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Abstract. We show that the physics-informed neural networks (PINNs), in combination with
some recently developed discontinuity capturing neural networks, can be applied to solve optimal
control problems subject to partial differential equations (PDEs) with interfaces and some control
constraints. The resulting algorithm is mesh-free and scalable to different PDEs, and it ensures the
control constraints rigorously. Since the boundary and interface conditions, as well as the PDEs, are
all treated as soft constraints by lumping them into a weighted loss function, it is necessary to learn
them simultaneously and there is no guarantee that the boundary and interface conditions can be
satisfied exactly. This immediately causes difficulties in tuning the weights in the corresponding loss
function and training the neural networks. To tackle these difficulties and guarantee the numerical
accuracy, we propose to impose the boundary and interface conditions as hard constraints in PINNs
by developing a novel neural network architecture. The resulting hard-constraint PINNs approach
guarantees that both the boundary and the interface conditions can be satisfied exactly or with a
high degree of accuracy, and they are decoupled from the learning of the PDEs. Its efficiency is
promisingly validated by some elliptic and parabolic interface optimal control problems.
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1. Introduction. Partial differential equations (PDEs) with interfaces capture
important applications in science and engineering such as fluid mechanics [25], biolog-
ical science [8], and material science [17]. Typically, PDEs with interfaces are modeled
as piecewise-defined PDEs in different regions coupled together with interface condi-
tions, e.g., jumps in solution and flux across the interface, and hence nonsmooth or
even discontinuous solutions. Numerical methods for solving PDEs with interfaces
have been extensively studied in the literature; see, e.g., [10, 14, 18, 27, 28]. In addi-
tion to numerical simulation of PDEs with interfaces, one very often considers how to
control them with certain goals. As a result, optimal control problems of PDEs with
interfaces (or interface optimal control problems, for short) arise in various fields. To
mention a few, see applications in crystal growth [34] and composite materials [56].
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C602 M.-C. LAI, Y. SONG, X. YUAN, H. YUE, AND T. ZENG

In this paper, we consider interface optimal control problems that can be ab-
stractly written as

min
y\in Y,u\in U

J(y,u) s.t. \scrI (y,u) = 0, u\in Uad.(1.1)

Above, Y and U are Banach spaces, J : Y \times U \rightarrow \BbbR is the objective functional to
minimize, and y \in Y and u \in U are the state variable and the control variable,
respectively. The operator \scrI : Y \times U \rightarrow Z with Z Banach space defines a PDE
with interface. Throughout, we assume that \scrI (y,u) = 0 is well-posed. That is, for
each u \in Uad, there exists a unique y that solves \scrI (y,u) = 0 and varies continuously
with respect to u. The control constraint u \in Uad imposes pointwise boundedness
constraints on u with the admissible set Uad a nonempty closed subset of U . Problem
(1.1) aims to find an optimal control u\ast \in Uad, which determines a state y\ast through
\scrI (y\ast , u\ast ) = 0, such that J(y,u) is minimized by the pair (y\ast , u\ast ).

Problem (1.1) is challenging from both the theoretical analysis and the algorith-
mic design perspectives. First, solving problem (1.1) entails appropriate discretization
schemes due to the presence of interfaces. For instance, direct applications of stan-
dard finite element or finite difference methods fail to produce satisfactory solutions
because of the difficulty in enforcing the interface conditions into numerical discretiza-
tion; see, e.g., [1]. Moreover, similar to the typical optimal control problems with PDE
constraints studied in [6, 15, 29, 46], the resulting algebraic systems after discretiza-
tion are high-dimensional and ill-conditioned and hence difficult to be solved. Finally,
the presence of the control constraint u \in Uad leads to problem (1.1) being a non-
smooth optimization problem. Consequently, the well-known gradient-type methods
like gradient descent methods, conjugate gradient methods, and quasi-Newton meth-
ods cannot be applied directly. All these obvious difficulties imply that meticulously
designed algorithms are required for solving problem (1.1).

1.1. State-of-the-art. Numerical methods for solving some optimal control
problems modeled by (1.1) have been studied in the literature. These methods com-
bine mesh-based numerical discretization schemes and optimization algorithms that
can respectively enforce the interface conditions and tackle the nonsmoothness caused
by the constraint u \in Uad. For the numerical discretization of elliptic interface op-
timal control problems, we refer the reader to the immersed finite element methods
in [43, 55], the interface-unfitted finite element method based on Nitsche's approach
in [54], and the interface concentrated finite element method in [49]. Moreover, an
immersed finite element method is proposed in [57] for parabolic interface optimal
control problems. Although these finite element methods have shown to be effective
to some extent, their practical implementation is not easy, especially for interfaces
with complex geometries in high-dimensional spaces. Meanwhile, when the shape of
the domain is complicated, generating a suitable mesh is even a nontrivial task, which
imposes additional difficulty in solving the problems.

Moreover, various optimization methods have been developed in the context of
optimal control problems, such as the semismooth Newton methods [15, 48], the
inexact Uzawa method [40], the alternating direction method of multipliers (ADMM)
[9], and the primal-dual methods [3, 41]. All these optimization methods can be
applied to solve (1.1). It is notable that, to implement the above methods, two PDEs
with interfaces (\scrI (y,u) = 0 and its adjoint system) or a saddle point problem are
usually required to be solved repeatedly. After some proper numerical discretization,
such as the aforementioned immersed and interface-unfitted finite element methods,
the resulting systems are large-scale and ill-conditioned, and the computation cost
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HARD-CONSTRAINT PINNS FOR INTERFACE CONTROL C603

for solving the PDEs with interfaces or the saddle point problem repeatedly could be
extremely high in practice.

1.2. Physics-informed neural networks. In the past few years, thanks to the
universal approximation property [5, 11, 16] and the great expressivity [36] of deep
neural networks (DNNs), some deep learning methods have been proposed to solve
various PDEs, such as the physics-informed neural networks (PINNs) [37], the deep
Ritz method [7], the deep Galerkin method [39], and the neural Q-learning method
[4]. Compared with the traditional numerical methods for PDEs, deep learning meth-
ods are usually mesh-free, easy to implement, scalable to different PDE settings, and
able to overcome the curse of dimensionality. Among them, PINN methods have be-
come one of the most prominent deep learning methods and have been extensively
studied in, e.g., [20, 21, 30, 37]. However, in general, these PINN methods require
the smoothness of the solutions to the PDEs, mainly because the activation functions
used in a DNN are in general smooth (e.g., the sigmoid function) or at least contin-
uous (e.g., the rectified linear unit (ReLU) function). Consequently, the above PINN
methods cannot be directly used to solve PDEs with interfaces whose solutions are
only piecewise-smooth.

To overcome the aforementioned difficulty, some PINN methods tailored for PDEs
with interfaces are proposed in, e.g., [14, 18, 47, 53], and these methods primarily
focused on developing new ways of using DNNs to approximate the underlying non-
smooth or discontinuous solution. In [14], it is suggested to approximate the solution
by two neural networks corresponding to the two distinct subdomains determined by
the interface, so that the solution remains smooth in each subdomain. A similar idea
can also be found in [53]. In this way, the numerical results obtained by PINNs are
satisfactory, but one has to train two neural networks, which requires more computa-
tional effort. To alleviate this issue, a discontinuity capturing shallow neural network
(DCSNN) is proposed in [18]. The DCSNN allows a single neural network to approx-
imate piecewise-smooth functions by augmenting a coordinate variable, which labels
different pieces of each subdomain, as a feature input of the neural network. Since
the neural network can be shallow, the resulting number of trainable parameters is
moderate and thus the neural network is relatively easier to train. Inspired by [18],
a cusp-capturing neural network is proposed in [47] to solve elliptic PDEs with inter-
faces whose solutions are continuous but have discontinuous first-order derivatives on
the interfaces. The cusp-capturing neural network contains the absolute value of the
zero level set function of the interface as a feature input and can capture the solution
cusps (where the derivatives are discontinuous) sharply. Finally, for completeness, we
mention that other deep learning methods for solving PDEs with interfaces can be
seen in [12, 19, 45, 51] and the references therein.

In addition to solving PDEs, various PINNs for solving optimal control prob-
lems of PDEs have been proposed in the literature; see [2, 31, 35, 42]. In [35], the
vanilla PINN method [37] is extended to optimal control problems by approximating
the control variable with another neural network in addition to the one for the state
variable. Then, these two neural networks are simultaneously trained by minimiz-
ing a loss function defined by a weighted sum of the objective functional and the
residuals of the PDE constraint. Then PINNs with hard constraints are proposed in
[31] for solving optimal design problems, where the PDE and additional inequality
constraints are treated as hard constraints by an augmented Lagrangian method. In
[2], it is suggested to solve an optimal control problem by deriving the first-order
optimality system and approximating the control variable, the state variable, and the
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C604 M.-C. LAI, Y. SONG, X. YUAN, H. YUE, AND T. ZENG

corresponding adjoint variable by different DNNs, respectively. Then a stationary
point of the optimal control problem can be computed by minimizing a loss func-
tion that consists of the residuals of the first-order optimality system. Recently, the
ADMM-PINNs algorithmic framework is proposed in [42], which applies to a general
class of optimal control problems with nonsmooth objective functionals. It is worth
noting that all the above-mentioned PINN methods are designed for only optimal
control problems with smooth PDE constraints, and they cannot be directly applied
to interface optimal control problems modeled by (1.1). To the best of our knowl-
edge, there is still no literature for studying the application of PINNs on the interface
optimal control problems modeled by (1.1).

1.3. Main contributions. Inspired by the great success of PINNs in solving
various PDEs and optimal control problems, we develop some PINNs methods in
this paper for solving problem (1.1). We first show that following the ideas in [2], the
PINN method [37] can be applied to solve the first-order optimality system of problem
(1.1) with the variables approximated by DCSNNs. The resulting PINN method
is mesh-free and scalable to different PDEs with interfaces and ensures the control
constraint u \in Uad rigorously. However, as shown in section 3.1, this method treats
the underlying PDEs and the boundary and interface conditions as soft constraints
by penalizing them in the loss function with constant penalty parameters. Hence,
the boundary and interface conditions cannot be satisfied exactly, and the numerical
errors are mainly accumulated on the boundary and the interface as validated by the
numerical results in section 4. Moreover, such a soft-constraint PINN method treats
the PDE and the boundary and interface conditions together during the training
process, and its effectiveness strongly depends on the choices of the weights in the
loss function. Typically, there is no established rule or principle to systematically
determine the weights, and setting them manually by trial and error is extremely
challenging and time-consuming.

To tackle the above issues, we propose the hard-constraint PINNs, where the
boundary and interface conditions are imposed as hard constraints and can be treated
separately from the PDEs in the training process. In this context, the term ``hard
constraints"" refers to the boundary and interface conditions being able to be satisfied
exactly or with a high degree of accuracy by the designed neural networks. For
this purpose, we develop a novel neural network architecture by generalizing the
DCSNN to approximate the first-order optimality system of (1.1). To be concrete,
we first follow the ideas in [31, 38] to modify the output of the neural network to
impose the boundary condition. Then, to impose the interface condition as hard
constraints, we propose to construct an auxiliary function for the interface as an
additional feature input of the neural network. Such an auxiliary function depends
on the geometrical property of the interface, and its construction is nontrivial. To
address this issue, we elaborate on the methods for constructing appropriate auxiliary
functions for interfaces with different geometrical properties. This ensures that the
hard-constraint PINNs are highly implementable. Numerical results for different types
of interface optimal control problems are reported to validate the effectiveness and
flexibility of the hard-constraint PINNs. Finally, we mention that the proposed hard-
constraint PINNs can be directly applied to solve \scrI (y,u) = 0 per se since it is involved
as a part of problem (1.1) and its first-order optimality system.

1.4. Organization. The rest of the paper is organized as follows. In section 2,
for the convenience of further discussion, we specify problem (1.1) as a distributed
elliptic interface optimal control problem, where the control arises as a source term
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HARD-CONSTRAINT PINNS FOR INTERFACE CONTROL C605

in the model. Then we review some existing results on the DCSNN. In section 3,
we first demonstrate the combination of the DCSNN and the PINN methods for
solving the distributed elliptic interface optimal control problem and then propose
the hard-constraint PINN method to impose the boundary and interface conditions
as hard constraints. We test several elliptic optimal control problems in section 4 to
validate the efficiency and effectiveness of the proposed hard-constraint PINN method.
In section 5, we showcase how to extend the hard-constraint PINN method by an
elliptic interface optimal control problem where the control acts on the interface and
a distributed parabolic interface optimal control problem. Some related numerical
experiments are also presented to validate the effectiveness. Finally, we make some
conclusions and comments for future work in section 6.

2. Preliminaries. In this section, we present some preliminaries that will be
used throughout the following discussions. First, to impose our ideas clearly, we spec-
ify the generic model (1.1) as a distributed elliptic interface optimal control problem
and summarize some existing results. We then review the DCSNN proposed in [18]
for elliptic PDEs with interfaces.

2.1. A distributed elliptic interface optimal control problem. Let \Omega \subset 
\BbbR d (d = 2,3) be a bounded domain with Lipschitz continuous boundary \partial \Omega , and let
\Gamma \subset \Omega be an oriented embedded interface, which divides \Omega into two nonoverlapping
subdomains \Omega  - (inside) and \Omega + (outside) such that \Omega =\Omega  - \cup \Omega +\cup \Gamma and \Omega +\cap \Omega  - =\Gamma ;
see Figure 1 for an illustration. We consider the following optimal control problem:

min
y\in L2(\Omega ),u\in L2(\Omega )

J(y,u) :=
1

2

\int 
\Omega 

(y - yd)2dx+
\alpha 

2

\int 
\Omega 

u2dx,(2.1)

subject to the state equation

 - \nabla \cdot (\beta \nabla y) = u+ f in \Omega \setminus \Gamma , [y]\Gamma = g0, [\beta \partial \bfitn y]\Gamma = g1 on \Gamma , y= h0 on \partial \Omega ,(2.2)

and the control constraint u\in Uad with

u\in Uad := \{ u\in L2(\Omega ) : ua(x)\leq u(x)\leq ub(x) a.e. in \Omega \} \subset L2(\Omega ),(2.3)

where ua, ub \in L2(\Omega ).
Above, the function yd \in L2(\Omega ) is the target and the constant \alpha > 0 is a regulariza-

tion parameter. The functions f \in L2(\Omega ), g0 \in H
1
2 (\Gamma ), g1 \in L2(\Gamma ), and h0 \in H

1
2 (\partial \Omega )

are given, and \beta is a positive piecewise-constant in \Omega \setminus \Gamma such that \beta = \beta  - in \Omega  - and
\beta = \beta + in \Omega +. The bracket [\cdot ]\Gamma denotes the jump discontinuity across the interface \Gamma 
and is defined by

[y]\Gamma (x) := lim
\~x\rightarrow x in \Omega +

y(\~x) - lim
\~x\rightarrow x in \Omega  - 

y(\~x) \forall x\in \Gamma .

\Gamma \Omega  - 

\Omega +
\bfn 

\partial \Omega 

Fig. 1. The geometry of an interface problem: an illustration.
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C606 M.-C. LAI, Y. SONG, X. YUAN, H. YUE, AND T. ZENG

The operator \partial \bfitn stands for the normal derivative on \Gamma , i.e., \partial \bfitn y(x) =\bfitn \cdot \nabla y(x) with
\bfitn \in \BbbR d the outward unit normal vector of \Gamma . In particular, we have

[\beta \partial \bfitn y]\Gamma (x) := \beta + lim
\~x\rightarrow x in \Omega +

\bfitn \cdot \nabla y(\~x) - \beta  - lim
\~x\rightarrow x in \Omega  - 

\bfitn \cdot \nabla y(\~x) \forall x\in \Gamma .

Moreover, y = h0 on \partial \Omega is called the boundary condition, [y]\Gamma = g0 on \Gamma is called the
interface condition, and [\beta \partial \bfitn y]\Gamma = g1 on \Gamma is called the interface-gradient condition.
For (2.1)--(2.3), we have the following results.

Theorem 2.1 (cf. [55]). Problem (2.1)--(2.3) admits a unique solution (u\ast , y\ast )\top \in 
Uad \times L2(\Omega ), and the following first-order optimality system holds:

u\ast =\scrP Uad

\Bigl( 
 - 1

\alpha 
p\ast 
\Bigr) 
,(2.4)

where \scrP Uad
(\cdot ) denotes the projection onto Uad, and p

\ast is the adjoint variable associated
with u\ast , which is obtained from the successive solution of the following two equations:

 - \nabla \cdot (\beta \nabla y\ast ) = u\ast + f in \Omega \setminus \Gamma , [y\ast ]\Gamma = g0, [\beta \partial \bfitn y
\ast ]\Gamma = g1 on \Gamma , y\ast = h0 on \partial \Omega ,

(2.5)

 - \nabla \cdot (\beta \nabla p\ast ) = y\ast  - yd in \Omega \setminus \Gamma , [p\ast ]\Gamma = 0, [\beta \partial \bfitn p
\ast ]\Gamma = 0 on \Gamma , p\ast = 0 on \partial \Omega .(2.6)

Since problem (2.1)--(2.3) is known to be convex [55], the optimality conditions
(2.4)--(2.6) are also sufficient. Furthermore, substituting (2.4) into (2.5) yields

 - \nabla \cdot (\beta \nabla y\ast ) =\scrP Uad

\Bigl( 
 - p\ast 

\alpha 

\Bigr) 
+ f in \Omega \setminus \Gamma , [y\ast ]\Gamma = g0, [\beta \partial \bfitn y

\ast ]\Gamma = g1 on \Gamma ,(2.7)

y\ast = h0 on \partial \Omega .

Therefore, solving (2.1)--(2.3) is equivalent to solving (2.6) and (2.7) simultaneously.

2.2. Discontinuity capturing shallow neural networks. In this subsection,
we briefly review and explain the idea of the DCSNN [18] using problem (2.2).

First, note that although the solution y to (2.2) is only a d-dimensional piecewise-
smooth function, it can be extended to a (d+ 1)-dimensional function \~y(x, z), which
is smooth on the domain \Omega \times \BbbR and satisfies

y(x) =

\Biggl\{ 
\~y(x,1) if x\in \Omega +,

\~y(x, - 1) if x\in \Omega  - ,
(2.8)

where the additional input z \in \BbbR is the augmented coordinate variable that labels
\Omega + and \Omega  - . Note that such a smooth extension \~y always exists since the function
y can be viewed as a smooth function defined on a closed subset of \BbbR d+1; see [26].
The extension (2.8) is not unique since there are infinitely many choices of \~y(x, z) for
z \not =\pm 1.

Substituting (2.8) into (2.2), it is easy to show that \~y(x, z) satisfies the following
equation: \left\{                     

 - \Delta x\~y(x, z) =

\left\{       
1

\beta +
(u(x) + f(x)) if x\in \Omega +, z = 1,

1

\beta  - (u(x) + f(x)) if x\in \Omega  - , z = - 1,

\~y(x,1) - \~y(x, - 1) = g0(x) if x\in \Gamma ,
\beta +\bfitn \cdot \nabla \~y(x,1) - \beta  - \bfitn \cdot \nabla \~y(x, - 1) = g1(x) if x\in \Gamma ,
\~y(x,1) = h0(x) if x\in \partial \Omega .

(2.9)
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HARD-CONSTRAINT PINNS FOR INTERFACE CONTROL C607

Hence, the solution y to problem (2.2) can be obtained from (2.8) with \~y(x, z) com-
puted by solving (2.9). For solving problem (2.9), we note that the extended function
\~y is smooth and one can construct a neural network \^y(x, z;\theta ) with d+1 inputs, which
is referred to as the DCSNN [18], to approximate \~y. Since \~y is continuous, it follows
from the universal approximation theorem [5] that one can choose \^y as a shallow neu-
ral network. Then the PINN method [37] can be applied to solve (2.9) and we refer
the reader to [18] for the details.

3. The hard-constraint PINN method for (2.1)--(2.3). In this section, we
first demonstrate that, combined with the DCSNN, the PINN method [37] can be
applied to solve the reduced optimality conditions (2.6)--(2.7) and hence to solve
(2.1)--(2.3). Then we impose the boundary and interface conditions in (2.6)--(2.7) as
hard constraints by designing two novel neural networks to approximate y and p, and
we propose the hard-constraint PINN method for solving (2.1)--(2.3).

3.1. A soft-constraint PINN method for (2.1)--(2.3). We recall that, for
solving (2.1)--(2.3), it is sufficient to solve (2.6) and (2.7) simultaneously. First, we
apply two DCSNNs to approximate y and p. To this end, let \~y : \Omega \times \BbbR \rightarrow \BbbR and
\~p : \Omega \times \BbbR \rightarrow \BbbR be two smooth extensions of y and p, respectively, which satisfy (2.8)
and

p(x) =

\Biggl\{ 
\~p(x,1) if x\in \Omega +,

\~p(x, - 1) if x\in \Omega  - .
(3.1)

Then, substituting (2.8) and (3.1) into (2.7) and (2.6), we obtain that \~y and \~p satisfy
the following system:

\left\{                                                       

 - \Delta x\~y(x, z) =

\left\{       
1

\beta +

\biggl( 
f(x) +\scrP [ua(x),ub(x)]

\biggl( 
 - 1

\alpha 
\~p(x, z)

\biggr) \biggr) 
if x\in \Omega +, z = 1,

1

\beta  - 

\biggl( 
f(x) +\scrP [ua(x),ub(x)]

\biggl( 
 - 1

\alpha 
\~p(x, z)

\biggr) \biggr) 
if x\in \Omega  - , z = - 1,

\~y(x,1) - \~y(x, - 1) = g0(x) if x\in \Gamma ,
\beta +\bfitn \cdot \nabla x\~y(x,1) - \beta  - \bfitn \cdot \nabla x\~y(x, - 1) = g1(x) if x\in \Gamma ,
\~y(x,1) = h0(x) if x\in \partial \Omega ,

 - \Delta x\~p(x, z) =

\left\{       
1

\beta +
(\~y(x, z) - yd(x)) if x\in \Omega +, z = 1,

1

\beta  - (\~y(x, z) - yd(x)) if x\in \Omega  - , z = - 1,

\~p(x,1) - \~p(x, - 1) = 0 if x\in \Gamma ,
\beta +\bfitn \cdot \nabla x\~p(x,1) - \beta  - \bfitn \cdot \nabla x\~p(x, - 1) = 0 if x\in \Gamma ,
\~p(x,1) = 0 if x\in \partial \Omega .

(3.2)

Once \~y and \~p are computed by solving (3.2), the solutions y and p to (2.6)
and (2.7) can be obtained using (2.8) and (3.1). Next, we solve (3.2) by the PINN
method [37]. For this purpose, we first sample training sets \scrT := \{ (xi, zi)\} Mi=1 \subset 
(\Omega +\times \{ 1\} )\cup (\Omega  - \times \{  - 1\} ),\scrT B := \{ xiB\} 

MB
i=1 \subset \partial \Omega , and \scrT \Gamma := \{ xi\Gamma \} 

M\Gamma 
i=1 \subset \Gamma . We then apply

two DCSNNs \^y(x, z;\theta y) and \^p(x, z;\theta p) to approximate \~y(x, z) and \~p(x, z), respectively,
and train the neural networks by minimizing the following loss function:
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C608 M.-C. LAI, Y. SONG, X. YUAN, H. YUE, AND T. ZENG

\scrL (\theta y, \theta p)

=
wy,r

M

M\sum 
i=1

\bigm| \bigm| \bigm| \bigm| \bigm|  - \Delta x\^y(x
i, zi;\theta y) - 

\scrP [ua(xi),ub(xi)]( - 1
\alpha \^p(xi, zi;\theta p)) + f(xi)

\beta \pm 

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

+
wy,b

Mb

Mb\sum 
i=1

| \^y(xiB ,1;\theta y) - h0(xiB)| 2+
wy,\Gamma 

M\Gamma 

M\Gamma \sum 
i=1

\bigm| \bigm| \^y(xi\Gamma ,1;\theta y) - \^y(xi\Gamma , - 1;\theta y) - g0(xi\Gamma )\bigm| \bigm| 2
+
wy,\Gamma n

M\Gamma 

M\Gamma \sum 
i=1

\bigm| \bigm| \beta +\bfitn \cdot \nabla x\^y(x
\Gamma 
i ,1;\theta y) - \beta  - \bfitn \cdot \nabla x\^y(x

\Gamma 
i , - 1;\theta y) - g1(xi\Gamma )

\bigm| \bigm| 2
+
wp,r

M

M\sum 
i=1

\bigm| \bigm| \bigm| \bigm|  - \Delta x\^p(xi, zi;\theta p) - 
\^y(xi, zi;\theta y) - yd(xi)

\beta \pm 

\bigm| \bigm| \bigm| \bigm| 2 + wp,b

Mb

Mb\sum 
i=1

| \^p(xiB ,1;\theta p)| 2

+
wp,\Gamma 

M\Gamma 

M\Gamma \sum 
i=1

\bigm| \bigm| \^p(xi\Gamma ,1;\theta p) - \^p(xi\Gamma , - 1;\theta p)
\bigm| \bigm| 2

+
wp,\Gamma n

M\Gamma 

M\Gamma \sum 
i=1

\bigm| \bigm| \beta +\bfitn \cdot \nabla x\^p(x
\Gamma 
i ,1;\theta p) - \beta  - \bfitn \cdot \nabla x\^p(x

\Gamma 
i , - 1;\theta p)

\bigm| \bigm| 2 ,

(3.3)

where wy,\ast and wp,\ast are the weights for each term.
Note that the loss function (3.3) is nonnegative, and if \scrL (\theta y, \theta p) goes to zero, then

the resulting (\^y, \^p) gives an approximate solution to (3.2). Moreover, for any function
v : \Omega \rightarrow \BbbR , we have

\scrP [ua(x),ub(x)](v(x)) = (L1 \circ L2 \circ v)(x),

where L1(v(x)) := ReLU(v(x)  - ua(x)) + ua(x) and L2(v(x)) :=  - ReLU(ub(x)  - 
v(x)) + ub(x) with ReLU(v(x)) = max\{ v(x),0\} the ReLU function. This implies
that the projection \scrP [ua(xi),ub(xi)]( - 1

\alpha \^p(xi, zi;\theta p)) can be viewed as a composition of
 - 1

\alpha \^p(x, z;\theta p) and a two-layer neural network with ReLU as the activation functions.
As a result, the loss function \scrL (\theta y, \theta p) in (3.3) can be minimized by a stochastic
optimization method with all the derivatives \Delta x\^y, \nabla x\^y, \Delta x\^p, \nabla x\^p and the gradients
\partial \scrL 
\partial \theta y

, \partial \scrL 
\partial \theta p

computed by automatic differentiation.
We summarize the above PINN method in Algorithm 3.1.
It is easy to see that the computed control u satisfies the control constraint u\in Uad

strictly. Additionally, Algorithm 3.1 is mesh-free and is very flexible in terms of the
geometries of the domain and the interface. However, note that in Algorithm 3.1
the boundary and interface conditions are penalized in the loss function (3.3) with
constant penalty parameters. Hence, these conditions are treated as soft constraints
and cannot be satisfied rigorously by the solutions y and p computed by Algorithm
3.1. Moreover, such a soft-constraint approach treats the PDE and the boundary and
interface conditions together during the training process and its effectiveness strongly
depends on the choices of the weights in the loss function (3.3). Manually determining
these weights through trial and error is extremely challenging and time-demanding.
The numerical results in section 4 also show that this soft-constraint approach gener-
ates solutions with numerical errors mainly accumulated on the boundaries and the
interfaces. To tackle the above issues, we consider imposing the boundary and inter-
face conditions as hard constraints that can be treated separately from the PDE in
the training of the neural networks.
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HARD-CONSTRAINT PINNS FOR INTERFACE CONTROL C609

Algorithm 3.1. A soft-constraint PINN method for (2.1)--(2.3).

Input: Weights wy,\ast ,wp,\ast in (3.3).
1: Initialize the neural networks \^y(x, z;\theta y) and \^p(x, z;\theta p) with \theta 

0
y and \theta 0p.

2: Sample training sets \scrT = \{ xi, zi\} Mi=1 \subset \Omega \times \{ \pm 1\} , \scrT B = \{ xiB\} 
MB
i=1 \subset \partial \Omega , and

\scrT \Gamma = \{ xi\Gamma \} 
M\Gamma 
i=1 \subset \Gamma .

3: Calculate the values of f, yd over \scrT , the value of h over \scrT B , and the value of
g0, g1 over \scrT \Gamma .

4: Train the neural networks \^y(x, z;\theta y) and \^p(x, z;\theta p) to identify the optimal
parameters \theta \ast y and \theta \ast p by minimizing (3.3).

5: y(x)\leftarrow 

\Biggl\{ 
\^y(x,1;\theta \ast y) if x\in \Omega +,

\^y(x, - 1;\theta \ast y) if x\in \Omega  - ,
p(x)\leftarrow 

\Biggl\{ 
\^p(x,1;\theta \ast p) if x\in \Omega +,

\^p(x, - 1;\theta \ast p) if x\in \Omega  - ,

u(x)\leftarrow \scrP [ua(x),ub(x)]

\bigl( 
 - 1

\alpha p(x)
\bigr) 
.

Output: Approximate solutions u(x) and y(x) to (2.1)--(2.3).

3.2. Hard-constraint boundary and interface conditions. In this subsec-
tion, we elaborate on the construction of new neural networks to approximate the
state variable y and the adjoint variable p by modifying the DSCNNs \^y(x, z;\theta y) and
\^p(x, z;\theta p) in Algorithm 3.1 so that the boundary and interface conditions in (2.6)
and (2.7) are imposed as hard constraints. In the following discussions, for the sake
of simplicity, we still denote \theta y and \theta p the parameters of the neural networks with
hard-constraint boundary and interface conditions.

Let y \in L2(\Omega ) be the solution of (2.7); then it satisfies

y= h0 on \partial \Omega , [y]\Gamma = g0, [\beta \partial \bfitn y]\Gamma = g1 on \Gamma 

for some functions g0, g1 : \Gamma \rightarrow \BbbR and h0 : \partial \Omega \rightarrow \BbbR . We first introduce two functions
g,h : \Omega \rightarrow \BbbR satisfying

g| \partial \Omega = h0, [g]\Gamma = g0, g| \Omega + \in C2(\Omega +), g| \Omega  - \in C2(\Omega  - ),(3.4)

h\in C2(\Omega ), h(x) = 0 if and only if x\in \partial \Omega .(3.5)

If the functions g0 and h0, the interface \Gamma , and the boundary \partial \Omega admit analytic forms,
it is usually easy to construct g and h with analytic expressions. Some discussions
can be found in [23, 24, 31]. Otherwise, we can either adopt the method in [38] or
construct g and h by training two neural networks. For instance, we can train a
DCSNN \^g(x, z;\theta g) and a neural network \^h(x;\theta h) with smooth activation functions
(e.g., the sigmoid function or the hyperbolic tangent function) by minimizing the
following loss functions:

w1g

Mb

Mb\sum 
i=1

| \^g(xiB ,1;\theta y) - h0(xiB)| 2 +
w2g

M\Gamma 

M\Gamma \sum 
i=1

\bigm| \bigm| \^g(xi\Gamma ,1;\theta g) - \^g(xi\Gamma , - 1;\theta g) - g0(xi\Gamma )
\bigm| \bigm| 2 ,

(3.6)

w1h

Mb

Mb\sum 
i=1

| \^h(xiB ;\theta h)| 2 +
w2h

M

M\sum 
i=1

| \^h(xi;\theta h) - \=h(xi)| 2,(3.7)
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C610 M.-C. LAI, Y. SONG, X. YUAN, H. YUE, AND T. ZENG

where w1g,w2g,w1h, and w2h > 0 are the weights, \{ xi\} Mi=1 \subset \Omega , \{ xiB\} 
MB
i=1 \subset \partial \Omega , and

\{ xi\Gamma \} 
M\Gamma 
i=1 \subset \Gamma are the training points, and \=h(x)\in C2(\Omega ) is a known function satisfying

\=h(x) \not = 0 in \Omega , e.g., \=h(x) =min\^x\in \partial \Omega \{ \| x - \^x\| 42\} .
With the functions g and h satisfying (3.4) and (3.5), we approximate y by

\^y(x;\theta y) = g(x) + h(x)\scrN y(x,\phi (x);\theta y),(3.8)

where \scrN y(x,\phi (x);\theta y) is a neural network with smooth activation functions and pa-
rameterized by \theta y, and \phi : \Omega \rightarrow \BbbR satisfying

\phi \in C(\Omega ), \phi | \Omega + \in C2(\Omega +), \phi | \Omega  - \in C2(\Omega  - ), [\phi ]\Gamma = 0, [\beta \partial \bfitn \phi ]\Gamma \not = 0 a.e. on \Gamma 

(3.9)

is an auxiliary function for the interface \Gamma . It follows from (3.5) and (3.9) that
h(x)\scrN y(x,\phi (x);\theta y) is a continuous function of x over \Omega .

For the neural network \^y(x;\theta y) given by (3.8), it is easy to verify that

[\^y]\Gamma (x) = [g]\Gamma (x) + [h(\cdot )\scrN y(\cdot , \phi (\cdot ))]\Gamma (x) = g0(x) \forall x\in \Gamma ,
\^y| \partial \Omega (x) = g| \partial \Omega (x) + h| \partial \Omega (x) (\scrN y(\cdot , \phi (\cdot ))| \partial \Omega ) (x) = h0(x) \forall x\in \partial \Omega .

Hence, the interface condition [y]\Gamma = g0 and the boundary condition y| \partial \Omega = h0 are
satisfied exactly by \^y(x;\theta y) if functions g, h, and \phi are given in analytic expressions
and can be satisfied with a high degree of accuracy if g, h, and \phi are approximated
by pretrained neural networks.

Furthermore, we have

[\beta \partial \bfitn \^y]\Gamma (x) = [\beta \partial \bfitn g]\Gamma (x) + [\beta \partial \bfitn h\scrN y(\cdot , \phi (\cdot ))]\Gamma (x)

(3.10)

= [\beta \partial \bfitn g]\Gamma (x)+(\beta +  - \beta  - )
\bigl( 
\scrN y(x,\phi (x))(\bfitn \cdot \nabla h(x))+h(x)(\bfitn \cdot \nabla x\scrN (x,\phi (x)))

\bigr) 
+
\partial \scrN y

\partial \phi 
(h(x)[\beta \partial \bfitn \phi ]\Gamma (x)) \forall x\in \Gamma ,

which implies that the interface-gradient condition [\beta \partial \bfitn y]\Gamma = g1 cannot be exactly
satisfied by \^y(x;\theta y) and has to be treated as a soft constraint; see (3.18) for the details.

Remark 3.1. Note that the neural network \^y(x;\theta y) given by (3.8) reduces to the
DSCNN \^y(x, z;\theta y) used in Algorithm 3.1 by taking g = 0, h= 1 and replacing \phi with
the piecewise constant

z(x) =

\Biggl\{ 
1 if x\in \Omega +,

 - 1 if x\in \Omega  - .

However, this auxiliary variable z does not satisfy the assumptions in (3.9). Hence,
the auxiliary function \phi is a nontrivial generalization of the augmented coordinate
variable z introduced in the DSCNN.

Given \scrN y a neural network with smooth activation functions, we have that \scrN y \in 
C\infty (\Omega ). Moreover, it follows from the smooth assumptions of g and \phi in (3.4) and
(3.9) that \^y| \Omega + \in C2(\Omega +) and \^y| \Omega  - \in C2(\Omega  - ). Hence, the second-order derivatives of
\^y are well-defined and continuous on \Omega  - and \Omega +. In particular, we have that
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HARD-CONSTRAINT PINNS FOR INTERFACE CONTROL C611\left\{                   

\partial \^y

\partial xi
=
\partial g

\partial xi
+ h

\biggl( 
\partial \scrN y

\partial xi
+
\partial \scrN y

\partial \phi 

\partial \phi 

\partial xi

\biggr) 
+\scrN y

\partial h

\partial xi
,

\partial 2\^y

\partial x2i
=
\partial 2g

\partial x2i
+ h

\Biggl( 
\partial 2\scrN y

\partial x2i
+ 2

\partial 2\scrN y

\partial xi\partial \phi 

\partial \phi 

\partial xi
+
\partial 2\scrN y

\partial \phi 2

\biggl( 
\partial \phi 

\partial xi

\biggr) 2

+
\partial \scrN y

\partial \phi 

\partial 2\phi 

\partial x2i

\Biggr) 

+ 2
\partial h

\partial xi

\biggl( 
\partial \scrN y

\partial xi
+
\partial \scrN y

\partial \phi 

\partial \phi 

\partial xi

\biggr) 
+\scrN y

\partial 2h

\partial x2i
.

(3.11)

Similar to what we have done for the state variable y, we can also approximate
p by a neural network with the boundary and interface conditions in (2.6) as hard
constraints. To be concrete, since the boundary and interface conditions for p are
homogeneous, we approximate it by

\^p(x;\theta p) = h(x)\scrN p(x,\phi (x);\theta p),(3.12)

where \scrN p(x,\phi (x);\theta p) is a neural network with smooth activation functions and pa-
rameterized by \theta p, the functions h and \phi satisfy (3.5) and (3.9), respectively. In
particular, the functions h and \phi for \^p can be the same as the ones for \^y. The de-
rivatives of \^p can be calculated in the same ways as those in (3.10) and (3.11), that
is, \left\{                           

\partial \^p

\partial xi
= h

\biggl( 
\partial \scrN p

\partial xi
+
\partial \scrN p

\partial \phi 

\partial \phi 

\partial xi

\biggr) 
+\scrN p

\partial h

\partial xi
,

\partial 2\^p

\partial x2i
= h

\Biggl( 
\partial 2\scrN p

\partial x2i
+ 2

\partial 2\scrN p

\partial xi\partial \phi 

\partial \phi 

\partial xi
+
\partial 2\scrN p

\partial \phi 2

\biggl( 
\partial \phi 

\partial xi

\biggr) 2

+
\partial \scrN p

\partial \phi 

\partial 2\phi 

\partial x2i

\Biggr) 

+ 2
\partial h

\partial xi

\biggl( 
\partial \scrN p

\partial xi
+
\partial \scrN p

\partial \phi 

\partial \phi 

\partial xi

\biggr) 
+\scrN p

\partial 2h

\partial x2i
,

[\beta \partial \bfitn \^p]\Gamma = (\beta +  - \beta  - ) (\scrN p\bfitn \cdot \nabla h+ h(\bfitn \cdot \nabla x\scrN p)) +
\partial \scrN p

\partial \phi 
(h[\beta \partial \bfitn \phi ]\Gamma ) .

(3.13)

3.3. The choice of \bfitphi . We note that the abstract and general neural networks
\^y(x;\theta y) and \^p(x;\theta p) given in (3.8) and (3.12) can be used in practice only when the
auxiliary function \phi (x) satisfying (3.9) is chosen appropriately. In this subsection,
we illustrate how to choose \phi (x) for interfaces with different geometrical properties.
In particular, we shall show that if the shapes of \Omega +,\Omega  - , and \Gamma are regular enough
and their analytic expressions are known, then we can construct an auxiliary function
\phi (x) analytically.

First, if \Gamma is the regular zero level set of a function \psi \in C2(\Omega ),1 then we can define
\phi (x) as follows:

\phi (x) =

\Biggl\{ 
\psi (x) if x\in \Omega  - ,

0 if x\in \Omega + \cup \Gamma \cup \partial \Omega ,

which is smooth and clearly satisfies (3.9). We present an example below for further
explanations.

Example 3.2 (circle-shaped interfaces). Consider a domain \Omega \subset \BbbR d and the inter-
face \Gamma \subset \Omega given by the circle \Gamma = \{ x \in \Omega : \| x\| 2 = r0\} , with r0 > 0. The domain \Omega 
is divided into two parts: \Omega  - = \{ x \in \Omega : \| x\| 2 < r0\} and \Omega + = \{ x \in \Omega : \| x\| 2 > r0\} .

1The zero level set of \psi is regular means that it does not contain any point where \nabla \psi vanishes.
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C612 M.-C. LAI, Y. SONG, X. YUAN, H. YUE, AND T. ZENG

In this case, the interface \Gamma is the regular zero level set of \psi (x) = r20  - \| x\| 22 and the
auxiliary function \phi can be defined as

\phi (x) =

\Biggl\{ 
r20  - \| x\| 22 if x\in \Omega  - ,

0 if x\in \Omega + \cup \Gamma \cup \partial \Omega .

The above idea can be easily extended to the case where \Gamma is a finite union of the
regular zero level sets of some functions \psi 1, . . . ,\psi n \in C2(\Omega  - )(n \geq 1). See Example
3.3 for a concrete explanation.

Example 3.3 (box-shaped interfaces). Consider a domain \Omega \subset \BbbR d containing
the box B := [a1, b1] \times \cdot \cdot \cdot \times [ad, bd] \in \BbbR d. The interface \Gamma := \partial B divides \Omega into
\Omega  - = (a1, b1)\times \cdot \cdot \cdot \times (ad, bd) and \Omega + =\Omega \setminus B. Here the subdomain \Omega  - is the intersection
of 2d half-spaces, whose corresponding hyperplanes are the zero level sets of \psi i(x) =
xi  - ai, i = 1, . . . , d, and \psi i(x) = bi - d  - xi - d, i = d+ 1, . . . ,2d, respectively. When
each \psi i is treated as a function defined on \Omega  - , we can see that \psi i \in C2(\Omega  - ) and \Gamma is
indeed characterized by the union of the regular zero level sets of \psi 1, . . . ,\psi 2d. In this
case, we define

\phi (x) =

\Biggl\{ \prod d
i=1(xi  - ai)(bi  - xi) if x\in \Omega  - ,

0 if x\in \Omega + \cup \Gamma \cup \partial \Omega .
(3.14)

This is a smooth function satisfying (3.9). In particular, the pairwise intersections of
the zero level sets of \{ \psi i(x)\} 2di=1 have measure zero, and the regularity of these zero
level sets ensures that [\beta \partial \bfitn \phi ]\Gamma \not = 0 almost everywhere.

Next, we consider a more general case, where \Gamma is a finite union of the regular
zero level sets of functions \psi 1,\psi 2, . . . ,\psi n, which are of class C2 only in an open
neighborhood of \Gamma . Such a situation arises, for instance, when \Gamma is defined by the zero
level set of a function represented in polar coordinates since the angle parameter is not
differentiable at the origin. Due to the lack of global smoothness, we cannot simply
define \phi (x) as in (3.14); otherwise, the resulting \phi may not satisfy the assumption
\phi \in C2(\Omega  - ) in (3.9). To tackle this issue, we propose to set \phi (x) = 0 when x\in \Omega + and
\phi (x) to be a nonzero constant over the region inside \Omega  - where \psi 1, . . . ,\psi n fail to be
C2 functions. Then, in the rest of the domain, we define \phi (x) by using \psi 1, . . . ,\psi n so
that the resulting piecewise function \phi (x) is well-defined and satisfies (3.9). We shall
elaborate on the above ideas in the remainder of this section, and for this purpose,
we make the following assumptions.

Assumption 3.4. The subdomain \Omega  - is the intersection of the interior of finitely
many oriented, smooth, and embedded manifolds M1,M2, . . . ,Mn, where Mi \cap Mj is
of measure zero whenever i \not = j and i, j \in \{ 1, . . . , n\} .

Assumption 3.5. There exists an open neighborhood U \subset \BbbR d of \Gamma , such that
for each i \in \{ 1, . . . , n\} and manifold Mi, there exist functions \psi i : U \rightarrow \BbbR satisfying
\psi i \in C2(U) and

\psi i(x) = 0 if x\in Mi \cap \Gamma , \psi i(x)> 0 if x\in U \cap \Omega  - , \partial \bfitn \psi i \not = 0 on Mi \cap \Gamma .

Assumption 3.6. There exist positive constants c1, . . . , cn such that \psi i(x)> ci for
all x\in \partial U \cap \Omega  - and for all i\in \{ 1, . . . , n\} .

Under Assumptions 3.4--3.6, we have the following result.
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Theorem 3.7. Suppose Assumptions 3.4--3.6 hold and we define \psi : U \rightarrow \BbbR as
\psi (x) =

\prod n
i=1\psi i(x). For any constant c such that 0 < c <

\prod n
i=1 ci, let Lc := \{ x \in U :

\psi (x)\geq c\} . Then the function \phi : \=\Omega \rightarrow \BbbR given by

\phi (x) =

\left\{     
c3 if x\in (\Omega  - \setminus U)\cup (\Omega  - \cap Lc),

c3 - (c - \psi (x))3 if x\in (U \cap \Omega  - )\setminus Lc,

0 if x\in \Omega +

(3.15)

is well-defined and satisfies (3.9).

Proof. Let

D1 := (\Omega  - \setminus U)\cup (\Omega  - \cap Lc),D2 := (U \cap \Omega  - )\setminus Lc,D3 := \Omega +;

then we shall show that \phi is a well-defined piecewise function, i.e.,
\bigcup 3

i=1Di = \Omega and
\phi has consistent function values over D1 \cap D2, D2 \cap D3, and D3 \cap D1.

First, observe that D1 \cup D2 = \Omega  - , so D1 \cup D2 \cup D3 = \Omega . Moreover, D1 and D3

are closed in \BbbR d. We next prove that (1) D1 \cap D3 = \varnothing , (2) D2 \cap D3 \subset \Gamma , and (3)
D1 \cap D2 \subset \partial Lc.

(1) Since \Omega  - is a subdomain of \Omega , it is open and connected. We thus have
D1 =D1 \subset \Omega  - and D3 =D3 \subset \Omega + such that D1 \cap D3 \subset \Gamma . Then, since \Gamma \subset U
and \Gamma \cap Lc =\varnothing , we have D1 \cap \Gamma =D1 \cap \Gamma =\varnothing . Hence, D1 \cap D3 =\varnothing .

(2) Note that

D2 \subset U \cap \Omega  - \cap \BbbR d\setminus Lc \subset \Omega  - (3.16)

and D3 \subset \Omega +; then we have D2 \cap D3 \subset \Gamma .
(3) Denote c0 :=

\prod n
i=1 ci. If x \in D1 \cap D2 =D1 \cap D2, then by the decomposition

of D2 in (3.16), we have x\in U\setminus U \subset \partial U or x\in (\BbbR d\setminus Lc)\cap Lc \subset \partial Lc. If x\in \partial U ,
by Assumption 3.6 we have \psi (x) > c0. But x \in D2 implies that x \in \BbbR d\setminus Lc,
i.e., \psi (x)\leq c < c0, contradicting \psi (x)> c0. We thus have that x\in \partial Lc.

By the above claims (1)--(3), we have

x\in D1 \cap D2 =\Rightarrow x\in \partial Lc =\Rightarrow \psi (x) = c =\Rightarrow c3 = c3  - (c - \psi (x))3,
x\in D2 \cap D3 =\Rightarrow x\in \Gamma =\Rightarrow \psi (x) = 0 =\Rightarrow c3  - (c - \psi (x))3 = 0.

Moreover, D1 \cap D3 = \varnothing . Therefore, the piecewise definition of \phi is consistent, and
hence \phi is well-defined.

Since \phi is smooth in D1,D2,D3 and clearly continuous on \Gamma and \partial Lc, we have
\phi | \Omega + \in C2(\Omega +) and \phi \in C(\Omega ). The first- and second-order derivatives of \phi (x) all tend
to zero as x approaches \partial Lc in D2, so \phi | \Omega  - \in C2(\Omega  - ).

By Assumption 3.5 and (3.15), it is clear that \phi (x) = 0 for all x\in \Gamma and \phi (x)> 0
on \Omega  - . Finally, we have

[\beta \partial \bfitn \phi ]\Gamma (x) = - 3\beta  - (c - \psi (x))2
\left(  n\sum 

i=1

(\partial \bfitn \psi i)(x)

n\prod 
j=1,j \not =i

\psi j(x)

\right)  \forall x\in \Gamma .

Since c > 0, by Assumption 3.5, [\beta \partial \bfitn \phi ]\Gamma (x) equals 0 if and only if there exist at least
two distinct indexes i, j \in \{ 1, . . . , n\} such that \psi i(x) = \psi j(x) = 0. However, it follows
from Assumption 3.4 that Mi \cap Mj is of measure zero for all i, j with i \not = j, so the set
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C614 M.-C. LAI, Y. SONG, X. YUAN, H. YUE, AND T. ZENG

\{ x \in \Gamma : \psi i(x) = \psi j(x) = 0\} is also of measure zero. This shows that [\beta \partial \bfitn \phi ]\Gamma \not = 0 a.e.
on \Gamma .

Theorem 3.7 provides a generic method for constructing an auxiliary function
\phi (x) when Assumptions 3.4--3.6 are satisfied. This method is independent of the
PDE and is only related to the shape of the interface \Gamma , and it can be easily applied
to other types of interface problems with slight modifications.

Note that although Assumptions 3.4--3.6 look complicated, they can be satisfied
by a large class of interfaces, which are of great practical interest. We present an
example in Example 3.8 below for explanations. Note that the interfaces in Example
3.8 have complex geometry and are challenging to be addressed by traditional mesh-
based numerical methods.

Example 3.8 (star-shaped interfaces). Let \Omega \subset \BbbR 2 be a bounded domain and the
star-shaped interface \Gamma \subset \Omega be defined by the zero level set of the following function
in polar coordinates: \psi (r, \theta ) = r  - a  - b sin(5\theta ) with constants b < a. The domain
\Omega is divided into \Omega  - = \{ (r, \theta ) \in \BbbR 2 : r < a + b sin(5\theta )\} and \Omega + = \{ (r, \theta ) \in \Omega : r >
a + b sin(5\theta )\} . Note that \psi (r, \theta ) is not differentiable on \Omega since the polar angle is
not differentiable at the origin. In this case, it follows from Theorem 3.7 that we can
define

\phi (r, \theta ) =

\left\{             

\biggl( 
a - b
2

\biggr) 3

if a+ b sin(5\theta ) - r\geq a - b
2 ,\biggl( 

a - b
2

\biggr) 3

 - 
\biggl( 
a - b
2

+\psi (r, \theta )

\biggr) 3

if 0<a+ b sin(5\theta ) - r < a - b
2 ,

0 otherwise,

and one can check that \phi satisfies (3.9).

Remark 3.9. We mention that if it is difficult to construct an auxiliary function
\phi (x) with an analytic form, we can train a DCSNN to represent \phi (x). To this end,
we impose the constraints [\phi ]\Gamma = 0, [\beta \partial \bfitn \phi ]\Gamma = \gamma , where the function \gamma : \Gamma \rightarrow \BbbR 
is nonzero almost everywhere. Then we train a DCSNN \^\phi (x, z;\theta \phi ) with smooth
activation functions by minimizing the following loss function:

w1

M\Gamma 

M\Gamma \sum 
i=1

\bigm| \bigm| \bigm| \^\phi (xi\Gamma ,1;\theta \phi ) - \^\phi (xi\Gamma , - 1;\theta \phi )
\bigm| \bigm| \bigm| 2

+
w2

M\Gamma 

M\Gamma \sum 
i=1

\bigm| \bigm| \bigm| \bfitn \cdot (\beta +\nabla x
\^\phi (x\Gamma i ,1;\theta \phi ) - \beta  - \nabla x

\^\phi (x\Gamma i , - 1;\theta \phi )) - \gamma (xi\Gamma )
\bigm| \bigm| \bigm| 2 ,(3.17)

where \{ xi\Gamma \} 
M\Gamma 
i=1 \subset \Gamma and w1,w2 > 0 are the weights. It is clear that the trained \^\phi 

satisfies the smoothness requirements in (3.9).

3.4. The hard-constraint PINN method for (2.1)--(2.3). In this subsection,
we propose a hard-constraint PINN method for problem (2.1)--(2.3) based on the
discussions in subsections 3.2 and 3.3. For this purpose, we first approximate the state
variable y and the adjoint variable p by the neural networks \^y(x;\theta y) and \^p(x;\theta p) given
in (3.8) and (3.12), respectively. As a result, the boundary and interface conditions
in (2.6) and (2.7) are satisfied automatically. Then (2.6) and (2.7) can be solved by
minimizing the following loss function:
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\scrL HC(\theta y, \theta p) =
wy,r

M

M\sum 
i=1

\bigm| \bigm| \bigm| \bigm| \bigm|  - \Delta x\^y(x
i;\theta y) - 

\scrP [ua(xi),ub(xi)]( - 1
\alpha \^p(xi;\theta p)) + f(xi)

\beta \pm 

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

+
wy,\Gamma n

M\Gamma 

M\Gamma \sum 
i=1

\bigm| \bigm| [\beta \partial \bfitn \^y]\Gamma (xi\Gamma ;\theta y) - g1(xi\Gamma )\bigm| \bigm| 2
+
wp,r

M

M\sum 
i=1

\bigm| \bigm| \bigm| \bigm|  - \Delta x\^p(xi;\theta p) - 
\^y(xi;\theta y) - yd(xi)

\beta \pm 

\bigm| \bigm| \bigm| \bigm| 2
+
wp,\Gamma n

M\Gamma 

M\Gamma \sum 
i=1

\bigm| \bigm| [\beta \partial \bfitn \^p]\Gamma (x\Gamma i ;\theta p)\bigm| \bigm| 2 .

(3.18)

Clearly, the loss function \scrL HC can be calculated by (3.8) and (3.10)--(3.13). Sim-
ilar to (3.3), the loss function \scrL HC(\theta y, \theta p) in (3.18) can be minimized by a stochastic
optimization method, where all the derivatives \Delta x\^y, \nabla x\^y, \Delta x\^p, \nabla x\^p and the gradients
\partial \scrL HC

\partial \theta y
, \partial \scrL HC

\partial \theta p
are computed by automatic differentiation.

We remark that if g,h, and \phi cannot be constructed with analytical forms, then
we can represent them by training three neural networks \^g, \^h, and \^\phi as shown in
(3.6), (3.7), and (3.17). Note that these neural networks are expected to be easy to
train due to the simple structures of the loss functions (3.6), (3.7), and (3.17). More
importantly, with the pretrained \^g, \^h, and \^\phi , the boundary and interface conditions
are decoupled from the learning of the PDE. Hence, this hard-constraint approach
is still superior since it can reduce the training difficulty and improve the numerical
accuracy of Algorithm 3.1.

We summarize the proposed hard-constraint PINN method for (2.1)--(2.3) in Al-
gorithm 3.2. We provide two options for inputting the functions g, h, and \phi in (3.8)
and (3.12): In Option I, the input functions g, h, and \phi have closed-form expressions,
while in Option II they are numerically approximated by pretrained neural networks.
We reiterate that the boundary and interface conditions for y and p are imposed
as hard constraints in the neural networks \^y(x;\theta y) and \^p(x;\theta p). Hence, compared
with Algorithm 3.1, Algorithm 3.2 reduces the numerical error at the boundary and
interface and is easier and cheaper to implement.

Algorithm 3.2. The hard-constraint PINN method for (2.1)--(2.3).

Input (Option I): Weights wy,r,wp,\Gamma n ,wp,r,wp,\Gamma n , functions g, h, and \phi with
closed-form expressions and satisfying (3.4), (3.5), (3.9), respectively.

Input (Option II): Weights wy,r,wp,\Gamma n
,wp,r,wp,\Gamma n

, pretrained neural networks \^g,
\^h, and \^\phi that approximate any functions satisfying (3.4), (3.5), (3.9),
respectively.

1: Initialize the neural networks \scrN y(x,\phi (x);\theta y) and \scrN p(x,\phi (x);\theta p) with
parameters \theta 0y and \theta 0p.

2: Sample training sets \scrT = \{ xi\} Mi=1 \subset \Omega and \scrT \Gamma = \{ xi\Gamma \} 
M\Gamma 
i=1 \subset \Gamma .

3: Calculate the function values of g,h,\phi and their first- and second-order
derivatives over \scrT , and the values of [\beta \partial \bfitn g]\Gamma , [\beta \partial \bfitn \phi ]\Gamma over \scrT \Gamma .

4: Train the neural networks \^y(x;\theta y) and \^p(x;\theta p) to identify the optimal
parameters \theta \ast y and \theta \ast p by minimizing (3.18).

5: \^u(x)\leftarrow min\{ ub(x),max\{ ua(x), - 1
\alpha \^p(x;\theta \ast p)\} \} .

Output: Approximate solutions \^y(x;\theta \ast y) and \^u(x).
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4. Numerical results. In this section, we report some numerical results of Al-
gorithms 3.1 and 3.2 for solving problem (2.1)--(2.3) and numerically verify the supe-
riority of Algorithm 3.2 to Algorithm 3.1. All the codes of our numerical experiments
were written with PyTorch (version 1.13) and are available at https://github.com/
tianyouzeng/PINNs-interface-optimal-control. In particular, we use the hyperbolic
tangent function as the active functions in all the neural networks.

To test the accuracy of the results computed by Algorithms 3.1 and 3.2, we select
256\times 256 testing points \{ xi\} MT

i=1 \subset \Omega following the Latin hypercube sampling [33]. We
then compute

\varepsilon abs =

\sqrt{}    1

MT

MT\sum 
i=1

(\^u(xi) - u\ast (xi))2 and \varepsilon rel = \varepsilon abs
\sqrt{} 
A(\Omega )/| | u\ast | | L2(\Omega )(4.1)

as the absolute and relative L2-errors of \^u, where A(\Omega ) is the area of \Omega (i.e., the
Lebesgue measure of \Omega ), and | | u\ast | | L2(\Omega ) is computed using the numerical integration
function dblquad implemented in the SciPy library of Python.

Example 1. We first demonstrate an example of (2.1)--(2.3), where Uad = \{ u \in 
L2(\Omega ) : - 1\leq u\leq 1 a.e. in \Omega \} . We set \Omega = ( - 1,1)\times ( - 1,1), \Gamma = \{ x\in \Omega : \| x\| 2 \leq r0\} \subset 
\Omega with r0 = 0.5, \alpha = 1, \beta  - = 1, and \beta + = 10. We further choose g0 = 0, g1 = 0, and

h0 =
(x2

1+x2
2)

3/2

\beta + + ( 1
\beta  -  - 1

\beta + )r
3
0. Following [55], we let

p\ast (x1, x2) =

\Biggl\{ 
 - 5(x21 + x22  - r20)(x21  - 1)(x22  - 1)/\beta  - in \Omega  - ,

 - 5(x21 + x22  - r20)(x21  - 1)(x22  - 1)/\beta + in \Omega +,
(4.2)

y\ast (x1, x2) =

\Biggl\{ 
(x21 + x22)

3/2/\beta  - in \Omega  - ,

(x21 + x22)
3/2/\beta + + (1/\beta  -  - 1/\beta +)r30 in \Omega +,

(4.3)

u\ast (x1, x2) =max

\biggl\{ 
 - 1,min

\biggl\{ 
1, - 1

\alpha 
p\ast (x1, x2)

\biggr\} \biggr\} 
,(4.4)

and

f(x1, x2) = - u\ast (x1, x2) - \nabla \cdot (\nabla \beta \pm y\ast (x1, x2)) in \Omega \pm ,

yd(x1, x2) = y\ast (x1, x2) +\nabla \cdot (\nabla \beta \pm p\ast (x1, x2)) in \Omega \pm .

Then it is easy to verify that (u\ast , y\ast )\top is the unique solution of this example.

To implement the soft-constraint PINN method in Algorithm 3.1, we approximate
y and p, respectively, by two fully connected neural networks \^y(x, z;\theta y) and \^p(x, z;\theta p),
where z is the augmented coordinate variable in the DCSNN (see section 2.2). All
the neural networks consist of only one hidden layer with 100 neurons and tanh

activation functions. To implement the hard-constraint PINN method in Algorithm
3.2, we define two neural networks \scrN y(x,\phi (x);\theta y) and \scrN p(x,\phi (x);\theta p) with the same
structures as those of \^y and \^p. Then the state and adjoint variables are approximated
by the neural networks given in (3.8) and (3.12). We consider both input Options I

and II in Algorithm 3.2. For Option I, we choose g(x) =
(x2

1x
2
2+1)3/2

\beta + + ( 1
\beta  -  - 1

\beta + )r
3
0

and h(x) = (x21  - 1)(x22  - 1). The auxiliary function \phi is defined analytically by

\phi (x) =

\Biggl\{ 
4\| x\| 22 if x\in \Omega  - ,

1 otherwise.
(4.5)
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It is easy to check that these functions satisfy the requirements in (3.4), (3.5), and
(3.9). For Option II, we first randomly sample the training sets \scrT = \{ xi\} Mi=1 \subset \Omega ,
\scrT B = \{ xiB\} 

MB
i=1 \subset \partial \Omega , and \scrT \Gamma = \{ xi\Gamma \} 

M\Gamma 
i=1 \subset \Gamma with M = 1024 and MB = M\Gamma = 256.

Then we train two fully connected shallow neural networks2 \^g(x;\theta g) and \^h(x;\theta h) with
one hidden layer, 500 neurons, and tanh activation functions by minimizing the loss
functions

\scrL g(\theta g) =
1

MB

MB\sum 
i=1

\bigm| \bigm| \^g(xiB ;\theta g) - h0(xiB)\bigm| \bigm| 2(4.6)

and

\scrL h(\theta h) =
0.01

M

M\sum 
i=1

\bigm| \bigm| \bigm| \^h(xi;\theta h) - \=h(xi)
\bigm| \bigm| \bigm| 2 + 1

MB

MB\sum 
i=1

\bigm| \bigm| \bigm| \^h(xiB ;\theta h)\bigm| \bigm| \bigm| 2 ,(4.7)

where \=h(x) := cos(\pi 2x1) cos(
\pi 
2x2). Each neural network is trained with the L-BFGS

optimizer with stepsize 1 and strong Wolfe condition for 200 iterations. Then we
train a DCSNN \^\phi (x, z;\theta \phi ) with one hidden layer, 200 neurons, and tanh activation
functions by minimizing the loss function

\scrL \phi (\theta \phi ) =
1

M\Gamma 

M\Gamma \sum 
i=1

\bigm| \bigm| \bigm| \^\phi (xi\Gamma ,1;\theta \phi ) - \^\phi (xi\Gamma , - 1;\theta \phi )
\bigm| \bigm| \bigm| 2

+
1

M\Gamma 

M\Gamma \sum 
i=1

\bigm| \bigm| \bigm| \bfitn \cdot \nabla x
\^\phi (xi\Gamma ,1;\theta \phi ) - 5

\bigm| \bigm| \bigm| 2 + 1

M\Gamma 

M\Gamma \sum 
i=1

\bigm| \bigm| \bigm| \bfitn \cdot \nabla x
\^\phi (xi\Gamma , - 1;\theta \phi )

\bigm| \bigm| \bigm| 2 .(4.8)

The Adam optimizer [22] is applied to train \^\phi (x, z;\theta \phi ) for 30,000 iterations. The
learning rate is initially set to be 5 \times 10 - 4 and finally reduces to 10 - 4 by a preset
scheduler. It can be verified that the functions \^g, \^h, and \^\phi are the approximations of
some functions g, h, and \phi satisfying the requirements (3.4), (3.5), and (3.9).

To train the neural networks \^y(x;\theta y) and \^p(x;\theta p), we adopt the same training
sets \scrT , \scrT B , and \scrT \Gamma as sampled above. All the neural networks are initialized using
the default initializer of PyTorch. The weights are tuned so that the magnitude of
each term in the loss function (3.3) or (3.18) is balanced. In particular, by adjusting
the weights carefully, we set wy,r = wy,\Gamma = wy,\Gamma n

= wp,r = wp,\Gamma = wp,\Gamma n
= 1,wy,b = 2,

wp,b = 10 for Algorithm 3.1; wy,r = 3, wy,\Gamma n
=wp,r =wp,\Gamma n

= 1 for Algorithm 3.2 with
Option I; and wy,r =wy,\Gamma n

=wp,\Gamma n
= 1,wp,r = 3 for Algorithm 3.2 with Option II.

The Adam optimizer is used to train the neural networks \^y(x;\theta y) and \^p(x;\theta p) in
Algorithms 3.1 and 3.2. We fix the number of Adam iterations to 60,000 for Algorithm
3.1 and Algorithm 3.2 with Option II and to 40,000 for Algorithm 3.2 with Option
I. For Algorithm 3.1, the learning rate is initialized to be 10 - 2 and is reduced to
5\times 10 - 4 during the training by a preset scheduler. For Option I of Algorithm 3.2, the
learning rate is initially set to be 10 - 3 and finally reduces to 3\times 10 - 5. For Option II
of Algorithm 3.2, the learning rate is initially set to be 5\times 10 - 3 and finally reduces
to 3\times 10 - 4.

The numerical results for Algorithms 3.1 and 3.2 are shown in Figures 2, 3, and 4,
respectively. All the figures are plotted over a 200\times 200 uniform grid in \Omega . The L2-

2Here, due to the homogeneous interface condition g0 = 0, it suffices to approximate \^g by a fully
connected neural network, rather than by a DSCNN as described in the previous section.
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Table 1
The L2-errors of the computed control u of Example 1 for Algorithms 3.1 and 3.2.

\varepsilon \mathrm{a}\mathrm{b}\mathrm{s} \varepsilon \mathrm{r}\mathrm{e}\mathrm{l}

Algorithm 3.1 6.6853\times 10 - 4 2.3559\times 10 - 3

Algorithm 3.2 with Option I 6.7087\times 10 - 5 2.3062\times 10 - 4

Algorithm 3.2 with Option II 2.0921\times 10 - 4 7.1919\times 10 - 4
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Fig. 2. Numerical results of Algorithm 3.1 for Example 1.
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Fig. 3. Numerical results of Algorithm 3.2 with Option I for Example 1.

errors of the computed control are summarized in Table 1, where the results imply
that the controls computed by Algorithm 3.2 are far more accurate than the one by
Algorithm 3.1.
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Fig. 4. Numerical results of Algorithm 3.2 with Option II for Example 1.

Moreover, it can be seen from Figures 2, 3, and 4 that, for Algorithm 3.1, the
numerical errors are mainly accumulated on \partial \Omega and \Gamma , and this issue is significantly
alleviated in Algorithm 3.2 with Options I and II. We can also see that Algorithms
3.1 and 3.2 are effective in dealing with the control constraint u \in Uad. All these
results validate the advantage of Algorithm 3.2 over Algorithm 3.1 and the necessity
of imposing the boundary conditions and interface conditions as hard constraints.

To further validate the effectiveness of Algorithm 3.2, we compare the numerical
results with the immersed finite element method (IFEM) in [55], which is a benchmark
mesh-based traditional numerical algorithm for solving elliptic interface optimal con-
trol problems. For this purpose, we consider another set of PDE coefficients \beta  - = 1
and \beta + = 5. With the updated \beta value, the numerical example becomes identical to
the one in [55, Example 2], enabling us to directly compare the errors of the computed
solutions with the ones reported in [55, Table 4]. In [55], the solutions are computed
on an N \times N uniform grid over \Omega with different mesh resolutions N . Here we fix the
training resolution N = 32 for Algorithm 3.2 throughout the remaining experiments.

Again, we randomly sample the training sets \scrT = \{ xi\} Mi=1 \subset \Omega , \scrT B = \{ xiB\} 
MB
i=1 \subset 

\partial \Omega , and \scrT \Gamma = \{ xi\Gamma \} 
M\Gamma 
i=1 \subset \Gamma with M =N2, MB =M\Gamma = 8\times N , and N = 32. We adopt

the same configurations for the neural networks \^g(x;\theta g), \^h(x;\theta h), \^\phi (x, z;\theta \phi ), \^y(x;\theta y),
and \^p(x;\theta p) as above. We also apply the same optimization algorithms and stepsizes
for training \^g(x;\theta g), \^h(x;\theta h), and \^\phi (x, z;\theta \phi ). To train the neural networks \^y(x;\theta y)
and \^p(x;\theta p) in Algorithm 3.2, we fix the number of Adam iterations to 40,000 for
Option I and to 60,000 for Option II. For Option I, the learning rate is initially set to
be 1\times 10 - 3 and finally decreases to 3\times 10 - 5 by a preset scheduler. For Option II, the
learning rate is initially set to be 5\times 10 - 3 and finally reduces to 3\times 10 - 4. After the
above iterations, we fix the parameters in \^p(x;\theta p) and train \^y(x;\theta y) for 300 L-BFGS
iterations with the stepsize 1 to further improve the accuracy of \^y

We use the L2-errors defined in [55] to evaluate and compare the numerical ac-
curacy of the computed solutions. Following [55], we evaluate the L2-errors of the
solution on an N \times N uniform grid over \Omega with N = 16, 32, 64, 128, and 256. The
results are reported in Table 2.
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C620 M.-C. LAI, Y. SONG, X. YUAN, H. YUE, AND T. ZENG

Table 2
The L2-errors of the computed solutions for Example 1 with \beta  - = 1 and \beta + = 5 evaluated on

different grid resolutions N . Here u\ast , y\ast , and p\ast are the exact solutions given in (4.2)--(4.4), and
\^u, \^y, and \^p are the computed solutions by each corresponding algorithm. The results of IFEM [55]
are computed and evaluated with each mesh resolution N , while the results of Algorithm 3.2 are
computed with fixed sampling resolution N = 32 and evaluated with each mesh resolution N .

\| \^u - u\ast \| L2(\Omega )

N IFEM [55] Algorithm 3.2 with Option I Algorithm 3.2 with Option II

16 2.0049\times 10 - 2 7.8972\times 10 - 5 9.4242\times 10 - 4

32 5.8477\times 10 - 3 8.0359\times 10 - 5 7.8161\times 10 - 4

64 1.4215\times 10 - 3 8.1759\times 10 - 5 7.1714\times 10 - 4

128 3.6148\times 10 - 4 8.2311\times 10 - 5 6.8934\times 10 - 4

256 9.6419\times 10 - 5 8.2656\times 10 - 5 6.7645\times 10 - 4

\| \^p - p\ast \| L2(\Omega )

N IFEM [55] Algorithm 3.2 with Option I Algorithm 3.2 with Option II

16 2.5823\times 10 - 2 7.8993\times 10 - 5 9.4317\times 10 - 4

32 6.6744\times 10 - 3 8.1344\times 10 - 5 7.8366\times 10 - 4

64 1.6418\times 10 - 3 8.2633\times 10 - 5 7.1928\times 10 - 4

128 4.0256\times 10 - 4 8.3286\times 10 - 5 6.9175\times 10 - 4

256 1.0293\times 10 - 4 8.3614\times 10 - 5 6.7891\times 10 - 4

\| \^y - y\ast \| L2(\Omega )

N IFEM [55] Algorithm 3.2 with Option I Algorithm 3.2 with Option II

16 5.6594\times 10 - 3 1.3021\times 10 - 4 7.9867\times 10 - 4

32 1.4803\times 10 - 3 1.3877\times 10 - 4 6.8886\times 10 - 4

64 3.6993\times 10 - 4 1.4114\times 10 - 4 6.4501\times 10 - 4

128 9.4048\times 10 - 5 1.4226\times 10 - 4 6.2584\times 10 - 4

256 2.2873\times 10 - 5 1.4282\times 10 - 4 6.1696\times 10 - 4

When N = 32, the L2-errors of the computed \^u, \^y, and \^p by Algorithm 3.2
with Options I and II are significantly lower than those by IFEM. Even if the mesh
resolution increases to N = 256, Algorithm 3.2 with Option I and Option II is still
comparable with IFEM. Moreover, note that after training the neural networks at the
resolution N = 32, the evaluation of Algorithm 3.2 for a new resolution requires only a
forward pass of these neural networks. In contrast, for each resolution, IFEM requires
solving the elliptic interface optimal control problem from scratch, which is much more
computationally expensive. These results validate that the mesh-free nature and the
generalization ability of Algorithm 3.2 make it effective and numerically favorable for
elliptic interface optimal control problems.

Example 2. To further validate the effectiveness of Algorithm 3.2 with Option I,
we consider problem (2.1)--(2.3) with a complicated interface. In particular, we take
\Omega = ( - 1,1) \times ( - 1,1) \subset \BbbR 2, and the interface \Gamma is the curve defined by the polar
coordinate equation r = 0.5 + 0.2 sin(5\theta ). The shape of \Gamma ,\Omega  - , and \Omega + is illustrated
in Figure 5(a). We then set \alpha = 1, \beta  - = 1, \beta + = 10, g0 = g1 = 0, h0 = 0, yd(x) =
(x21  - 1)(x22  - 1), and f(x) = 2\beta \pm (2 - x21  - x22) if x \in \Omega \pm . Compared with Example 1,
this example is more general and its exact solution is unknown.

To implement Algorithm 3.2 with Option I, we first define two fully connected
neural networks \scrN y(x,\phi (x);\theta y) and \scrN p(x,\phi (x);\theta p), which consist of three hidden
layers with 100 neurons per hidden layer. Then y and p are respectively approximated
by the \^y(x;\theta y) and \^p(x;\theta p) given in (3.8) and (3.12) but with g = 0 and h(x) =
(x21  - 1)(x22  - 1). The auxiliary function \phi can be constructed by Theorem 3.7 (see
Example 3.8). Here we first define
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Fig. 5. Numerical settings and results for Example 2. (a) and (d): Star-shaped \Gamma and the
auxiliary function \phi . (b) and (c): The computed control u. (e) and (f): The computed state y.

\phi 0(r, \theta ) =

\left\{     
0.23 if r - 0.2 sin(5\theta )\leq 0.3,

0.23  - (0.2 - f(r, \theta ))3 if 0.3\leq r - 0.2 sin(5\theta )\leq 0.5,

0 if r - 0.2 sin(5\theta )\geq 0.5,

where f(r, \theta ) = 0.5 + 0.2 sin(5\theta )  - r. Then it is easy to check that \phi := 1  - 20 \cdot \phi 0
satisfies (3.9). The graph of  - \phi is shown in Figure 5(d).

We randomly sample the training sets \scrT = \{ xi\} 16384i=1 \subset \Omega and \scrT \Gamma = \{ xi\Gamma \} 1024i=1 \subset \Gamma 
with respect to the polar angle. The neural networks are initialized randomly following
the default settings of PyTorch. We set wp,\Gamma n

= 3 and wy,r = wy,\Gamma n
= wp,r = 1. The

neural networks are trained with 40,000 Adam iterations, where \theta y and \theta p are updated
simultaneously in each iteration. The initial learning rate is 10 - 2 in the first 5,000
iterations, then 3\times 10 - 3 in 5,001 to 10,000 iterations, then 10 - 3 in 10,001 to 20,000
iterations, and finally 3\times 10 - 3 in 20,001 to 40,000 iterations.

The computed u and y are presented in Figure 5. We can see that the computed
control and state by Option I of Algorithm 3.2 capture the nonsmoothness across the
interface even if the geometry of the interface is complicated.

5. Extensions. In this section, we show that Algorithm 3.2 can be easily ex-
tended to other types of interface optimal control problems. For this purpose, we
investigate an elliptic interface optimal control problem, where the control variable
acts on the interface, and a parabolic interface optimal control problem.

5.1. Control on the interface. We consider the optimal control problem

min
y\in L2(\Omega ),u\in L2(\Gamma )

J(y,u) :=
1

2

\int 
\Omega 

(y - yd)2dx+
\alpha 

2

\int 
\Gamma 

u2dx

s.t.  - \nabla \cdot (\beta \nabla y) = f in \Omega \setminus \Gamma , [y]\Gamma = g0, [\beta \partial \bfitn y]\Gamma = u+ g1 on \Gamma , y= h0 on \partial \Omega ,

(5.1)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/1

5/
25

 to
 1

40
.1

13
.2

2.
16

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



C622 M.-C. LAI, Y. SONG, X. YUAN, H. YUE, AND T. ZENG

together with the control constraint

u\in Uad := \{ u\in L2(\Gamma ) : ua \leq u\leq ub a.e. on \Gamma \} ,(5.2)

where ua, ub \in L2(\Gamma ). Above, all the notations are the same as those in (2.1)--(2.2),
but the control variable u\in L2(\Gamma ) in (5.1)--(5.2) acts on the interface rather than the
source term. Existence and uniqueness of the solution to problem (5.1) can be found
in [54], and we have the following results.

Theorem 5.1 (cf. [54]). Problem (5.1)--(5.2) admits a unique optimal control
(u\ast , y\ast )\top \in Uad \times L2(\Omega ), and the following first-order optimality system holds:

u\ast =\scrP Uad

\Bigl( 
 - p

\ast 

\alpha 

\bigm| \bigm| \bigm| \bigm| 
\Gamma 

(x)
\Bigr) 
,(5.3)

where \scrP Uad
(\cdot ) denotes the projection onto Uad, and p

\ast is the adjoint variable associated
with u\ast , which is obtained from the successive solution of the following two equations:

 - \nabla \cdot (\beta \nabla y\ast ) = f in \Omega \setminus \Gamma , [y\ast ]\Gamma = g0, [\beta \partial \bfitn y
\ast ]\Gamma = g1 + u\ast on \Gamma , y\ast = h0 on \partial \Omega ,

(5.4)

 - \nabla \cdot (\beta \nabla p\ast ) = y\ast  - yd in \Omega \setminus \Gamma , [p\ast ]\Gamma = 0, [\beta \partial \bfitn p
\ast ]\Gamma = 0 on \Gamma , p\ast = 0 on \partial \Omega .(5.5)

It is easy to see that problem (5.1) is convex and hence the optimality system
(5.3) is also sufficient. Substituting (5.3) into (5.4) yields

 - \nabla \cdot (\beta \nabla y\ast ) = f in \Omega \setminus \Gamma , [y\ast ]\Gamma = g0, [\beta \partial \bfitn y
\ast ]\Gamma (5.6)

= g1 +\scrP Uad

\Bigl( 
 - p

\ast 

\alpha 

\bigm| \bigm| \bigm| \bigm| 
\Gamma 

(x)
\Bigr) 
on \Gamma , y\ast = h0 on \partial \Omega .

Therefore, solving (5.1)--(5.2) is equivalent to solving (5.5) and (5.6) simultaneously.
Next, we demonstrate the extension of Algorithm 3.2 to solve problem (5.1)--(5.2).

First, the neural networks \^y and \^p for approximating y and p are constructed in the
same way as that in section 3; see (3.8) and (3.12). The loss function is now defined
as

\scrL HC(\theta y, \theta p) =
wy,r

M

M\sum 
i=1

\bigm| \bigm| \bigm| \bigm|  - \Delta x\^y(x
i;\theta y) - 

f(xi)

\beta \pm 

\bigm| \bigm| \bigm| \bigm| 2

+
wy,\Gamma n

M\Gamma 

M\Gamma \sum 
i=1

\bigm| \bigm| \bigm| \bigm| [\beta \partial \bfitn \^y]\Gamma (xi\Gamma ;\theta y) - g1(xi\Gamma ) - \scrP [ua(xi
\Gamma ),ub(xi

\Gamma )]
( - 1

\alpha 
\^p(xi;\theta p))

\bigm| \bigm| \bigm| \bigm| 2
+
wp,r

M

M\sum 
i=1

\bigm| \bigm| \bigm| \bigm|  - \Delta x\^p(xi;\theta p) - 
\^y(xi;\theta y) - yd(xi)

\beta \pm 

\bigm| \bigm| \bigm| \bigm| 2
+
wp,\Gamma n

M\Gamma 

M\Gamma \sum 
i=1

\bigm| \bigm| [\beta \partial \bfitn \^p]\Gamma (x\Gamma i ;\theta p)\bigm| \bigm| 2 .

(5.7)

Then we can easily obtain the hard-constraint PINN method for (5.1)--(5.2) and we
omit the details for succinctness.

Example 3. We consider an example of (5.1)--(5.2) with \alpha = 1, \beta  - = 1, \beta + =
10, u \in Uad = \{ u \in L2(\Gamma ) : sin(2\pi x1) \leq u(x) \leq 1 a.e. on \Gamma \} , and u\ast (x1, x2) =
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Fig. 6. Numerical results of the hard-constraint PINN method for Example 3.

max\{ sin(2\pi x1),min\{ 1, - 1
\alpha p

\ast | \Gamma (x1, x2)\} \} . The rest of the settings are the same as
those in Example 1. Then we can see that (u\ast , y\ast )\top , with y\ast defined in (4.3), is
the solution to this problem.

The neural networks \scrN y(x,\phi (x);\theta y),\scrN p(x,\phi (x);\theta p) and the functions g, h, and \phi 
are the same as those in Example 1. Moreover, we randomly sample the training sets
\scrT = \{ xi\} 1024i=1 \subset \Omega and \scrT \Gamma = \{ xi\Gamma \} 256i=1 \subset \Gamma . We initialize the neural network parameters
\theta y, \theta p following the default settings of PyTorch. All the weights in (5.7) are set
to be 1.

We employ 40,000 iterations of Adam to train the neural networks, and the pa-
rameters \theta y and \theta p are updated simultaneously in each iteration. The learning rate is
set to be 5\times 10 - 3 in the first 5,000 iterations, then 1\times 10 - 3 in the 5,001 to 15,000
iterations, then 5 \times 10 - 4 in the 15,001 to 30,000 iterations, and finally 1 \times 10 - 4

in the 30,001 to 40,000 iterations. The strategy for computing the L2-error of the
control is similar to (4.1), except that now we sample the testing points from the
interface \Gamma . We use the same method as that in Example 1 for visualizing y and its
error. For the computed control u, we present its graph along the interface circle
\{ (cos(2\pi \theta ), sin(2\pi \theta ))\in \BbbR 2 : 0\leq \theta \leq 1\} with respect to the angle parameter \theta .

The numerical results are shown in Figure 6. It can be observed that the max-
imum absolute errors of y and u obtained by the hard-constraint PINN method are
approximately 6 \times 10 - 4 and 7 \times 10 - 5, respectively. Moreover, the L2-errors of the
computed control u are \varepsilon abs = 2.0386\times 10 - 5 and \varepsilon rel = 7.8737\times 10 - 5. These results
show that the proposed hard-constraint PINN method is also efficient for (5.1)--(5.2),
producing numerical solutions with high accuracy.

5.2. A parabolic interface optimal control problem. In this subsection,
we discuss the extension of Algorithm 3.2 to time-dependent problems. To this end,
let \Omega \subset \BbbR d (d = 2,3) be a bounded domain and \Gamma \subset \Omega be the same interface as the
one defined in section 2. Consider the following optimal control problem:
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min
y\in L2(\Omega \times (0,T )),u\in L2(\Omega \times (0,T ))

J(y,u) :=
1

2

\int T

0

\int 
\Omega 

(y - yd)2dx+
\alpha 

2

\int T

0

\int 
\Omega 

u2dx

(5.8)

s.t.

\left\{   
\partial y

\partial t
 - \nabla \cdot (\beta \nabla y) = u+ f in (\Omega \setminus \Gamma )\times (0, T ), y= h0 on \partial \Omega \times (0, T ),

[y]\Gamma = g0, [\beta \partial \bfitn y]\Gamma = g1 on \Gamma \times (0, T ), y(0) = y0 in \Omega .

Above, the final time T > 0 is a fixed constant, the function yd \in L2(\Omega \times (0, T ))
is the target, and the constant \alpha > 0 is a regularization parameter. The functions
f, g0, g1, h0, and y0 are given, and \beta is a positive piecewise-constant function like the
one defined in section 2. The interface \Gamma is assumed to be time-invariant. We also set
the following constraint for the control variable:

u\in Uad := \{ u\in L2(\Omega \times (0, T )) : ua \leq u\leq ub a.e. in \Omega \times (0, T )\} ,(5.9)

where ua, ub \in L2(\Omega \times (0, T )). By [57], we have the following results.

Theorem 5.2 (cf. [57]). Problem (5.8)--(5.9) admits a unique optimal control
(u\ast , y\ast )\top \in Uad\times L2(\Omega \times (0, T )), and the following first-order optimality system holds:

u\ast =\scrP Uad

\Bigl( 
 - 1

\alpha 
p\ast 
\Bigr) 
,(5.10)

where \scrP Uad
(\cdot ) denotes the projection onto Uad, and p

\ast is the adjoint variable associated
with u\ast which is obtained from the successive solution of the following two equations:

\left\{   
\partial y\ast 

\partial t
 - \nabla \cdot (\beta \nabla y\ast ) = u\ast + f in (\Omega \setminus \Gamma )\times (0, T ), y\ast = h0 on \partial \Omega \times (0, T ),

[y\ast ]\Gamma = g0, [\beta \partial \bfitn y
\ast ]\Gamma = g1 on \Gamma \times (0, T ), y\ast (0) = y0 in \Omega ,

(5.11)

\left\{    - 
\partial p\ast 

\partial t
 - \nabla \cdot (\beta \nabla p\ast ) = y\ast  - yd in (\Omega \setminus \Gamma )\times (0, T ), p\ast = 0 on \partial \Omega \times (0, T ),

[p\ast ]\Gamma = 0, [\beta \partial \bfitn p
\ast ]\Gamma = 0 on \Gamma \times (0, T ), p\ast (T ) = 0 in \Omega .

(5.12)

Problem (5.8)--(5.9) is convex, and hence the solution to (5.8)--(5.9) can be ob-
tained by simultaneously solving (5.11) and (5.12). Next, we delineate the extension
of Algorithm 3.2 to problem (5.8)--(5.9). For this purpose, let \scrN y(x, t,\phi (x);\theta y) and
\scrN p(x, t,\phi (x);\theta p) be two neural networks with smooth activation functions; we then
approximate the solutions of (5.11) and (5.12) by

\^y(x, t;\theta y) = g(x, t) + th(x)\scrN y(x, t,\phi (x);\theta y),

\^p(x, t;\theta p) = (T  - t)h(x)\scrN p(x, t,\phi (x);\theta p).
(5.13)

Here \phi (x) is an auxiliary function satisfying (3.9), h(x) is a function satisfying (3.5),
and both of them are independent of the variable t since the interface \Gamma and the
boundary \partial \Omega are time-invariant. The function g satisfies

g= h0 on \partial \Omega \times (0, T ), g(0) = y0 in \Omega , [g]\Gamma = g0 on \Gamma \times (0, T ).(5.14)

Then, using the same arguments as those in subsection 3.2, it is easy to check that
\^y(x, t;\theta y) and \^p(x, t;\theta p) strictly satisfy the interface, boundary, and initial conditions
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in (5.11)--(5.12) if functions g, h, and \phi are given in analytic expressions. Moreover,
we reiterate that, following the discussions in subsection 3.2, the functions g,h, and
\phi can be constructed in analytic forms or by neural networks.

To train the neural networks \^y(x, t;\theta y) and \^p(x, t;\theta p), we sample the training sets
\scrT = \{ (xi, ti)\} Mi=1 \subset \Omega \times (0, T ) and \scrT \Gamma = \{ xi\Gamma , ti\Gamma \} 

M\Gamma 
i=1 \subset \Gamma \times (0, T ), and we consider the

following loss function:

\scrL HC(\theta y, \theta p)

=
wy,r

M

M\sum 
i=1

\bigm| \bigm| \bigm| \bigm| \bigm| \partial \^y(xi, ti;\theta y)\partial t
 - \Delta x\^y(x

i, ti;\theta y)

 - 
\scrP [ua(xi,ti),ub(xi,ti)]( - \^p

\alpha (x
i, ti;\theta p) + f(xi, ti))

\beta \pm 

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

+
wy,\Gamma n

M\Gamma 

M\Gamma \sum 
i=1

\bigm| \bigm| [\beta \partial \bfitn \^y]\Gamma (xi\Gamma , ti\Gamma ;\theta y) - g1(xi\Gamma , ti\Gamma )\bigm| \bigm| 2 + wp,\Gamma n

M\Gamma 

M\Gamma \sum 
i=1

\bigm| \bigm| [\beta \partial \bfitn \^p]\Gamma (xi\Gamma , ti\Gamma ;\theta p)\bigm| \bigm| 2
+
wp,r

M

M\sum 
i=1

\bigm| \bigm| \bigm| \bigm|  - \partial \^p(xi, ti;\theta p)\partial t
 - \Delta x\^p(xi, t

i;\theta p) - 
\^y(xi, ti;\theta y) - yd(xi, ti)

\beta \pm 

\bigm| \bigm| \bigm| \bigm| 2 .

(5.15)

Then we can easily obtain the hard-constraint PINN method for solving (5.11)--(5.12)
and hence problem (5.8)--(5.9).

Example 4. We test the hard-constraint PINN method for solving (5.8)--(5.9) with
\Omega = ( - 1,1) \times ( - 1,1) \subset \BbbR 2, \Gamma = \{ x \in \Omega : \| x\| 2 \leq r0\} , r0 = 0.5, and T = \pi /2. The
admissible set Uad = \{ u \in L2(\Omega \times (0, T )) : - 1\leq u\leq 1 a.e. in \Omega \times (0, T )\} . We further
set \alpha = 1, \beta  - = 1, \beta + = 3, g0 = g1 = 0, h0 = 0, and y0 = 0.

Following [57], we let\left\{                         

p\ast (x1, x2, t) = 5sin(T  - t)(x21 + x22  - r20)(x21  - 1)(x22  - 1)/\beta \pm in \Omega \pm ,

y\ast (x1, x2, t) = 5cos(t - T )(x21 + x22  - r20)(x21  - 1)(x22  - 1)/\beta \pm in \Omega \pm ,

u\ast (x1, x2, t) =max

\biggl\{ 
 - 1,min

\biggl\{ 
1, - 1

\alpha 
p\ast (x1, x2, t)

\biggr\} \biggr\} 
,

f(x1, x2, t) =
\partial y\ast 

\partial t
(x1, x2, t) - u\ast (x1, x2, t) - \nabla \cdot (\beta \pm \nabla y\ast (x1, x2, t)) in \Omega \pm ,

yd(x1, x2, t) =
\partial p\ast 

\partial t
(x1, x2, t) + y\ast (x1, x2, t) +\nabla \cdot (\beta \pm \nabla p\ast (x1, x2, t)) in \Omega \pm .

Then it is easy to verify that (u\ast , y\ast , p\ast )\top satisfies the optimality system (5.10)--(5.12),
and hence (u\ast , y\ast )\top is the solution of (5.8)--(5.9).

We construct two neural networks \scrN y(x, t,\phi (x);\theta y) and \scrN p(x, t,\phi (x);\theta p) consist-
ing of three hidden layers with 100 neurons. The state and adjoint variables are
approximated by (5.13) with g(x, t) = 0 and h(x) = (x21  - 1)(x22  - 1). The auxiliary
function \phi is chosen like that in (4.5).

To evaluate the loss function (5.15), we first select \{ ti\} 16i=1 by the Chebyshev
sampling over (0, T ). Then we randomly sample \{ xi\} 256i=1 \subset \Omega and \{ xi\Gamma \} 64i=1 \subset \Gamma . After
that, we take the Cartesian product of \{ ti\} 16i=1 and \{ xi\} 256i=1 and \{ xi\Gamma \} 64i=1, respectively,
to generate the training sets \scrT = \{ (xi, ti)\} 4096i=1 \subset \Omega \times (0, T ) and \scrT \Gamma = \{ (xi\Gamma , ti\Gamma )\} 1024i=1 \subset 
\Gamma \times (0, T ). We initialize the neural network parameters \theta y and \theta p following the default
settings in PyTorch. The weights in (5.15) are all taken to be 1. We implement 40,000
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Fig. 7. Numerical results of the hard-constraint PINN method for Example 4.

iterations of the Adam to train the neural networks, and the parameters \theta y and \theta p are
optimized simultaneously in each iteration. The learning rate is set to be 3\times 10 - 3 in
the first 3,000 iterations, then 1\times 10 - 3 in the 3,001 to 10,000 iterations, 5\times 10 - 4 in
the 10,001 to 20,000 iterations, and finally 1\times 10 - 4 in the 20,001 to 40,000 iterations.

The computed results at t= 0.3T are presented in Figure 7. We can see that the
hard-constraint PINN method is capable of dealing with time-dependent problems
and a high-accurate numerical solution can be pursued.

6. Conclusions and perspectives. This paper explores the application of the
physics-informed neural networks (PINNs) to optimal control problems subject to
PDEs with interfaces and control constraints. We first demonstrate that leveraged
by the discontinuity capturing neural networks [18], PINNs can effectively solve such
problems. However, the boundary and interface conditions, along with the PDE, are
treated as soft constraints by incorporating them into a weighted loss function. Hence,
the boundary and interface conditions cannot be satisfied exactly and must be simul-
taneously learned with the PDE. This makes it difficult to fine-tune the weights and to
train the neural networks, resulting in a loss of numerical accuracy. To overcome these
issues, we propose a novel neural network architecture designed to impose the bound-
ary and interface conditions as hard constraints. The resulting hard-constraint PINNs
guarantee that both the boundary and the interface conditions are satisfied exactly or
with a high degree of accuracy, while being independent of the learning process for the
PDEs. This hard-constraint approach significantly simplifies the training process and
enhances the numerical accuracy. Moreover, the hard-constraint PINNs are mesh-
free, easy to implement, and scalable to different PDEs, and they can ensure rigorous
satisfaction of the control constraints. To validate the effectiveness of the proposed
hard-constraint PINNs, we conduct extensive tests on various elliptic and parabolic
interface optimal control problems.

Our work leaves some important questions for future research. For instance, the
high efficiency of the hard-constraint PINNs for interface optimal control problems
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emphasizes the necessity for convergence analysis and error estimates. In the nu-
merical experiments, we adopted fixed weights in the loss function and nonadaptive
sampling methods for the training points, which may not be optimal. It is worth inves-
tigating adaptive weighting and sampling strategies (see, e.g., [13, 30, 32, 50, 52]) to
further improve the numerical accuracy of the hard-constraint PINNs. In subsection
5.2, we discuss the extension of the hard-constraint PINNs to parabolic interface opti-
mal control problems, where the interface is assumed to be time-invariant. A natural
question is how to extend our discussions to the interfaces whose shape changes over
time. Recall (3.10), where the interface-gradient condition [\beta \partial \bfitn y]\Gamma is still treated as
a soft constraint. It is thus worth designing some more sophisticated neural networks
such that this condition can also be imposed as a hard constraint and the numerical
efficiency of PINNs can be further improved. Finally, note that we focus on Dirichlet
boundary conditions and it would be interesting to design some novel neural networks
such that other types of boundary conditions (e.g., periodic conditions and Neumann
conditions) can be treated as hard constraints; the ideas in [31] and [44] could be
useful.
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