stable and accurate method for solving the quasi-spherical vesicle motion in Navier-Stokes 
flow. The present method improves the prior work on triangulated nearly incompressible vesicle [31] in four aspects as 
follows.

• Firstly, the vesicle interface is discretized in spherical coordinates, enabling to employ spherical harmonic expansion for 
spectral approximation. By doing so, high accuracy of discrete geometric quantities can be obtained, in particular the 
bending force is accurately computed via spectral differentiation coupled with upsampling algorithm.

• Secondly, the logarithmic formulation of approximate elastic tension is explicitly utilized to conserve local surface area. 
Compared to linear formulation used in [31], the logarithmic formulation written in Eq. (5) gives larger feedback force 
when local surface area decreases, preventing ideally the clustering of Lagrangian markers around two poles in spherical 
coordinates. As derived in [24], the corresponding tension force has interestingly the same form as the original one 
subject to the logarithmic definition of elastic tension.

• Thirdly, to compute elastic tension force in Eq. (6), we employ the divergence form ∇� · (σP ), instead of the commonly 
used non-divergence form ∇�σ − 2σ Hn. We find that the divergence form improves the numerical stability of evolving 
vesicle shapes. From a simple error estimation, we attribute the numerical instability to the imbalance of tangential 
and normal components of elastic tension force by using non-divergence form. To clarify this point, some convincing 
numerical evidences are provided as well.

• Lastly, the mesh control of vesicle interface via filtering of tangential velocity is combined within the framework of 
spherical harmonic expansion. The present mesh control technique not only stabilizes the computation but also keeps 
the local surface area well in the nearly incompressible interface approach.

Generally speaking, all above improvements are essential to accurately accomplish and stably sustain the evolving vesicle 
configured in spherical coordinates under various dynamic flows.

The rest of this paper is organized as follows. In next section, we present the governing equations based on the immersed 
boundary framework, which describe a nearly incompressible vesicle dynamics in unsteady Navier-Stokes flow. Some related 
surface differential operators and geometric quantities are also introduced. In Section 3, the dimensionless governing equa-
tions are presented together with their numerical discretizations. Besides, spectral differentiations up to second-order via 
spherical harmonic transform are presented to compute the needed discrete surface quantities. An upsampling algorithm for 
surface Laplacian of mean curvature is also introduced. In Section 4, we begin with numerical accuracy check for geometric 
quantities associated with the bending force. Then in computing elastic tension force, the improved numerical stability by 
using the divergence form is studied in comparison with the non-divergence form. After studying the convergence behavior 
of relaxing vesicle under quiescent flow, a series of numerical experiments under shear flow are performed to show the 
applicability of our method. Thereby, the effects of the dimensionless parameters such as the reduced volume, bending cap-
illary number, viscosity contrast, and the Reynolds number are extensively investigated. Vesicle motions in Poiseuille flow 
are also studied. Some conclusions are given in Section 5.

2. Mathematical model

In this paper, we consider fluidic vesicle dynamics in three-dimensional incompressible fluid domain �. The interface 
� of vesicle separating two fluids is assumed to be a smooth surface immersed in �. The model is formulated by the 
immersed boundary method in which the elastic tension force Fσ , the bending force Fb , and the volume conservation force 
Fv are imposed along the vesicle interface. (Note that, here we add the extra Fv term simply for numerical purpose.) The 
fluid velocity u(x, t) and pressure p(x, t) are described in Eulerian manner while the interface X(α, β, t) and the elastic 
tension σ(α, β, t) are described in Lagrangian manner, so the governing equations of this vesicle model can be written in a 
single fluid system as follows.
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ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p + ∇ · [(μo + I(μi − μo))

(∇u + ∇uT)]+ f in �, (1)

∇ · u = 0 in �, (2)

f(x, t) =
∫
�

(Fσ + Fb + Fv) δ(x − X(α,β, t))dA in �, (3)

∂X

∂t
(α,β, t) := U(α,β, t) =

∫
�

u(x, t) δ(x − X(α,β, t))dx on �, (4)

σ(α,β, t) = σ0

( |X0
α × X0

β |
|Xα × Xβ |

)
ln

(
|Xα × Xβ |
|X0

α × X0
β |

)
on �, (5)

Fσ (α,β, t) = ∇� · (σP ) = ∇�σ − 2σ Hn on �, (6)

Fb(α,β, t) = cb

2

[

�H + 2H(H2 − K )

]
n on �, (7)

Fv(α,β, t) = −cv

(
V (t) − V (0)

V (0)

)
n on �, (8)

where

P = I − nnT, n = Xα × Xβ

|Xα × Xβ | := (n1,n2,n3). (9)

Eqs. (1) and (2) are the Navier-Stokes equations and we assume herein that the fluid has a constant density ρ . The fluid 
viscosity μ can be different between two fluids as we use μ = μo + I(μi − μo) above. Here μi and μo are the associated 
constant viscosities of inner and outer fluids of vesicle satisfying μi ≥ μo , and I is the indicator (or Heaviside) function 
defined by

I(x, t) =
{

1 if x is inside the vesicle interface,
0 otherwise.

In Eq. (3), the Eulerian force f arises from the spreading of interfacial force via the Dirac delta function δ(x) = δ(x)δ(y)δ(z). 
Similarly, as shown in Eq. (4), the interfacial velocity U is interpolated from the local Eulerian fluid velocity via the delta 
function.

In traditional vesicle problem, enforcing the exact incompressible interface condition ∇� · U = 0 involves solving the 
unknown elastic tension σ , which acts as Lagrange multiplier of the condition. In the present model, the interfacial in-
compressibility is alternatively approximated without finding σ by a nearly incompressible interface approach as in [31]. 
However, unlike a linear spring-like tension used in [31], we use a logarithmic form of tension (5) derived in [24] by 
the present authors which not only has the effect of keeping the local surface area conserved but also has the advantage 
of preventing the clustering of markers at two poles in spherical coordinates. The logarithmic approach is based on the 
formula

∂

∂t

(
ln |Xα × Xβ |)= ∇� · U.

Thus, to enforce ln(|Xα × Xβ |) − ln(|X0
α × X0

β |) = ln |Xα×Xβ |
|X0

α×X0
β | ≈ 0 is equivalent to the constraint ∇� · U ≈ 0, where |Xα × Xβ |

and |X0
α × X0

β | are the respective stretching factors at time t and initial time. The tension written in Eq. (5) is derived by 
taking the first variation of

Eσ = σ0

2

∫∫ [
ln

(
|Xα × Xβ |
|X0

α × X0
β |

)]2

|X0
α × X0

β |dαdβ,

from which it is surprising to recover the original form of tension force as written in Eq. (6) but with the logarithmic 
definition of approximate elastic tension. That is, we have Fσ = − δEσ

δX , where σ has the form of Eq. (5).
Using the above nearly incompressible interface approach, the elastic tension force Fσ in Eq. (6) is no longer an unknown 

function and can be computed through the interface configuration X. To compute the tension force explicitly, there are two 
formulas as written in Eq. (6); one is the divergence form ∇� ·(σP ), and the other is the non-divergence form ∇�σ −2σ Hn. 
For a smooth surface �, the two forms are equivalent as derived in the following:
3
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∇� · (σP )

= (∇�σ )P + σ∇� · P
= ∇�σ − σ∇� · (nnT) (by uP = u for tangent vector u and ∇� · I = 0)

= ∇�σ − σ (n∇� · n + n · ∇�n) (by ∇� · (nin) = ni∇� · n + n · ∇�ni)

= ∇�σ − 2σ Hn (by ∇� · n = 2H and n · ∇�ni = 0) .

It is common to compute the non-divergence form of discrete elastic tension force in literature [40,31,33]; however, we pro-
pose to use the divergence form due to improved numerical stability as we can see some compelling numerical advantages 
later in Subsection 4.2.

The bending force Fb in Eq. (7) resists interfacial bending of vesicle, where H and K are the mean and Gaussian 
curvatures, respectively, and 
�H is the surface Laplacian of H . This force can be derived from the Willmore [42] (or 
Canham-Helfrich bending [15]) energy functional Eb = cb

2

∫
�

H2 dA. The penalty force (as a feedback mechanism) for vol-
ume conservation is given in Eq. (8), where cv is the penalty parameter and V (t) is the enclosed volume of vesicle at time 
t . In Eq. (9), the projection operator P is defined by the 3-by-3 identity matrix I and the outward unit normal vector n. To 
solve the governing equations (1)-(8), one shall impose adequate initial and boundary conditions.

For the sake of completeness, we write down the precise formulas of surface gradient operator ∇� and the surface 
divergence operator ∇�· used in this paper. For a surface patch X(α, β) at a fixed time (the time variable t is omitted), the 
coefficients of the first and second fundamental forms are defined by

E = Xα · Xα, F = Xα · Xβ, G = Xβ · Xβ, L = Xαα · n, M = Xαβ · n, N = Xββ · n,

where the subscripts α and β of a function denote its partial derivatives with respect to α and β , respectively. So the mean 
and Gaussian curvatures of the surface are obtained by

H = −GL − E N + 2F M

2(EG − F 2)
, K = LN − M2

EG − F 2
. (10)

With these notations, the surface gradient operator of a scalar function σ(α, β) is represented by

∇�σ = Gσα − Fσβ

EG − F 2
Xα + Eσβ − Fσα

EG − F 2
Xβ, (11)

and similarly, the surface divergence operator of a vector field U(α, β) is

∇� · U = GUα − F Uβ

EG − F 2
· Xα + EUβ − F Uα

EG − F 2
· Xβ. (12)

For a tangent vector of the form V = P (α, β)Xα + Q (α, β)Xβ , an alternative of the surface divergence operator can be 
written by

∇� · V = 1√
EG − F 2

[(
P
√

EG − F 2
)
α

+
(

Q
√

EG − F 2
)

β

]
, (13)

hence the surface Laplacian of mean curvature function H(α, β) is written by


�H := ∇� · ∇�H = 1√
EG − F 2

[(
G Hα − F Hβ√

EG − F 2

)
α

+
(

E Hβ − F Hα√
EG − F 2

)
β

]
. (14)

The surface stretching element is given by |Xα × Xβ | = √
EG − F 2, so the local surface area element is dA = |Xα × Xβ |dαdβ .

3. Numerical method

In this section, we present the dimensionless governing equations of vesicle dynamics and their numerical discretizations. 
The discrete interface of vesicle is represented by the spherical harmonic expansion, so the spectral differentiations can be 
performed to achieve high accuracy of derivatives.

3.1. Dimensionless governing equations

For a vesicle interface enclosing the volume V , we define its effective radius r =
(

3V
4π

)1/3
as the characteristic length 

scale. The characteristic time scale for the vesicle under shear flow is defined by tc = 1/γ̇ , where γ̇ is the shear rate of 
flow. Then all the physical variables are scaled by the associated characteristic parameters as
4
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Fig. 1. Grid allocations for fluid variables u, v, w, p in Eulerian mesh (left) and for interfacial Lagrangian markers X in spherical coordinates excluding poles 
(right). Here φ and θ denote the longitude and the colatitude, respectively.

x∗ = x

r
, t∗ = t

tc
, u∗ = u

r/tc
, p∗ = tc

μo
p, σ ∗ = tc

μo
σ .

After performing a few calculations, the dimensionless governing equations of (1)-(8) can be written as (dropping the 
asterisk for convenience)

Re

(
∂u

∂t
+ (u · ∇)u

)
= −∇p + ∇ · [(1 + I(λ − 1))

(∇u + ∇uT)]+ f in �, (15)

∇ · u = 0 in �, (16)

f(x, t) =
∫
�

(Fσ + Fb + Fv) δ(x − X(α,β, t))dA in �, (17)

∂X

∂t
(α,β, t) := U(α,β, t) =

∫
�

u(x, t) δ(x − X(α,β, t))dx on �, (18)

σ(α,β, t) = σ0

( |X0
α × X0

β |
|Xα × Xβ |

)
ln

(
|Xα × Xβ |
|X0

α × X0
β |

)
on �, (19)

Fσ (α,β, t) = ∇� · (σP ) = ∇�σ − 2σ Hn on �, (20)

Fb(α,β, t) = 1

2Ca

[

�H + 2H(H2 − K )

]
n on �, (21)

Fv(α,β, t) = −cv

(
V (t) − V (0)

V (0)

)
n on �, (22)

where

Re = ρr2

μotc
, Ca = μor3

cbtc
, λ = μi

μo
.

Here, Re is the fluid Reynolds number, and Ca is the bending capillary number measuring the ratio of viscous force and 
bending force. The viscosity contrast between the interior and exterior fluids of vesicle is denoted by λ. We note that there 
is no dimensionless parameter in the elastic tension force Fσ and the volume conservation force Fv , since it can be absorbed 
into the respective stiffness parameters σ0 and cv which will be chosen later in practice.

Throughout this paper, we use spherical harmonics to represent a function defined on the interface. For convenience, 
we use spherical coordinates (φ, θ) to denote (α, β) in the following. So the vesicle interface �(t) is a two-dimensional 
spherical surface represented by �(t) = {X(φ, θ, t) = (X(φ, θ, t), Y (φ, θ, t), Z(φ, θ, t))|0 ≤ φ < 2π, 0 ≤ θ ≤ π}, where φ is the 
longitude coordinate and θ is the colatitude, see the right of Fig. 1.

3.2. Spectral differentiation via spherical harmonic transform

As mentioned above, the vesicle surface is represented by spherical coordinates. In discrete setting, the longitudinal grid 
points are equi-spaced by φi = (i − 1)
φ with 
φ = 2π/Nφ for i = 1, . . . , Nφ . The colatitudinal grid points denoted by 
θ j are the Gauss-Legendre quadrature nodes [37] with 
θ j = ω j/ sin θ j and ω j are the corresponding Gaussian quadrature 
weights for j = 1, . . . , Nθ . As seen in the right of Fig. 1, the poles are not included.
5
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One can approximate a real scalar function f ∈ C∞(S2) by using the truncated spherical harmonic expansion as

f (φi, θ j) ≈
p−1∑
n=0

n∑′

m=0

Pm
n (cos θ j)[amn cos(mφi) − bmn sin(mφi)], (23)

where p is an integer (we choose p = Nθ for simplicity), amn and bmn are the real coefficients, and Pm
n denotes the associated 

Legendre function of degree n and order m [35,36]. Once the total number of frequency modes p(p + 1)/2 is sufficient 
(depending on the smoothness of f ), the above finite term approximation is known to be spectrally convergent. The primed 
sum in Eq. (23) denotes that the first term corresponding to m = 0 is multiplied by 1/2. The constant kmn = (2n+1) (n−m)!

2π (n+m)! is 
used to normalize the above expansion, so the real coefficients in Eq. (23) are obtained by

amn = kmn

Nφ∑
i=1

Nθ∑
j=1

f (φi, θ j)Pm
n (cos θ j) cos(mφi) sin θ j 
θ j
φ, (24)

bmn = kmn

Nφ∑
i=1

Nθ∑
j=1

f (φi, θ j)Pm
n (cos θ j) sin(mφi) sin θ j 
θ j
φ. (25)

Eqs. (24) and (25) constitute the forward scalar Spherical Harmonic Transform (SHT), while Eq. (23) is the corresponding 
backward scalar SHT. Note that, the SHT consists of the fast Fourier transform in the longitudinal (φ) direction and the 
Legendre transform in the colatitudinal (θ ) direction. A detailed implementation for above transforms can be found in 
SPHEREPACK 3.2 [30].

A vector function or its derivative will likely be discontinuous at poles in the colatitude direction and it produces 
unbounded terms in PDEs posed in spherical coordinates [35]. More importantly, the discontinuity would lead to an unsat-
isfactory numerical accuracy due to slow convergence of the series in Eq. (23) [34]. This indicates that the scalar transform 
solely does not provide a suitable basis for discontinuous function. In computing derivatives of vector function, it is known 
that vector SHT helps to improve the numerical accuracy near two poles in spherical coordinates. Thus, for spectral dif-
ferentiations of vector (and scalar) functions, we use the vector SHT presented in [35,36]. However, only the subroutines 
computing the first derivatives are provided in SPHEREPACK, so we need to develop the subroutines computing the second 
derivatives to obtain the bending force in Eq. (21).

The vector SHT introduces two basis functions

V m
n (θ) := 1√

n(n + 1)

d

dθ
Pm

n (cos θ) and W m
n (θ) := 1√

n(n + 1)

m

sin θ
Pm

n (cos θ).

From this, one can compute the first derivatives of a real scalar component f of a vector function with respect to the 
longitude φ and the colatitude θ via the backward vector SHT as

∂

∂φ
f (φ, θ) ≈

Nθ−1∑
n=0

n∑′

m=0

Pm
n (cos θ)[−mbmn cos(mφ) − mamn sin(mφ)]

= sin θ

Nθ−1∑
n=0

n∑′

m=0

√
n(n + 1) W m

n (θ)[−bmn cos(mφ) − amn sin(mφ)], (26)

∂

∂θ
f (φ, θ) ≈

Nθ −1∑
n=0

n∑′

m=0

√
n(n + 1) V m

n (θ)[amn cos(mφ) − bmn sin(mφ)]. (27)

We shall implement the second-order numerical differentiations of f as

∂2

∂φ2
f (φ, θ) ≈

Nθ−1∑
n=0

n∑′

m=0

Pm
n (cos θ)[−m2amn cos(mφ) + m2bmn sin(mφ)], (28)

∂2

∂φ∂θ
f (φ, θ) ≈

Nθ −1∑
n=0

n∑′

m=0

√
n(n + 1) V m

n (θ)[−mbmn cos(mφ) − mamn sin(mφ)], (29)

∂2

∂θ2
f (φ, θ) ≈

Nθ−1∑
n=0

n∑′

m=0

d2

dθ2
Pm

n (cos θ)[amn cos(mφ) − bmn sin(mφ)], (30)

where
6
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d2

dθ2
Pm

n (cos θ) = − cot θ
d

dθ
Pm

n (cos θ) +
(

m2

sin2 θ
− n(n + 1)

)
Pm

n (cos θ)

= − cot θ
√

n(n + 1)V m
n (θ) + m2

sin2 θ
Pm

n (cos θ) − n(n + 1)Pm
n (cos θ).

The equality of d2

dθ2 Pm
n (cos θ) holds due to the property of the associated Legendre function or polynomial. To perform 

numerical differentiation, we first obtain the real coefficients (24) and (25) by applying forward scalar SHT, then modify 
the coefficients according to Eqs. (26)-(30). Using the modified coefficients in particular for second derivatives, the back-

ward scalar SHT can be applied to obtain ∂2 f
∂φ2 in Eq. (28), while the backward vector SHT is applied to obtain ∂2 f

∂φ∂θ
in 

Eq. (29). To obtain ∂2 f
∂θ2 in Eq. (30), we especially need to apply the backward vector SHT once and the backward scalar 

SHT twice in a term-by-term manner. Notice that the functions of θ such as cot θ and 1/ sin2 θ shall be multiplied af-
ter transforms. Throughout this paper, we will use the SHT to spectrally differentiate the vesicle surface position vector 
X(φ, θ) as mentioned above to get all the fundamental forms needed to compute the mean curvature H and Gaussian cur-
vature K (Eq. (10)), the surface gradient of elastic tension ∇�σ (φ, θ) (Eq. (11)), the surface divergence of interfacial velocity 
∇� · U(φ, θ) (Eq. (12)), and the elastic tension force ∇� · [σ(φ, θ)P (φ, θ)] (Eq. (20)).

However, the computation of surface Laplacian of mean curvature 
� H used in bending force term involves second-
order partial derivatives for the mean curvature; thus, the fourth-order partial derivatives for the position vector. As one can 
see, the spectral differentiation higher than second-order with respect to the colatitude direction is more complicated. To 
compute 
�H more accurately by using only first- and second-order differentiations, we employ the following upsampling 
algorithm used in [40] to enhance the numerical accuracy.

For the given discrete position vector X with the Nφ-by-Nθ size, we compute 
�H defined at X in the step-by-step 
numerical procedure as follows.

Step 1. Apply component-wisely the forward Spherical Harmonic Transform (SHT) onto X, as described in Eqs. (24) and (25), 
to obtain the coefficients with the Nθ -by-Nθ size. (Note that we use an Nθ -by-Nθ rectangular matrix in practice for 
convenience, while the definition of spherical harmonic expansion in Eq. (23) has a triangular domain of frequency 
modes.) According to Eqs. (26)-(30), modify the coefficients to compute the first and second partial derivatives. 
Pad zeros to the modified coefficients by extending high frequency modes so that the new coefficients have the 
2Nθ -by-2Nθ size.

Step 2. Apply the backward SHT onto the extended coefficients to obtain the upsampled partial derivatives with the 2Nφ-
by-2Nθ size. By using the upsampled derivatives, compute the upsampled H with the 2Nφ-by-2Nθ size by Eq. (10).

Step 3. Apply the first-order spectral differentiation to the upsampled H , then compute the upsampled 
� H referring to 
Eq. (14). To downsample, apply the forward SHT to the upsampled 
� H , then apply the backward SHT onto the 
shrinking coefficients with the Nθ -by-Nθ size.

3.3. Numerical scheme

In this subsection, we present the numerical scheme and the related implementation details for solving the dimensionless 
governing equations (15)-(22). Throughout this paper, the Dirichlet boundary condition is imposed for the fluid velocity in 
all directions. To solve the Navier-Stokes equations (15)-(16) in a computational domain � ⊂ R3, we layout a uniform 
Cartesian grid with mesh width h = 
x = 
y = 
z, and allocate the fluid velocity u = (u, v, w) and the pressure p in a 
staggered marker-and-cell (MAC) grid manner [14], see the left of Fig. 1.

To discretize the vesicle interface X, we apply the spherical harmonic expansion (23) in a component-wise manner as

X(φi, θ j) = (X(φi, θ j), Y (φi, θ j), Z(φi, θ j)
)

≈
Nθ−1∑
n=0

n∑′

m=0

Pm
n (cos θ j)

[(
aX

mn,aY
mn,aZ

mn

)
cos(mφi) −

(
bX

mn,bY
mn,bZ

mn

)
sin(mφi)

]
,

where each component of the coefficient vectors, 
(
aX

mn,aY
mn,aZ

mn

)
and 

(
bX

mn,bY
mn,bZ

mn

)
, corresponds to that of coordinate 

(X, Y , Z), respectively. We differentiate this representation from the radial approximation of vesicle interface used in 
[41], wherein the position vector contains a single scalar variable as a function of (φ, θ), namely the radial deviation 
from a sphere. For i = 1, . . . , Nφ and j = 1, . . . , Nθ , the discrete interface is represented by a set of Lagrangian markers 
Xi j = X(φi, θ j) and other variables are defined in a similar manner. The associated geometric quantities and their derivatives 
are all computed at Xi j . For this, the spectral partial derivatives with respect to φ and θ up to second-order can be com-
puted efficiently and accurately as described in Subsection 3.2. One can also refer to [8,18] for the applications of spherical 
harmonic representation to stationary vesicle and molecular surfaces.

We now present how to march the Lagrangian markers Xk = X(k
t) from time level k to Xk+1 = X((k + 1)
t) at time 
level k + 1, where 
t is the time step size. In the following, the fluid velocity uk , the pressure pk , and the Lagrangian 
7
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markers Xk are all given in advance, and from these variables we seek to update uk+1, pk+1, and Xk+1. The step-by-step 
numerical procedure can be done as follows.

Step 1. At the Lagrangian markers Xk
i j , we compute the first and second derivatives of the surface position vector X by 

applying the spectral differentiations described in the Subsection 3.2. The discrete outward normal vector is obtained 
by

nk
i j = Xk

θ,i j × Xk
φ,i j

|Xk
θ,i j × Xk

φ,i j|
,

where Xk
θ,i j and Xk

φ,i j denote the first derivatives of Xk
i j with respect to θ and φ, respectively. The discrete projection 

operator is then obtained by

Pk
i j = I − nk

i j(nk
i j)

T.

Referring to Eqs. (10) and (14), the discrete geometric quantities can be further obtained. For the Gaussian quadra-
ture weight ω, the discrete local surface area is obtained from

dAk
ij = |Xk

θ,i j × Xk
φ,i j|
φ 
θ j = |Xk

θ,i j × Xk
φ,i j |
φ ω j/ sin θ j .

So for a given constant σ0, the numerical elastic tension in Eq. (19) can be computed by

σ k
i j = σ0

⎛⎝dA0,k
i j

dAk
ij

⎞⎠ ln

⎛⎝ dAk
ij

dA0,k
i j

⎞⎠ . (31)

We leave the computation of dA0,k
i j later in Eq. (32) due to the modification of tangential velocity.

Once we have σ k
i j , the discrete elastic tension force Fσ can be computed in two different forms as in Eq. (20). The 

divergence form is computed by applying Eq. (12) component-wisely to ∇�h · (σ k
i jP

k
i j). More specifically, the m-th 

component of Fσ (Xk
i j) for m = 1, 2, 3 is obtained by computing

∇�h ·
(
σ k

i jP
k
m1,i j,σ

k
i jP

k
m2,i j,σ

k
i jP

k
m3,i j

)
,

where Pk
mn,i j is the (m, n)-th element of the 3-by-3 matrix Pk

i j . The non-divergence form written in ∇�h σ
k
i j −

2σ k
i j Hk

i jn
k
i j is obtained by Eq. (11) for the tangential component and by the discrete mean curvature normal vec-

tor for the normal component. A numerical comparison of those two formulations for computing elastic tension 
force will be given in Subsection 4.2, where we demonstrate that using the divergence form is numerically more 
stable.
Meanwhile, in computing the bending force Fb , we employ the upsampling algorithm to enhance numerical accuracy 
of the discrete surface Laplacian of mean curvature. The detailed implementation is already given in the end of 
Subsection 3.2 and the related numerical result will be discussed later in Subsection 4.1. To compute the volume 
conservation force Fv in Eq. (22), we use the formula for the enclosed volume

V k = 1

3

Nφ∑
i=1

Nθ∑
j=1

Xk
i j · nk

i j dAk
ij,

as an approximation of V (t) = 1
3

∫
�(t) X · n dA.

Step 2. Distribute the interfacial forces acting on Lagrangian markers into the Eulerian grid x = (x, y, z) by means of the 
smoothed Dirac delta function δh as

fk(x) =
Nφ∑
i=1

Nθ∑
j=1

[
Fσ (Xk

i j) + Fb(Xk
i j) + Fv(Xk

i j)
]

δh(x − Xk
i j)dAk

ij.

Here for the discrete delta function δh(x) = 1
h3 ϕ

( x
h

)
ϕ
( y

h

)
ϕ
( z

h

)
, we employ the 4-point supported function ϕ devel-

oped in [44] to suppress spurious force oscillations in IB method.
Step 3. Solve the Navier-Stokes equations by the second-order incremental pressure-correction projection method presented 

in [12] as follows.
8
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Re

[
3u� − 4uk + uk−1

2
t
+ 2(uk · ∇h)uk − (uk−1 · ∇h)uk−1

]
= − ∇h pk + λ
hu� + ∇h ·

[
(λ − 1)(Ik − 1)(∇huk + ∇T

h uk)
]
+ fk,


h p� = 3Re

2
t
∇h · u�,

∂ p�

∂n
= 0 on ∂�, u� = uk+1 on ∂�,

uk+1 = u� − 2
t

3Re
∇h p�, ∇h pk+1 = ∇h p� + ∇h pk − 2λ
t

3Re

h(∇h p�),

where the discrete operators ∇h and ∇h· approximate the gradient and divergence operators, respectively, using the 
second-order finite difference in staggered grid. For the nonlinear terms, the skew-symmetric form is employed as 
(u · ∇h)u = 1

2 (u · ∇h)u + 1
2 ∇h (uu). The viscous term represented above by u� and uk is equivalent to

λ
hu� − λ
huk + ∇h ·
[(

1 + Ik(λ − 1)
)(

∇huk + ∇T
h uk

)]
,

which implies that the more viscous inner fluid of vesicle is treated implicitly while the less viscous outer fluid is 
treated explicitly. In order to obtain the discrete indicator (or regularized Heaviside) function Ik(x) at the k-th time 
step, we solve the discrete Poisson equation with either zero Dirichlet or Neumann boundary condition as developed 
in [38] by


h Ik(x) = −∇h ·
Nφ∑
i=1

Nθ∑
j=1

nk
i j δh(x − Xk

i j)dAk
ij,

whose continuous counterpart is


I(x, t) = −∇ ·
∫
�

n δ(x − X(φ, θ, t))dA.

In solving Poisson and Helmholtz equations stated in this step, a fast solver using fast sine (cosine) transform can 
be exploited for the Dirichlet (Neumann) boundary condition.

Step 4. In this step, we interpolate the interfacial velocity of fluidic vesicle as

Uk+1
i j =

∑
x

uk+1(x)δh(x − Xk
i j)h

3.

In traditional IB method, we then advance the Lagrangian markers to new positions by Xk+1
i j = Xk

i j + 
tUk+1
i j as 

a discretization of ∂X
∂t = U in Eq. (18), i.e., no-slip condition. However, the tank-treading and tumbling motions of 

vesicle under shear flow will lead to a distortion of the interfacial mesh, so we take a different approach to advance 
the markers. Our goal is to attenuate such distortion, thus to improve the numerical stability over the traditional 
approach. To this end, we apply the forward SHT to Uk+1

i j , then adopt the 2/3-rule filter for dealiasing the normal 
velocity component. On the other hand, for the tangential velocity component, we keep only 15 lower frequencies 
to smooth out the tangential velocity. (Notice that, changing the tangential velocity does not affect the shape of 
vesicle interface.) Denoting this filtered velocity by Ũk+1

, the interfacial mesh is now updated more smoothly by (as 
a discretization of ∂X

∂t = Ũ)

Xk+1
i j = Xk

i j + 
tŨ
k+1
i j .

Step 5. Update the local surface element dA0,k+1
i j used in Eq. (31). Since the tangential velocity is modified via smoothing, 

the initial local surface area element used in Eq. (31) must be modified accordingly. In other words, when the 
Lagrangian markers move by modified tangential velocity, the (initially obtained) target local surface area dA0,k+1

at the (k+1)-th time step should be newly updated according to

dA0,k+1
i j∑Nφ

i=1

∑Nθ

j=1 dA0
i j

= d̃A
0,k+1
i j∑Nφ

i=1

∑Nθ

j=1 d̃A
0,k+1
i j

, (32)

where

ln d̃A
0,k+1
i j = ln dA0,k

i j + 
t∇�h ·
[
Pk

i j

(
Ũ

k+1
i j − Uk+1

i j

)]
. (33)
9
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Fig. 2. Three geometries. (a) the unit sphere; (b) the ellipsoid with aspect ratio 1 : 2 : 4; (c) the complex surface using the spherical harmonic Y 2
3 .

Eq. (32) is simply the normalization for each target local surface area so that the total surface area is conserved 
as the original one. However, Eq. (33) is obtained by an approximation of the following evolution equation of local 
surface area

∂(ln |Xθ × Xφ |)
∂t

= 1

|Xθ × Xφ |
∂|Xθ × Xφ |

∂t
= ∇� · ∂X

∂t
(from [31, Eq. (12)])

= ∇� · Ũ = ∇� · [U + P (Ũ − U)] (by
∂X

∂t
:= Ũ)

≈ ∇� · [P (Ũ − U)] (∇� · U ≈ 0 for nearly incompressible interface).

4. Numerical results

In this section, we begin by checking the numerical accuracy of discrete geometric quantities needed in computing the 
bending force. Then a numerical stability issue arising from the necessity of using divergence form for elastic tension force 
is investigated together with convergence analysis of primitive variables and conservative quantities. Afterwards, a series of 
numerical experiments are performed for a vesicle under shear flow, whereby the effects of dimensionless parameters such 
as the reduced volume, bending capillary number, viscosity contrast, and the Reynolds number are extensively studied. A 
study on vesicle deformation under Poiseuille flow is also carried out.

4.1. Accuracy check on some geometrical quantities

We first examine the numerical accuracy of geometric quantities associated with the bending force in Eq. (21) such as 
the mean curvature H , Gaussian curvature K , and the surface Laplacian of mean curvature 
� H . Throughout this paper, 
we fix Nφ = 2Nθ , so the computed solution with 2Nθ -by-Nθ size is used for simplicity, although our method allows almost 
arbitrary size. For spherical coordinates

(X(φ, θ), Y (φ, θ), Z(φ, θ)) = (a(φ, θ) sin θ cosφ, b(φ, θ) sin θ sinφ, c(φ, θ) cos θ) ,

we test three different geometries as illustrated in Fig. 2

• Sphere: a = b = c = 1
• Ellipsoid: a = 1, b = 2, c = 4
• Complex surface using Y 2

3 : a = b = c = 1 + e−3Re
(
Y 2

3

)
,

where the term Re(Y 2
3 ) denotes the real part of the spherical harmonic function Y 2

3 (φ, θ) = 1
4

√
105
2π ei2φ sin2 θ cos θ .

In Table 1, the maximum norm errors of H , K , and 
� H are provided for the three geometries. We set Nφ = 2Nθ as 
aforementioned, so the total number of surface points is Nφ Nθ = 2N2

θ . As shown in the table, the errors of H and K are 
spectrally accurate as expected. (Note that the error increases somewhat as Nθ increases due to the inheritance of spectral 
approximation where the summation of more terms accumulates the machine error.)

However, the errors of 
�H without upsampling (denoted by ‖
� H‖∞) and with upsampling (denoted by ‖˜
� H‖∞) 
do show significant difference as the latter one shows better accuracy. For the unit sphere, we observe that both errors 
are similar in magnitude regardless of the use of upsampling. This is not surprising since a sphere has constant curvature 
so 
�H vanishes, meaning that only a few numbers of frequency modes in spherical harmonics are needed. For other 
two geometries (an ellipsoid and complex surface), the errors of 
� H obtained without the upsampling method are nearly 
constant for any Nθ , while those with the upsampling are relatively reduced by a factor of 100 for Nθ ≥ 64. In the case 
of the ellipsoid with aspect ratio 1 : 2 : 4, the maximum values of three quantities estimated numerically are max(H) =
10
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Table 1
For the three geometries plotted in Fig. 2, the maximum numerical errors 
of the mean curvature H , Gaussian curvature K , and the surface Laplacian 
of mean curvature (without upsampling 
� H , with upsampling ‖˜
� H‖∞).

Nθ ‖H‖∞ ‖K‖∞ ‖
� H‖∞ ‖˜
� H‖∞
(The unit sphere)

16 4.02 × 10−13 8.04 × 10−13 1.26 × 10−10 1.15 × 10−10

32 4.37 × 10−12 8.74 × 10−12 1.59 × 10−8 6.15 × 10−9

64 3.17 × 10−11 6.34 × 10−11 5.06 × 10−7 1.46 × 10−7

128 3.98 × 10−10 7.97 × 10−10 4.28 × 10−5 8.35 × 10−6

(The ellipsoid with aspect ratio 1 : 2 : 4)
16 3.08 × 10−13 4.58 × 10−13 5.71 × 101 3.59 × 101

32 7.53 × 10−12 1.44 × 10−11 3.27 × 101 4.16 × 100

64 2.69 × 10−11 7.84 × 10−11 2.48 × 101 2.30 × 10−1

128 4.83 × 10−10 1.01 × 10−9 2.33 × 101 2.24 × 10−1

(The complex surface using the spherical harmonic Y 2
3 )

16 8.14 × 10−3 6.74 × 10−3 5.82 × 100 4.49 × 100

32 4.53 × 10−9 7.24 × 10−9 4.20 × 100 2.08 × 100

64 2.91 × 10−11 3.74 × 10−11 2.69 × 100 6.44 × 10−2

128 3.41 × 10−10 3.70 × 10−10 2.64 × 100 2.69 × 10−2

2.5, max(K ) = 4, and max(
�H) = 100. Similar values are also obtained in the case of the complex surface, but with 
more complex variation of geometric quantities. Taking these maximum values into account, we can conclude that the 
contribution of 
� H is considerably larger than 2H(H2 − K ) term in bending resistance, thus even a slight improvement 
of accuracy of 
� H will have significant influence on vesicle motion. Therefore, in computing bending force, we shall apply 
the upsampling method to compute the surface Laplacian of mean curvature.

Before closing this subsection, we remark a few limitations of using spherical harmonic expansion to represent the vesi-
cle surface. As known, each surface representation method has pros and cons in terms of accuracy and versatility. There is 
certainly a trade-off between the accuracy and flexibility that we should consider in the development of numerical methods. 
As verified above for fixed geometries, the use of spectral method is able to achieve high accuracy for computing geomet-
ric quantities of spherical surfaces. However, the method can only approximate moderately deformed surfaces as seen in 
Fig. 2(c), and the applications are limited to quasi-spherical vesicles as shown in the subsequent subsections. As mentioned 
in the introduction of [9], however, highly deformed surface such as tethered vesicle can take very long and thin shapes. 
In that case, sufficiently large number of spherical harmonics is required to properly approximate within desired accuracy 
so the associated computational time would increase accordingly. Meanwhile, the spherical coordinate representation of an 
evolving vesicle is difficult to apply adaptive mesh refinement for interfaces with high curvature region. Despite that, to 
maintain the interfacial mesh quality, a new mesh control technique via filtering of interfacial tangential velocity is pro-
posed and has been confirmed useful in this paper. We also note that the spectral representation using spherical harmonic 
expansion is developed to approximate a function defined on a sphere, so such representation is only applicable to spherical 
surfaces with genus zero. Therefore, to approximate surfaces of arbitrary shapes or topologies, one may need to use a tri-
angulation instead. However, from the accuracy point of view, the computation of geometric quantities, in particular 
� H , 
would not converge on triangulation when the mesh is refined as reported in [11], while the computation via the present 
spectral method with upsampling can converge satisfactorily as shown in Table 1.

4.2. Numerical stability of elastic tension force computation

As mentioned earlier in Eq. (6), there are two equivalent forms of elastic tension force; namely, the divergence form 
∇� · (σP ) and the non-divergence form ∇�σ − 2σ Hn. Here, we investigate the numerical stability about the usage of both 
forms for the problem of vesicle relaxation in quiescent flow. To see more clearly, we test two types of vesicles initially 
given by an oblate with aspect ratio 3 : 3 : 1 and a prolate with the aspect ratio 1 : 1 : 2.8. For an ellipsoidal vesicle with 
aspect ratio a : b : c, the lengths of semi-axes are normalized by (abc)1/3 so that the enclosed volume is fixed by V = 4π/3. 
For a given initial vesicle shape, another dimensionless number measuring the volume ratio between the vesicle shape 
and the sphere with the same surface area is called the reduced volume and is defined by ν = 3V

4π(A/4π)3/2 , where A is the 
surface area of the vesicle. In this test, we set the computational domain by [−3, 3]3, the grid mesh width by h = 6/N with 
N = 64, and the time step size by 
t = 1/(6N). The total number of Lagrangian markers is 2N2

θ with Nθ = N/2, and the 
dimensionless parameters are set by Re = 1, Ca = 2.5, λ = 1, σ0 = 9.375N , and cv = 0. Throughout this paper, the same 
computational setup is used unless otherwise stated.

In Fig. 3(a-c, g-i), the temporal evolution of vesicle shapes by using divergence form of tension force in our scheme 
is quite stable. These shapes are smooth and nearly axisymmetric as desired. On the contrary, when the non-divergence 
form is used as shown in Fig. 3(d-f, j-l), the unphysical oscillatory shapes emerge along the longest axis at earlier time 
and they soon blow up (the computational times of Fig. 3(f, l) are only up to t = 1.3 and t = 2.58, respectively). We 
11
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Fig. 3. For initially oblate and prolate vesicles, their temporal evolution by using the divergence form of tension force in (a-c) and (g-i); by the non-
divergence form in (d-f) and (j-l).

attribute such instability to the imbalance of tension force in the tangential and normal directions. To see this, suppose 
all the geometric quantities are spectrally accurate and the elastic tension is represented by σ(θ, φ) = σe(θ, φ) + ε(θ, φ), 
where σe is the exact solution and ε is the numerical error. So the two forms of discrete tension force take the divergence 
form ∇�h · [(σe + ε)P ], and the non-divergence form ∇�h (σe + ε) − 2(σe + ε)Hn. One can see that the divergence form 
has the error magnitude of ∇�h · (εP ) in all x, y, z directions, while the non-divergence form has the error of ∇�h ε in the 
tangential direction and 2εHn in the normal direction. Because the difference between the error ε and its derivative is quite 
different in magnitude, it appears that such imbalance of elastic tension force in non-divergence form can eventually cause 
the simulation failed as we can see in the test. Consequently, regardless of geometry used in Fig. 3, the divergence form is 
able to keep the computation stable during vesicle relaxation in quiescent flow. Therefore, it will greatly help to stabilize 
the vesicle dynamics in various flows so we only employ the divergence form of the discrete elastic tension force in the rest 
of simulations.

4.3. Convergence study

Next, we study the numerical convergence behavior of primitive variables and conservative quantities for the present 
scheme. The computational setup is basically same to that used for the vesicle relaxation simulation presented in the 
previous subsection. The initial vesicle is an oblate with same aspect ratio as previously described. We run the simulations 
with different resolutions N = 32, 64, 128, 256 (the mesh width is h = 6/N), and calculate the order of accuracy of velocity 
component u via three successive results as

Order = log2

(‖u2h − u4h‖2

‖uh − u2h‖2

)
.

Other variables can be obtained in a similar manner. Note that the resolution of vesicle interface shall be refined as that of 
fluid grid mesh is refined; that is, the number of total Lagrangian markers on the vesicle interface is N2/2, as mentioned 
earlier in Subsection 4.2. The results are computed up to time t = 0.5.
12
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Table 2
Convergence analysis of the relative errors of the fluid velocity (u, v, w), fluid pressure 
p, and the position vector X at t = 0.5. Here h̄ denotes the finest resolution used in this 
study, so h̄ = 6/256.

h ‖uh−u2h‖2‖uh̄‖2
Order ‖vh−v2h‖2‖vh̄‖2

Order ‖wh−w2h‖2‖wh̄‖2
Order

6/64 5.200 × 10−1 - 5.233 × 10−1 - 4.478 × 10−1 -
6/128 1.007 × 10−1 2.36 1.016 × 10−1 2.36 9.260 × 10−2 2.27
6/256 3.148 × 10−2 1.67 3.235 × 10−2 1.65 2.636 × 10−2 1.81

h ‖ph−p2h‖2‖ph̄‖2
Order ‖Xh−X2h‖2‖Xh̄‖2

Order

6/64 3.598 × 10−1 - 1.012 × 10−2 -
6/128 1.230 × 10−1 1.54 2.140 × 10−3 2.24
6/256 7.203 × 10−2 0.77 5.738 × 10−4 1.89

Table 3
The maximum (relative) errors of the surface divergence of interfacial velocity 
∇� · U, the local surface area dA, the total surface area A, and the enclosed 
volume V at t = 0.5.

h ‖∇�h · U‖∞ ‖ dA(t)−dA(0)
dA(0)

‖∞ | A(t)−A(0)
A(0)

| | V (t)−V (0)
V (0)

|
6/32 8.710 × 10−3 8.218 × 10−3 2.112 × 10−3 7.928 × 10−5

6/64 2.013 × 10−3 1.466 × 10−3 9.486 × 10−4 2.631 × 10−5

6/128 3.364 × 10−4 5.039 × 10−4 4.493 × 10−4 6.671 × 10−6

6/256 1.221 × 10−4 2.494 × 10−4 2.233 × 10−4 7.250 × 10−6

Table 2 shows the L2-errors of primitive variables such as the fluid velocity (u, v, w), the pressure p, and the position 
vector X at time t = 0.5. Since the exact solution is unknown in this test, we evaluate the error of two numerical solutions 
obtained in successive resolutions and then divide by the numerical solution obtained in the finest resolution (h̄ = 6/256). 
As shown in the table, the overall order of accuracy of all variables confirms that our numerical solutions converge well. 
Although the numerical orders of fluid velocity and pressure obtained here are a little higher than predicted in theory [5], 
but we believe that the actual accuracy would be lower as we refine the computational resolution. The accuracy of the 
position vector X is also consistent with that obtained in [26].

Table 3 shows the maximum (relative) errors associated with conservative quantities of vesicle, such as the local inter-
facial incompressibility ∇� · U = 0, local surface area dA, total surface area A, and the enclosed volume V . We clearly see 
that all the quantities are conserved well and tend to converge further as the resolution is refined.

4.4. Tank-treading motion under shear flow

In this subsection, we impose the shear flow u = (z, 0, 0) on the fluid domain boundary to see the vesicle tank-treading 
motion. Here, we assume that the viscosities of inner and outer fluids of vesicle match under Stokes regime, so we fix λ = 1
and Re = 10−3. The capillary number associated with bending resistance is also set by Ca = 2.5. Throughout this subsection 
to Subsection 4.6, we use a larger domain [−6, 6]3 to avoid the effect of computational domain size on vesicle dynamics. 
The grid number in each coordinate direction is chosen as N = 128, and the time step size is chosen as 
t = 1/(3N). The 
discrete interface of initially prolate vesicle is represented by the 2N2

θ number of Lagrangian markers with Nθ = N/2. The 
dimensionless parameter for volume conservation is fixed by cv = 105.

In Fig. 4, the temporal evolution of tank-treading vesicles with reduced volume (defined earlier in Subsection 4.2) ν =
0.975, 0.9, 0.8 is depicted. As ν decreases, the interfacial shape gets longer and thinner, and the interfacial mesh distorts 
more severely. Although not shown here, the simulation breaks down at early time if the filtering method for interfacial 
tangential velocity presented in Step 4 of Subsection 3.3 is not applied. So, under the spherical harmonic representation of 
vesicle interface, an adequate mesh control plays an important role to enhance the numerical stability.

To see whether the present IB method simulates correctly the essential physics of tank-treading vesicle in Stokes flow, 
we measure two quantities; namely the inclination angle θ obtained from the fitted ellipsoid, and the average tank-treading 
frequency (or average angular velocity) ω obtained from

ω =
Nφ∑
i=1

Nθ∑
j=1

|ri j × Vi j|
|ri j|2 dAk

ij

/ Nφ∑
i=1

Nθ∑
j=1

dAk
ij, (34)

where the position vector of the Lagrangian marker ri j and its velocity Vi j (interpolated from fluid velocity) both are 
projected onto the xz-plane. The markers with |ri j | < 10−3 are excluded to avoid the computational overflow. The temporal 
evolution of these quantities for various ν is drawn in Fig. 5(a, b). As shown, all the quantities tend to be steady after t = 5. 
This implies that all the vesicles tested here undergo the steady tank-treading motion as illustrated in Fig. 4. The relative 
13
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Fig. 4. Under shear flow, the snapshots of tank-treading motion of prolate vesicle whose reduced volume is (a-d) ν = 0.975; (e-h) ν = 0.9; (i-l) ν = 0.8. 
The parameters are fixed by Re = 10−3, Ca = 2.5, and λ = 1.

errors of the local and total surface area in terms of time are also plotted in Fig. 5(c, d), respectively. (Note that the error of 
A(t) in the figure (d) is not an absolute value to see the increment/decrement of total surface area.) Although the maximum 
relative error of local surface area fluctuates a little particularly for small ν , it stays below 0.01 up to time t = 15. Despite 
the presence of fluctuations of dA, the relative errors of total surface area A tend to be almost constant for all ν tested here. 
This confirms that our present penalty approach enforcing the local interfacial incompressibility works well as a feedback 
mechanism to conserve the local surface area.

For comparison purpose, in Fig. 6, the steady-state results observed in Fig. 5(a, b) are plotted with those obtained in 
theory [17,22], experiment [46], and simulations [22,47,31]. In Fig. 6(a), the stationary inclination angle in terms of ν agrees 
well with other results, in particular better than that obtained by IB method using triangulated interface representation for 
vesicle [31]. On the other hand, in Fig. 6(b), the average tank-treading frequency deviates somewhat from other results. In 
many literatures on vesicle dynamics, it is common to employ the triangulation in approximating the vesicle interface and 
the formulas with equal weights in computing ω. So, we attribute the underestimated values of ω to the usage of both 
spherical harmonic representation and different formula (34) with areal weights. Fortunately, as ν decreases, ω gets closer 
to the theoretical prediction.

Before closing this subsection, we study the effect of the bending capillary number on vesicle deformation. In Fig. 7, the 
steady tank-treading motions of vesicle for ν = 0.975, 0.9, 0.8 and Ca = 0.25, 2.5, 25 are depicted. For large ν = 0.975, the 
vesicle shapes are almost identical to each other regardless of different Ca, while for moderate ν = 0.8, the shapes deform 
significantly as Ca increases. This actually implies that the spherical harmonic representation for vesicle interface is suitably 
applicable to quasi-spherical vesicles for long time simulations.

4.5. Effect of viscosity contrast under shear flow

As a subsequent test, we consider the fluid has a viscosity contrast λ > 1. Under the same simulation setup used in the 
previous test, we study the effect of viscosity contrast on vesicle motion in shear flow. In Fig. 8, the inclination angle θ
14
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Fig. 5. The temporal evolution of (a) the inclination angle θ ; (b) the average angular velocity ω; (c) the maximum relative error of local surface area dA; 
(d) the (non-absolute) relative error of total surface area A. The results of ν = 0.975, 0.9, 0.8 correspond to Fig. 4.

Fig. 6. The comparison of (a) the inclination angle θ ; (b) the average tank-treading frequency ω. The present results are the values at t = 15 taken from 
Fig. 5(a, b), respectively. There is no experimental result for ω.

for different λ = 2.7, 5, 8 is plotted in terms of the excess area defined by � = 4π
(
ν−2/3 − 1

)
. For instance, three values 

of ν = 0.975, 0.95, 0.9 correspond to the approximate excess areas � = 0.21, 0.43, 0.91, respectively. As shown, our results 
are compared with those obtained in experiment [46, Fig. 4], triangulation-based front-tracking method [45, Fig. 3], and 
boundary integral method using spherical harmonics (BIM-SH) [47, Fig. 6]. Note that the bending capillary number Ca
defined in this paper is equivalent to 4Ca in other literature, due to the different definition of mean curvature H . We here 
defined H by the mean of two principal curvatures, whereas by the sum in literature. In the figure, our results for small 
λ and � are in good agreement with those obtained in the experiment and other simulations. As λ and � both increase, 
however, we observe some discrepancies from other results. This indicates that the usage of spherical harmonics in IB 
method is more proper to quasi-spherical vesicles, i.e., for large ν cases.

When the viscosity contrast λ is larger than a critical threshold, the vesicle undergoes tumbling motion. Fixing λ = 20, 
the temporal evolution of tumbling vesicles for ν = 0.975, 0.9, 0.8 is illustrated in Fig. 9. For large ν , the deformation is 
small. As ν decreases, the vesicle deforms more, so the distortion of interfacial mesh becomes apparent and more severe. 
We emphasize that the filtering method for Lagrangian tangential velocity described in Subsection 3.3 indeed helps to 
15
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Fig. 7. Under shear flow, the steady tank-treading motion of prolate vesicle at time t = 5. Here ν and Ca denote the reduced volume and the bending 
capillary number, respectively. The flow is in Stokes regime with Re = 10−3.

perform these stable simulations up to t = 20. Although omitted here, without the filtering, the simulation in shear flow 
breaks down at earlier time as observed in other tests.

4.6. Effect of Reynolds number under shear flow

Since our method can simulate Navier-Stokes flow, we now vary the Reynolds number Re to examine the iner-
tia effect on the vesicle motion in shear flow. A prolate shape vesicle with ν = 0.9 is used initially. The rest of 
the parameters are same as used in the previous subsection. The temporal evolution of the vesicle inclination an-
gle for various Re is plotted in Fig. 10. Under Stokes regime Re = 10−1, 10−2, 10−3, the results are almost iden-
tical, and the snapshots of vesicle motion are similar to the ones in Fig. 9(f-j) for the tumbling motion at Re =
10−3. When Re = 1, the tumbling period is delayed, then as Re increases slightly more, the vesicle suddenly un-
dergoes tank-treading motion and inhibits tumbling. Such tank-treading motion continues to appear for larger Re, 
and the steady value of θ increases gradually with increasing Re which is similar to 2D results of inertia effect 
described in [20, Fig. 8] and [29, Fig. 7]. In Fig. 11, two types of vesicle motion are compared at some chosen 
times. This apparently confirms that the tumbling vesicle may transit to tank-treading even at Re = O (1). As a re-
sult, the inertia effect of fluid is not negligible in studying vesicle dynamics even in moderate Reynolds number 
flow.
16
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Fig. 8. In the presence of viscosity contrast λ > 1, the comparison of the inclination angle θ in terms of the excess area � defined by 4π
(
ν−2/3 − 1

)
, where 

ν is the reduced volume.

Fig. 9. The snapshots of tumbling motion for prolate vesicle with different reduced volume: (a-e) ν = 0.975; (f-j) ν = 0.9; (k-o) ν = 0.8. The parameters 
are fixed by Re = 10−3, Ca = 2.5, and λ = 20. This is the counterpart of Fig. 4 where the corresponding tank-treading motion is shown for λ = 1.

4.7. Vesicle motions in Poiseuille flow

So far, we have studied the motion of vesicle under quiescent and shear flow. As the last test, to demonstrate the 
applicability of our method, we study the vesicle dynamics under rectangular Poiseuille flow. For this, the computational 
domain is chosen as [−10, 10] × [−3, 3] × [−3, 3] or [−10, 10] × [−3, 3] × [−2.5, 2.5]. The corresponding grid number is 
(320, 96, 96) or (320, 96, 80), respectively. Then the grid mesh width is h = 6/N with N = 96. The time step size is chosen 
by 
t = 1/(6N) and the total number of Lagrangian markers is 2N2 with Nθ = 64. The dimensionless parameters are set by 
θ

17
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Fig. 10. The temporal evolution of inclination angle θ for various Re. The other parameters are fixed by ν = 0.9, Ca = 2.5, and λ = 20.

Fig. 11. The snapshots of prolate vesicle motion under shear flow with different Reynolds number: (a-e) Re = 1; (f-j) Re = 5; (k-o) Re = 9. The other 
parameters are fixed by ν = 0.9, Ca = 2.5, and λ = 20. The corresponding inclinational angles are shown in Fig. 10.

Re = 10−3, Ca = 25, λ = 1, σ0 = 12.5N , and cv = 105. We note that our definition of Ca is equal to one-fourth of that used 
in [6].

Let us consider a channel with rectangular cross-section, where its domain in the y-direction is defined by −d ≤ y ≤ d
(width) and that in the z-direction is by −e ≤ z ≤ e (depth). After normalizing the exact solution of Poiseuille flow 
written in [43, Ch. 3-3.3], we use the following truncated series as the Dirichlet boundary condition of fluid veloc-
ity
18
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Fig. 12. Some snapshots of vesicle motion in Poiseuille flow, where (reduced volume ν , channel aspect ratio d/e) is (a-d) (0.99, 1); (e-h) (0.91, 1); (i-l) 
(0.973, 1.2). The vesicle deforms to a bullet shape in (a-d); a parachute shape in (e-h); a croissant shape in (i-l).

u(y, z) = 1

u0

199∑
i=1,3,5,...

(−1)(i−1)/2

i3

⎡⎣1 −
cosh

(
iπ z
2d

)
cosh

(
iπe
2d

)
⎤⎦ cos

(
iπ y

2d

)
, (35)

v = 0, w = 0, (36)

where u0 = u(0, 0) in (35) is used to normalize the velocity. Due to 1/1993 ≈ 10−7, the truncation error will be very 
small.

We initially construct three configurations of ellipsoidal vesicle, whose aspect ratios are 3 : 3 : 2.5 (ν = 0.99), 3 : 3 :
1.7 (ν = 0.91), and 3 : 3 : 2.2 (ν = 0.973). These are then rescaled to have the enclosed volume of 4π/3. We put the first 
vesicle (ν = 0.99) into the rectangular Poiseuille flow with d/e = 1 ([−10, 10] × [−3, 3] × [−3, 3]), so the vesicle moves 
to the x-direction. As shown in Fig. 12(a-d), the vesicle deforms to a bullet shape, where the rear part is convex. For the 
second vesicle (ν = 0.91) in the same simulation setup, the vesicle changes to a parachute shape in Fig. 12(e-h), where the 
rear part is now concave unlike the first case. This implies that large reduced volume close to one induces positive mean 
curvature of the rear, while the reduced volume smaller than a critical threshold induces negative mean curvature. Such 
observation agrees well with the experimental result obtained in [6, Fig. 4]. For the third vesicle (ν = 0.973), to see the 
effect of the aspect ratio of the channel, we put the vesicle into the domain [−10, 10] × [−3, 3] × [−2.5, 2.5] with aspect 
ratio d/e = 1.2. In Fig. 12(i-l), we observe that the vesicle deforms to a croissant shape as reported in the experiment [6]. As 
further emphasized in the paper, it is interesting to see that the croissant shape is relatively wider in the narrower direction 
of the channel. In the current test, the depth (z) of the rectangular channel is narrower than the width (y), but the resulting 
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shape of vesicle is wider in the z-direction. This verifies that our method can simulate vesicle dynamics in various flows 
properly.

5. Conclusion

For simulating quasi-spherical vesicles in unsteady Navier-Stokes flow, we have improved our prior 3D immersed bound-
ary (IB) method using triangulation in nearly incompressible interface approach [31]. In this paper, four improvements are 
made; namely, the spherical harmonic representation of vesicle interface, the logarithmic form of approximate elastic ten-
sion, the divergence form of discrete elastic tension force, and the modified approach of nearly incompressible interface 
coupled with mesh control.

A major contribution is the usage of spherical harmonic expansion in approximating vesicle interface. By doing so, we 
are able to obtain high accuracy of the bending force, in particular the needed mean and Gaussian curvatures, and the 
surface Laplacian of mean curvature which is not feasible on triangulated surface as studied in [31]. The simultaneous 
imposition of fluid and interfacial incompressibilities is another challenging task in vesicle dynamics. To overcome this 
difficulty, we introduce an explicit logarithmic form of elastic tension mathematically consistent with the evolution equation 
of local surface area. With the approximate elastic tension known a priori, we find that the corresponding tension force in 
divergence form improves the overall numerical stability of vesicle motion. To demonstrate clearly, compelling numerical 
evidences are provided through the results of vesicle relaxation in quiescent flow. Although omitted here, the divergence 
form helps to improve the stability in dynamic flow as well. The discrete interface represented by spherical harmonic 
expansion inherently employs spherical coordinates. Unlike triangulated interface, such interfacial mesh often suffers from 
mesh distortion. In the present study, the vesicle in shear flow undergoes the tank-treading and tumbling motions, so we 
introduce a filtering technique to maintain the quality of interfacial mesh via spherical harmonic transform. All these new 
improvements are put together so that a numerical scheme for nearly incompressible vesicle coupled with mesh control in 
unsteady Navier-Stokes flow is developed. Furthermore, we verify the accuracy and applicability of present method through 
investigating the quantitative and qualitative results by varying the vesicle configuration and some dimensionless parameters 
associated with bending resistance, viscosity contrast, and inertia effect. Under rectangular Poiseuille flow, we also identify 
three types of vesicle shape, bullet, parachute, and croissant.

The smallest reduced volume used in this paper is about ν = 0.71 shown in Fig. 3(a). Although not shown here, we 
were able to simulate a vesicle with the smaller ν = 0.6 in a quiescent flow. However, the smaller ν indicates that the 
vesicle shape becomes longer or thinner as time evolves. So the local arclength ratio between the α and β axes or the 
maximum difference between the longest and shortest arclengths can be too large. For long-time simulations in dynamical 
flows, this surface mesh distortion gets worse and eventually leads to numerical instability. One can avoid such problem by 
adopting much smaller time step size, which is usually not preferable. Instead, a better adaptive mesh refinement algorithm 
for spherical coordinates will help to suppress such instability, and we shall leave it for future work.
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