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We develop an immersed boundary projection method (IBPM) based on an unconditionally 
energy stable scheme to simulate the vesicle dynamics in a viscous fluid. Utilizing the block 
LU decomposition of the algebraic system, a novel fractional step algorithm is introduced 
by decoupling all solution variables, including the fluid velocity, fluid pressure, and the 
elastic tension. In contrast to previous works, the present method preserves both the 
fluid incompressibility and the interface inextensibility at a discrete level simultaneously. 
In conjunction with an implicit discretization of the bending force, the present method 
alleviates the time-step restriction, so the numerical stability is assured by non-increasing 
total discrete energy during the simulation. The numerical algorithm takes a linearithmic 
complexity by using preconditioned GMRES and FFT-based solvers. The grid convergence 
studies confirm the solution variables exhibit first-order convergence rate in L2-norm. We 
demonstrate the numerical results of the vesicle dynamics in a quiescent fluid, Poiseuille 
flow, and shear flow, which are congruent with the results in the literature.

© 2020 Published by Elsevier Inc.

1. Introduction

The immersed boundary (IB) method [1] is a classical numerical method for simulating the fluid-structure interaction 
that has been applied to problems ranging from locomotion in an organism to dynamics of soft matters including droplets, 
bubbles, and vesicles. The fundamental principle of the IB method is based on a Lagrangian description of the interface 
immersed in an Eulerian description of the fluid domain. The interaction between the fluid and the interface is coupled 
through the convolution with a regularized delta function. Hence, the IB method requires minimal geometric information to 
handle complex moving boundary without the need for sophisticated mesh-generation.

The mathematical modeling of the morphological dynamics of biological cell membranes has received increased atten-
tion in biology, biophysics, and bioengineering community. In particular, inextensible vesicle has been considered as a viable 
model of biological cells for simulating various biophysical phenomena such as red blood cells [2] and drug-delivery cap-
sules [3]. The transient dynamics are characterized by the interaction between membrane elastic energy, inextensibility, 
bending force, and hydrodynamic force, which pose a range of challenges to develop robust numerical schemes in terms of 
computational cost, accuracy, and numerical stability. One of the major numerical difficulties is to impose the local inex-
tensibility constraint. In contrast to the regular multiphase flow problems, the elastic tension of an inextensible interface is 
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unknown a priori and acts as a Lagrange multiplier to enforce the local inextensibility constraint on the interface which is 
analogous to the role of pressure to enforce the fluid incompressibility constraint. The local inextensibility constraint of the 
interface has been considered within the boundary integral method [4–10], phase field method [11–14], IB method [15–20], 
immersed interface method [21,22], and level set method [13,23–25,27].

A gradient-augmented level set method was proposed by [23,24] to model the inextensible vesicle by regularizing the 
fluid stress tensor with a delta function to localize the force at the interface. An iterative four-step projection method is 
used to enforce the fluid incompressibility and local inextensibility constraints. However, the projection method does not 
exactly preserve the fluid incompressibility constraint due to the explicit treatment of the projection step to determine the 
Lagrange multiplier. In [25,26], a saddle-point approach is used to compute the level set equation within the finite element 
framework. Additional ad-hoc Lagrange multipliers that do not generate additional forces in the fluid are incorporated 
into the level set equation to enhance the conservation of area and arc-length. On the contrary, higher order polynomial 
approximations are used in [27] instead of additional Lagrange multipliers within a similar framework. In [13], a penalty 
formulation is used in conjunction with level set formulation to penalize the local stretching of the interface in order to 
maintain a nearly inextensible constraint of the membrane. Consequently, an empirical parameter is introduced, and a severe 
time-step restriction must be imposed to ensure numerical stability.

In the context of phase field method, a Lagrange multiplier was introduced by [11,12] to satisfy a time-dependent 
advection-diffusion-reaction equation of the tension where the temporal derivative is proportional to the surface divergence 
of the velocity. The diffusion term is included and acts as a regularization term to enhance numerical stability. Nevertheless, 
the local inextensibility constraint is not fully preserved for a finite thickness of the diffuse interface as justified by the 
asymptotic analysis [12]. Instead of solving the dynamics of the tension, the authors introduced an equation for the local 
Lagrange multiplier whose solution provides a harmonic extension of the local Lagrange multiplier adjacent to the interface 
while maintaining the local inextensibility constraint [14]. A novel feature is that the accuracy of the local inextensibility 
constraint is explicitly controlled by a regularization parameter that scales with the square of the interface thickness for 
which the asymptotic analysis can justify the convergence to the sharp interface model. Besides, a local relaxation scheme 
is also proposed to correct the local stretching/compression errors dynamically.

A two-dimensional boundary integral method was proposed by [5] to simulate the motion of inextensible interface in a 
viscous fluid. The formulation adopts a spectral approximation in space and a semi-implicit time-stepping scheme in time 
to circumvent the severe time-step restriction. The work is extended to axisymmetric case [6] and to the general three-
dimensional case of vesicles [8]. On the contrary to 2D, the three-dimensional boundary integral formulation is based on 
Lagrangian spectral collocation points defined on the interface so the spectral accuracy in space can be achieved by using 
spherical harmonics discretization. Despite the high accuracy obtained, the spectral representation of the interface possess 
several disadvantages due to the non-locality of the representation. In practice, an interface may be deformed to a dumbbell 
shape in a shear flow or slipper shape in Poiseuille flow which rather inefficient to be represented by the spherical harmon-
ics since the interface contains a small region of high curvatures. As an alternative, the triangular mesh has been employed 
by [7,9,10] in the context of boundary integral method for the interface parametrization. In [7], the local inextensibility 
constraint is satisfied by a Lagrange multiplier which acts as an elastic tension. Subsequently, the Lagrange multiplier is 
eliminated from the equations by constructing a projection operator acting on the velocity field, and the numerical stability 
restriction is circumvented. On the other hand, an optimized penalization formulation is used by [10] to solve for the elastic 
tension. By systematically selecting the optimal values for the local and global strain penalization parameters at each time-
step, it preserves the inextensibility constraint better than the conventional penalization formulation while circumvents the 
severe time-step restriction due to the numerical stiffness of the elastic tension force.

The penalty IB formulation has been adopted to impose the local inextensibility constraint in 2D [15–17,20] and 3D [18,
19]. By modifying the elastic tension energy, the unknown elastic tension is replaced by a Hookean elastic tension based 
on the local interface configuration. The formulation avoids solving the coupled system directly and simplifies the overall 
numerical algorithm. However, there exist several drawbacks in the penalty IB formulation. Firstly, the ad-hoc modification 
of elastic tension energy inevitably introduces an empirical penalization parameter of σ0. The parameter highly depends on 
the problem, and its optimal value may be varied in space and time throughout the simulation. Therefore the accuracy of the 
local inextensibility constraint is challenging to control explicitly and uniformly. In principle, the inextensibility constraint 
should be fully recovered as the parameter σ0 tends to be infinity. Although the numerical algorithm is simplified and the 
elastic tension can be computed explicitly in a segregated manner, the numerical stability is severely hindered due to the 
large value of σ0 and the explicit discretization of bending force. As a consequence, the computational time-step is restricted 
to O (h2) or higher in practice. Hence, satisfying the discrete local inextensibility constraint consistently up to the machine 
precision or a prescribed tolerance while maintaining numerical stability remains a critical numerical issue in the context 
of the IB method.

The main objective of the present study is to develop an immersed boundary projection method (IBPM) for simulating 
the inextensible vesicle dynamics in a viscous fluid. To ensure the numerical stability, we discretize the governing equations 
using the unconditionally energy stable scheme recently developed by the authors in [28]. Based on the previous analysis 
in [29,30], we propose a novel numerical algorithm to decouple all the solution variables while maintaining the numerical 
stability, accuracy, and efficiency. The computational framework is compelling such that it offers excellent versatility in 
the implementation and future extension. The remainder of the paper is organized as follows. In Section 2, we define the 
governing equations of an inextensible vesicle immersed in an incompressible viscous fluid domain. In Section 3, we describe 
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the details of the staggered finite difference framework and the interface representation by Lagrangian markers, followed by 
the numerical discretization of the governing equations. In Section 4, the detailed numerical algorithm of the IBPM for the 
inextensible vesicle is presented. We demonstrate the discrete energy stability and the grid convergence rate under different 
flow configurations in Section 5. The conservation of the enclosed area and arc-length are investigated quantitatively, and 
the performance of the iterative solver is also evaluated carefully in this section. We further explore the dynamics of a 
vesicle in a quiescent fluid, Poiseuille flow, and shear flow by varying the critical parameters related to the reduced area 
and characteristic velocity. The numerical results are justified by comparing to the existing analytical and numerical results 
obtained from the literature. Finally, we summarize the conclusion of the present study in Section 6.

2. Governing equations of motion

The practical interest of the present study lies in the low-Reynolds number Stokes flow, where the convective term is 
negligible in this regime. Consider the governing equations for a vesicle immersed in a two-dimensional incompressible 
viscous fluid domain �,

∂u

∂t
− ν�u + ∇p = S(Fσ ) + S(Fb) in �, (1)

S(Fσ ) =
∫
�

∂

∂s
(στ )δ (x − X(s, t)) ds, (2)

S(Fb) = −cb

∫
�

∂4X

∂s4
δ (x − X(s, t)) ds, (3)

∇ · u = 0, in �, (4)

∇s · U = ∂U

∂s
· τ = 0 on �, (5)

∂X

∂t
(s, t) = U(s, t) =

∫
�

u(x, t)δ (x − X(s, t)) dx, on �, (6)

where u is the fluid velocity, p the fluid pressure, and ν the kinematic viscosity. The enclosed interface (or immersed 
vesicle boundary) � is represented by a set of Lagrangian markers X (s, t) with the arc-length parameter s. The notations 
τ (s, t) = ∂X/∂s and cb represent the unit tangent vector and the constant bending rigidity, respectively. There exists two 
types of forcing arising from the vesicle boundary �, i.e., elastic tension force Fσ in Equation (2) and bending force Fb in 
Equation (3), derived from the variational derivative of Helfrich type energy [31].

3. Numerical discretization

The fluid variables are defined on the staggered finite difference grid in a computational rectangular domain � = [a, b] ×
[c, d] as illustrated in Fig. 1. The pressure p is defined at the cell-center x = (xi, y j) = (a + (i − 1/2)�x, c + ( j − 1/2)�y), 
i = 1, 2, · · · , m and j = 1, 2, · · · , n, while the velocity components u and v are defined at cell-edges (xi−1/2, y j) = (a + (i −
1)�x, c +( j −1/2)�y) and (xi, y j−1/2) = (a +(i −1/2)�x, c +( j −1)�y), respectively. For brevity, we assume a uniform grid 
size of h = �x = �y. To represent the immersed vesicle boundary, we employ M discrete points sk = k�s, k = 0, 1, · · · M − 1
with the marker size �s comparable to the grid size h. The Lagrangian markers are therefore denoted by Xk = X(sk), and 
XM = X0 since the vesicle boundary is closed. The values of elastic tension σ are defined at the half-integer points between 
the Lagrangian markers sk−1/2 = (k − 1/2)�s and they are represented as σk−1/2.

In the present study, we discretize Equations (1) to (6) by the backward Euler scheme developed in [28] as

un+1 − un

�t
− ν�hun+1 + ∇h pn+1 = Sn

h

(
Fn+1
σ

) + Sn
h

(
Fn+1

b

)
in �h, (7)

Sn
h

(
Fn+1
σ

) =
M∑

k=1

Ds
(
σ n+1τn)

k δh
(
x − Xn

k

)
�s, (8)

Sn
h

(
Fn+1

b

)
= −cb

M∑
k=1

D+
s D−

s D+
s D−

s Xn+1
k δh

(
x − Xn

k

)
�s, (9)

∇h · un+1 = 0 in �h, (10)

∇s · Un+1 = D−
s Un+1 · τn

1 = 0 ∀k, (11)
h k k k− /2
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Fig. 1. Staggered finite difference grid in a computational rectangular domain. The pressure p is defined at the cell-center while the velocity u and v are 
defined at cell-edges. The Lagrangian markers X represent the IB and σ are defined at the half-integer points between the Lagrangian markers.

Xn+1
k − Xn

k

�t
= Un+1

k =
∑

x

u(x)n+1δh
(
x − Xn

k

)
h2 ∀k. (12)

The spatial operators ∇h and �h are the second-order central difference approximations to the gradient and Laplacian 
on the staggered finite difference grid, respectively. ∇h· and ∇sh · are the divergence and surface divergence operators, 
respectively. We apply the forward, backward, and central difference schemes to approximate the partial derivative of an 
arbitrary function 	(s) defined on the IB,

D+
s 	(s) = 	(s + �s) − 	(s)

�s
, D−

s 	(s) = 	(s) − 	(s − �s)

�s
, (13)

Ds	(s) = 	(s + �s/2) − 	(s − �s/2)

�s
. (14)

Subsequently, the unit tangent τ = DsX is approximated discretely at the half-integer points. The operator δh is the discrete 
delta function expressed by a tensor product of a kernel φ(r),

δh(x) = 1

h2
φ

( x

h

)
φ

( y

h

)
, (15)

where the kernel φ(r) is the 6-point supported C3 function developed in [32]. In practice, the distribution of discrete points 
sk with uniform arc-length may not be sustainable. Consequently, we define the non-uniform fourth derivative operator 
based on Taylor series expansion [28],

∂4	k

∂s4
≈

2∑
i=−2

ck+i	k+i . (16)

It is important to mention that above numerical scheme (7)-(12) is a linearly semi-implicit scheme despite the fact that 
the original governing equations (1)-(6) are nonlinear in X. The spreading operator Sn

h used in the scheme is the linearization 
of Sn+1

h by lagging one discrete time-step �t for the Lagrangian markers from t = (n + 1)�t to t = n�t . Consistently, the 
discrete inextensibility constraint in the scheme also applies one time-step lagging of the interface tangent for linearization. 
Therefore, by lagging the spreading and interpolation operators in the IB method yields a linear system of equations instead 
of the nonlinear system. Nevertheless, one can still rigorously prove that the present scheme is unconditionally energy stable 
[28]. For the Navier-Stokes equations, the nonlinear convective term can be treated explicitly during the time evolution with 
a moderate CFL condition. In preference, the Navier-Stokes equations can be split into a convection part and unsteady 
Stokes part in which the former part can be solved by the alternating direction implicit (ADI) method to maintain the 
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unconditionally numerical stability [33]. However, it is still practically challenging to directly solve the system (7)-(12)
numerically. Applying sparse iterative solver such as Krylov subspace method requires a large number of iterations at each 
time-step, and it may fail to converge without proper preconditioners. On the other hand, applying the sparse direct solver 
requires the explicit matrix entries at each time-step, and a large amount of fill-ins will cost a lot of computer memory. 
For the present study, we focus on the development of an efficient fractional step method to solve the system without 
jeopardizing the numerical accuracy and stability.

4. Immersed boundary projection method

The main objective of the present study is to develop an IBPM for the aforementioned discretized system of equations 
(7)-(12). The present method follows the algebraic approach used by Taira and Colonius [30], based on the fractional step 
analysis of Perot [29], for simulating incompressible flows over moving solid objects. The idea is to rewrite the whole linear 
system into a block-LU decomposition and then make appropriate approximations to obtain several fractional steps that can 
be efficiently solved. To facilitate the numerical algorithm development, we consider first the inextensible interface problem 
in the absence of the bending force. Then the extension to model the vesicle dynamics by incorporating the bending force 
will be addressed subsequently.

4.1. Inextensible interface

In the absence of the bending force term Equation (9) in Equation (7), the rest of equations can be written in a matrix 
operator form as

Hun+1 + Gpn+1 + Sσ n+1 = r + bc1, (17)

Dun+1 = −Gᵀun+1 = bc2, (18)

− Sᵀun+1 = 0, (19)

Eun+1 + Xn+1 = Xn, (20)

where H = 1
�t I −νL is the discrete modified Helmholtz operator, L is the discrete Laplacian operator, G is the discrete gradi-

ent operator, D ≡ −Gᵀ is the discrete divergence operator, and r is the explicit source term of the momentum equation. The 
term bc1 is the boundary condition for the momentum equation resulting from the Laplacian operator, whereas bc2 is the 
boundary condition resulting from the divergence operator. E is the discrete interpolation operator that interpolates velocity 
components defined at the cell-edges onto the Lagrangian markers. S is the discrete spreading operator that regularizes the 
singular force due to the elastic tension σ at time-level n + 1 over the adjacent Eulerian grid, i.e.,

Sσ n+1 =
M∑

k=1

Ds
(
σ n+1τn)

k δh
(
x − Xn

k

)
�s =

M∑
k=1

σ n+1
k−1/2

τn
k−1/2

[
δh

(
x − Xn

k−1

) − δh
(
x − Xn

k

)]
. (21)

Note that the discrete surface divergence of velocity can be cast as −Sᵀun+1 [17], and it is regarded as a projection operator 
acting on the Eulerian velocity field at time-level n + 1. Henceforth, Equations (17) to (19) produce a skew-symmetric 
algebraic system of equations as⎡

⎣ H G S
−Gᵀ 0 0
−Sᵀ 0 0

⎤
⎦

⎡
⎣ un+1

pn+1

σ n+1

⎤
⎦ =

⎡
⎣r + bc1

bc2
0

⎤
⎦ . (22)

To begin with, some augmented operators are first introduced; G̃ ≡ [G S], G̃ᵀ ≡ [Gᵀ Sᵀ]ᵀ , λn+1 ≡ [
pn+1 σ n+1

]ᵀ
, and 

b̃c2 ≡ [bc2 0]ᵀ . Thus, Equation (22) can be written as[
H G̃

−G̃ᵀ 0

][
un+1

λn+1

]
=

[
r + bc1

b̃c2

]
. (23)

It is realized that λ acts as a set of Lagrange multipliers to enforce the fluid incompressibility and the interface inextensi-
bility. Subsequently, the block LU decomposition of Equation (23) reads[

H 0
−G̃ᵀ G̃ᵀH−1G̃

][
I H−1G̃
0 I

][
un+1

λn+1

]
=

[
r + bc1

b̃c2

]
(24)

which is in a form similar to Uzawa method [34]. As in [30], it is practically feasible to approximate H−1 by Q N ,[
H 0

−G̃ᵀ G̃ᵀQ N G̃

][
I Q N G̃
0 I

][
un+1

λn+1

]
=

[
r + bc1

b̃c

]
+

[(
H Q N − I

)
G̃λn+1

0

]
(25)
2
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where Q N is the N-th order Neumann series expansion of H−1,

H−1
� Q N = �t

(
I + �tνL + (�tνL)2 + · · · + (�tνL)N−1

)
= �t

N−1∑
k=0

(�tνL)k . (26)

Let us define[
u∗

λn+1

]
=

[
I Q N G̃
0 I

][
un+1

λn+1,

]

where u∗ = un+1 + Q N G̃λn+1 is the intermediate velocity. Then, Equation (25) can be written in the following form,

Hu∗ = r + bc1 +
(

H Q N − I
)

G̃λn+1,

G̃ᵀQ N G̃λn+1 = G̃ᵀu∗ + b̃c2,

un+1 = u∗ − Q N G̃λn+1.

Dropping the last term 
(

H Q N − I
)

G̃λn+1 at the righthand side of the momentum equation results in a fractional step 
procedure in which u∗ and λn+1 are decoupled. Hence, the term 

(
H Q N − I

)
G̃λn+1 is the corresponding splitting error 

occurring in the momentum equation while there is no splitting error for the constraint equation as we can easily obtain 
−G̃ᵀun+1 = b̃c2. By setting Q N = I�t(N = 1), the above scheme becomes

Hu∗ = r + bc1 + (H�t − I) G̃λn+1︸ ︷︷ ︸
first-order splitting error

+O
(
�t2

)
,

G̃ᵀG̃λn+1 = 1

�t

(
G̃ᵀu∗ + b̃c2

)
,

un+1 = u∗ − �tG̃λn+1.

Thus, the leading first-order splitting error has the form (H�t − I) G̃λn+1 = −ν�tLG̃λn+1. Besides, G̃ᵀG̃ can be formed to 
reduce the computational effort significantly. Meanwhile, if the first-order splitting error is neglected, then the classical 
projection method proposed in [35,36] is recovered.

By augmenting an explicit term at the righthand side of the momentum equation, the splitting error can be reduced to 
second-order [29], i.e.,

Hu∗ = r + bc1 + (H�t − I) G̃λn︸ ︷︷ ︸
augmented explicit term

+ (H�t − I) G̃
(
λn+1 − λn)︸ ︷︷ ︸

second-order splitting error

+O
(
�t2

)
. (27)

Therefore, we obtain a numerical algorithm with second-order splitting error as follows,

Hu∗ = r + (H�t − I) G̃λn + bc1,

G̃ᵀG̃λn+1 = 1

�t

(
G̃ᵀu∗ + b̃c2

)
,

un+1 = u∗ − �tG̃λn+1.

Notice that, solving the equation of u∗ requires to compute the explicit term (H�t I − I) G̃λn at the righthand side. To 
avoid such explicit term computation, we introduce another intermediate velocity u∗∗ = u∗ − �tG̃λn and the incremental 
variable δλ = λn+1 − λn , so the algorithm can be further simplified to

Hu∗∗ = r − G̃λn + bc1,

G̃ᵀG̃δλ = 1

�t

(
G̃ᵀu∗∗ + b̃c2

)
,

un+1 = u∗∗ − �tG̃δλ.

The first equation involves solving the modified Helmholtz equation about u∗∗ which can be done very efficiently using 
Fast Fourier Transform (FFT)-based solver. Once u∗∗ is obtained, the remaining question is how to solve the equation of the 
incremental variable δλ = [δp δσ ]ᵀ , i.e.,[

GᵀG GᵀS
SᵀG SᵀS

][
δp
δσ

]
= 1

[
Gᵀu∗∗ + bc2

Sᵀu∗∗
]

. (28)

�t
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By applying the block LU decomposition again, the above equation can be written as[ −L 0
SᵀG SᵀS + SᵀGL−1GᵀS

][
I −L−1GᵀS
0 I

][
δp
δσ

]
= 1

�t

[
Gᵀu∗∗ + bc2

Sᵀu∗∗
]

, (29)

where L ≡ −GᵀG is the discrete Laplacian operator. Let us introduce δp∗ = δp − L−1GᵀSδσ , the incremental variables δp
and δσ can be solved in a decoupled way as follows,

Lδp∗ = − 1

�t

(
Gᵀu∗∗ + bc2

)
,

(
SᵀS + SᵀGL−1GᵀS

)
δσ = 1

�t
Sᵀu∗∗ − SᵀGδp∗,

δp = δp∗ + L−1GᵀSδσ .

Thus, δp and δσ can be computed sequentially without compromising the accuracy since the performed block LU decom-
position is exact. A key feature is that both the discrete fluid incompressibility and discrete interface inextensibility are 
satisfied simultaneously as we will see later.

In summary, the time advancement (from time level n�t to (n + 1)�t) of IBPM for the inextensible interface problem 
can be outlined in the following steps.

(1) Hu∗∗ = r − Gpn − Sσ n + bc1, (FFT-based solver)

(2) Lδp∗ = − 1

�t

(
Gᵀu∗∗ + bc2

)
, (FFT-based solver)

(3)
(

SᵀS + SᵀGL−1GᵀS
)
δσ = 1

�t
Sᵀu∗∗ − SᵀGδp∗, (GMRES + FFT-based solver)

(4) δp = δp∗ + L−1GᵀSδσ , (FFT-based solver)

(5) un+1 = u∗∗ − �t (Gδp + Sδσ ) ,

(6) Xn+1 = Xn − Eun+1.

The pressure and the elastic tension are then updated by pn+1 = pn + δp and σ n+1 = σ n + δσ , respectively. We now analyze 
the computational efficiency for each step in the above algorithm. In the present implementation, the discrete Laplacian op-
erator L and discrete modified Helmholtz operator H are diagonalizable in Fourier space, we therefore utilize the FFT-based 
modified Helmholtz and Poisson solvers to compute the intermediate velocity u∗∗ and the intermediate pressure increment 
δp∗ in Steps (1) and (2), respectively. Similarly, solving the pressure increment in Step (4), we do not compute the in-
verse of Laplacian explicitly but simply applying FFT-based Poisson solver once. To compute the elastic tension increment 
δσ in Step (3), we apply the GMRES iterative solver [38]. Each GMRES iteration requires to apply one FFT-based Poisson 
solver and sparse matrix-vector products. Notice that, the size of the sparse matrix-vector product corresponding to the 
number of Lagrangian markers is one dimension lower than the Eulerian grid number. In practice, the average number 
of GMRES iterations required to converge to a prescribed error tolerance of h2 is proportional to the grid resolution. To 
accelerate the iterative convergence in Step (3), we utilize the incomplete LU factorization [39] of the approximated Schur 
complement Ĉ ≡ SᵀS + SᵀG(diag(L))−1GᵀS as a simple preconditioner for the GMRES iteration. The cost of generating such 
preconditioner is insignificant as compared to the cost of matrix-vector multiplications. The performance of the precondi-
tioned GMRES solver will be evaluated in Section 5. Finally, Steps (5) and (6) are simply variable substitutions. The overall 
computational cost can be evaluated in terms of the number of FFT-based fast solvers applied.

We conclude this subsection by proving that the discrete fluid incompressibility and discrete interface inextensibility 
are satisfied simultaneously at every time-step, i.e., −Gᵀun+1 = bc2 and −Sᵀun+1 = 0. Applying the discrete divergence 
operator −Gᵀ on un+1 in Step (5), we have

−Gᵀun+1 = −Gᵀu∗∗ + �t
(
GᵀGδp + GᵀSδσ

)
= �tLδp∗ + bc2 + �t

(
GᵀGδp + GᵀSδσ

)
by Step (2)

= −�t
(
GᵀGδp + GᵀSδσ

) + bc2 + �t
(
GᵀGδp + GᵀSδσ

)
by L ≡ −GᵀG and Step (4)

= bc2.

Hence, the discrete fluid incompressibility is satisfied. Similarly, by applying the discrete surface divergence operator −Sᵀ

on un+1 in Step (5) yields

−Sᵀun+1 = −Sᵀu∗∗ + �t
(

SᵀGδp + SᵀSδσ
)

= −�t
(

SᵀGδp∗ + SᵀGL−1G Sδσ + SᵀSδσ
) + �t

(
SᵀGδp + SᵀSδσ

)
by Step (3)
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= −�t
(

SᵀGδp + SᵀSδσ
) + �t

(
SᵀGδp + SᵀSδσ

)
by Step (4)

= 0.

Hence, the discrete interface inextensibility is satisfied.

4.2. Inextensible interface with bending force

We have developed an algorithm to solve the inextensible interface problem in previous subsection. In this subsection, 
we extend the development of the algorithm to compute the inextensible interface with bending force for simulating the 
vesicle dynamics. As before, the resultant matrix equations of (7)-(12) can be written in the following operator form

Hun+1 + Gpn+1 + Sσ n+1 + BXn+1 = r + bc1, (30)

Dun+1 = −Gᵀun+1 = bc2, (31)

− Sᵀun+1 = 0, (32)

Eun+1 + Xn+1 = Xn, (33)

where B is the discrete bending force operator. By substituting Equation (33) into Equation (30), we have

H̃un+1 + Gpn+1 + Sσ n+1 = r + bc1 − BXn, (34)

where H̃ ≡ H − B E is the modified Helmholtz operator H subtracting a low rank perturbation B E due to the bending force. 
Clearly, the resultant matrix form is similar to Equation (23) except that the operator H is replaced by the operator H̃ , and 
the righthand side is modified, i.e.,[

H̃ G̃
−G̃ᵀ 0

][
un+1

λn+1

]
=

[
r + bc1 − BXn

b̃c2

]
, (35)

where the augmented matrix G̃ = [G S] and augmented variable λn+1 = [pn+1 σ n+1]ᵀ are defined as before. Again, 
by introducing the incremental variable δλ = [δp δσ ]ᵀ and the intermediate velocity u∗∗ = un+1 + �t (Gδp + Sδσ ), and 
applying the preceding splitting technique in the previous subsection, the resultant matrix equation (35) can be written into 
following steps,

H̃u∗∗ = r − Gpn − Sσ n − BXn + bc1,

Lδp∗ = − 1

�t

(
Gᵀu∗∗ + bc2

)
,

(
SᵀS + SᵀGL−1GᵀS

)
δσ = 1

�t
Sᵀu∗∗ − SᵀGδp∗,

δp = δp∗ + L−1GᵀSδσ ,

un+1 = u∗∗ − �t (Gδp + Sδσ ) .

Notice that, in this case, we can not apply the FFT-based solver directly to solve the momentum equation of u∗∗ , since the 
operator H̃ = H − B E is perturbed by a low rank matrix. However, the inversion of H̃ can be expressed by the Sherman-
Morrison-Woodbury formula [37],

H̃−1 ≡ (H − B E)−1 ≡ H−1 + H−1 B(I − E H−1 B)−1 E H−1. (36)

The primary advantage of applying Equation (36) is that the formula dramatically simplifies the computation of H̃−1 since 
it is expressed in terms of H−1 for which the FFT-based solver can be applied. By introducing an intermediate variable 
u∗∗∗ = H−1(r − Gpn − Sσ n − BXn +bc1), the IBPM for the inextensible interface with bending rigidity to simulate the vesicle 
dynamics can be summarized in the following segregated steps,

(1) Hu∗∗∗ = r − Gpn − Sσ n − BXn + bc1, (FFT-based solver)

(2) u∗∗ = u∗∗∗ + H−1 B(I − E H−1 B)−1 Eu∗∗∗, (GMRES + FFT-based solver)

(3) Lδp∗ = − 1

�t

(
Gᵀu∗∗ + bc2

)
, (FFT-based solver)

(4)
(

SᵀS + SᵀGL−1GᵀS
)
δσ = 1

�t
Sᵀu∗∗ − SᵀGδp∗, (GMRES + FFT-based solver)

(5) δp = δp∗ + L−1GᵀSδσ , (FFT-based solver)

(6) un+1 = u∗∗ − �t (Gδp + Sδσ ) ,

(7) Xn+1 = Xn − Eun+1.
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Fig. 2. Normalized total energy E/E0 dissipation profiles from time t = 0 to t = 3.0 using time-step sizes �t = h, h/2, and h2 with a fixed Eulerian grid 
resolution of h = 1/256.

The pressure and the elastic tension are then updated by pn+1 = pn + δp and σ n+1 = σ n + δσ , respectively. One should 
note that, Steps (3)-(7) are same as the ones in the previous subsection. The intermediate velocity variable u∗∗∗ in Step 
(1) is efficiently solved by the FFT-based modified Helmholtz solver. Computing u∗∗ in Step (2) can be interpreted as an 
“implicit bending force update” of u∗∗∗ , and it requires a few numbers of GMRES iterations. Again, the GMRES iteration 
does not need to form the matrix explicitly, but only requires applying the FFT-based modified Helmholtz solver and sparse 
matrix-vector products. In practice, Step (2) requires only an average number of 2-3 GMRES iterations to converge to the 
prescribed error tolerance of order h2. So again, the entire algorithm is matrix-free and takes a linearithmic complexity as 
the GMRES solver only requires matrix-vector products, and the inversion of Laplacian and modified Helmholtz operators 
are computed directly using FFT-based fast solvers.

One of the appealing features of the present method is its modularity. In particular, the freedom to use a conventional 
Navier-Stokes or Stokes solver with minor modifications in Steps (1), (3), and (6). Such modularity is achieved by solving the 
momentum equation in Step (1) with explicit IB elastic tension force Sσ n and bending force BXn . Step (3) involves solving 
the Poisson equation by replacing δp by δp∗ in a conventional fluid solver. Lastly, updating the velocity components in Step 
(6) involves an incremental pressure gradient Gδp, and an incremental elastic tension Sδσ additionally.

5. Numerical results

5.1. Discrete energy stability

We conduct an energy stability verification for the present IBPM developed in Section 4. A vesicle is initialized as an 
ellipse shape X(θ) = (0.2 cos θ, 0.5 sin θ) using uniform arc-length parametrization [28], and is immersed in a quiescent fluid 
domain � = [−1, 1] × [−1, 1]. For other parameters, ν = 1, and cb = 0.01 are applied. The simulations are time-marching 
from time t = 0 to t = 3.0, using time-step sizes �t = h, h/2, and h2, with a fixed Eulerian grid resolution of h = 1/256. 
The Lagrangian markers size is chosen as �s = O (h).

The total energy of the system E is defined as the sum of kinetic energy E K and bending energy E B , where

E K = 1

2
‖u‖2

�h
= 1

2
〈u,u〉�h , E B = cb

2
‖D+

s D−
s X‖2

�h
= cb

2
〈D+

s D−
s X, D+

s D−
s X〉�h , (37)

with the associated discrete inner products defined as

〈u,v〉�h =
∑

x

(u · v)h2, 〈	,〉�h =
M∑

k=1

	kk�s. (38)

Fig. 2 shows the transient dissipation profiles of the total energy E normalized by the initial total energy E0 at t = 0. The 
discrete energy profiles are monotonically decreasing, which substantiates that the discrete energy of the system is bounded 
and the present numerical algorithm does not affect the unconditionally energy stability of the underlying scheme. We 
examine the convergence rate of the solution variables quantitatively in the next subsection.
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Table 1
Grid convergence study 1: grid refinement analysis on the Eulerian variables u, v , and p.

h ‖uh − uref‖2 Rate ‖vh − vref‖2 Rate ‖ph − pref‖2 Rate

1/32 8.607 × 10−3 - 6.878 × 10−3 - 1.079 × 10−2 -
1/64 3.649 × 10−3 1.24 3.649 × 10−3 0.91 6.405 × 10−3 0.75
1/128 1.698 × 10−3 1.10 1.489 × 10−3 1.29 3.808 × 10−3 0.75
1/256 6.923 × 10−4 1.29 6.296 × 10−4 1.24 1.928 × 10−3 0.98

Table 2
Grid convergence study 1: grid refinement analysis on the Lagrangian variables X , Y , and σ .

h ‖Xh − Xref‖2 Rate ‖Yh − Yref‖2 Rate ‖σh − σref‖2 Rate

1/32 2.696 × 10−3 - 1.235 × 10−3 - 9.463 × 10−2 -
1/64 6.229 × 10−4 2.11 3.045 × 10−4 2.02 4.700 × 10−2 1.01
1/128 1.565 × 10−4 1.99 8.664 × 10−5 1.81 2.336 × 10−2 1.01
1/256 3.603 × 10−5 2.12 1.899 × 10−5 2.19 1.162 × 10−2 1.01

Table 3
Grid convergence study 1: grid refinement analysis on the enclosed 
area A and total arc-length L.

h |Ah − A0|/A0 Rate |Lh − L0|/L0 Rate

1/32 2.075 × 10−4 - 1.132 × 10−4 -
1/64 1.055 × 10−4 0.98 1.061 × 10−4 0.09
1/128 5.363 × 10−5 0.98 6.964 × 10−5 0.61
1/256 2.884 × 10−5 0.89 3.989 × 10−5 0.80

5.2. Grid convergence study 1

We conduct a grid convergence study for a vesicle in a quiescent fluid. An initial vesicle shape is defined by an ellipse 
X(θ) = (0.2 cos θ, 0.5 sin θ), and placed in a quiescent fluid domain � = [−1, 1] ×[−1, 1]. For a linear refinement, a time-step 
of �t = h/2 is employed in conjunction with a series of grid resolution h = 1/32, 1/64, 1/128, 1/256. The stopping tolerance 
of all GMRES method is set to be h2. All the simulations are time-marching from t = 0 to t = 1.0. Since an analytical solution 
is not available, the numerical solution of a fine grid resolution h = 1/512 is taken as the reference solution. To quantify 
the grid convergence rate of the solution variables, the L2-norm errors are evaluated by taking the difference between the 
numerical solutions and interpolated reference solutions.

Table 1 shows the grid refinement analysis of the Eulerian variables, i.e., velocity components u and v , and pressure p. 
The numerical results indicate that the Eulerian variables exhibit a first-order convergence rate in L2-norm. Table 2 tabulates 
the grid refinement analysis of the Lagrangian variables, i.e., position vectors X and Y , and elastic tension σ . A better than 
first-order convergence rate is observed for the position vectors, while the elastic tension converges at a first-order rate 
in L2-norm. The capability of the present method in preserving the enclosed area A and total arc-length L is investigated 
and summarized in Table 3. A0 and L0 are the initial enclosed area and initial total arc-length of the vesicle, respectively. 
As the grid is linearly refined, these relative errors are gradually decreasing at a first-order rate approximately. When the 
grid resolution of h = 1/256 is used, the relative errors of the area conservation and total arc-length conservation are about 
0.003% and 0.004%, respectively. Hence, the present method preserves the enclosed area and total arc-length excellently 
without any ad-hoc modification. Fig. 3 depicts the vesicle shape and its elastic tension profile in terms of phase angle φ/π
at t = 1.0 using the grid resolution of h = 1/256. Notably, no numerical wiggle is detected in the elastic tension profile. In 
Section 5.4, we further explore the deformation of the vesicle to its equilibrium shape systematically.

In order to investigate the performance of the preconditioned GMRES to solve δσ , we repeat the simulation by comparing 
with un-preconditioned GMRES using the same stopping tolerance h2 and preconditioned GMRES with a fixed stopping 
tolerance of 10−12. Table 4 summarizes the performance of the GMRES in terms of average iteration counts for different 
grid resolutions. For all the grid resolutions, the corresponding average numbers of GMRES iteration tabulated for the case 
with and without preconditioner, and the prescribed stopping tolerance are indicated in the bracket. It is observed that, 
without a preconditioner, the average GMRES iteration scales linearly with the linear grid refinement. By applying the simple 
preconditioner proposed in the present study, the average number of GMRES iteration with tolerance h2 is maintained at 2-3
iterations for all the grid resolutions, which is essentially grid-independent. Meanwhile, the preconditioner works effectively 
in conjunction with a fixed stopping tolerance of 10−12, which also outperforms the case without preconditioner.

5.3. Grid convergence study 2

To further justify the numerical accuracy, we conduct a grid convergence study for a vesicle in a shear flow. 
An initial vesicle shape is expressed by an ellipse X(θ) = (0.2 cos θ, 0.5 sin θ), and immersed in a fluid domain � =
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Fig. 3. Deformation of a vesicle in a quiescent fluid at t = 1.0. The corresponding elastic tension σ profile is plotted in terms of phase angle φ/π .

Table 4
Grid convergence study 1: performance of the preconditioned GMRES for solving the incre-
mental elastic tension δσ . The prescribed stopping tolerance is indicated in the bracket.

h Average GMRES iteration

Un-preconditioned (h2) Preconditioned (h2) Preconditioned (10−12)

1/32 4.6 2.4 8.6
1/64 10.1 2.7 13.5
1/128 20.6 3.0 16.1
1/256 40.8 3.2 16.7

Table 5
Grid convergence study 2: grid refinement analysis of the Eulerian variables u, v , and p.

h ‖uh − uref‖2 Rate ‖vh − vref‖2 Rate ‖ph − pref‖2 Rate

1/32 1.657 × 10−2 - 1.287 × 10−2 - 1.672 × 10−4 -
1/64 6.636 × 10−3 1.32 5.215 × 10−3 1.30 3.671 × 10−5 2.19
1/128 2.640 × 10−3 1.33 2.087 × 10−3 1.32 2.253 × 10−5 0.70
1/256 8.427 × 10−4 1.65 6.895 × 10−4 1.60 1.065 × 10−5 1.08

Table 6
Grid convergence study 2: grid refinement analysis of the Lagrangian variables X , Y , and σ .

h ‖Xh − Xref‖2 Rate ‖Yh − Yref‖2 Rate ‖σh − σref‖2 Rate

1/32 1.239 × 10−2 - 1.279 × 10−2 - 3.555 × 10−1 -
1/64 5.046 × 10−3 1.30 5.358 × 10−3 1.25 1.421 × 10−1 1.32
1/128 2.078 × 10−3 1.28 2.205 × 10−3 1.28 5.859 × 10−2 1.28
1/256 6.881 × 10−4 1.59 7.060 × 10−4 1.64 2.224 × 10−2 1.40

[−1, 1] × [−1, 1] with a shear rate of γ̇ = 1. We employ a time-step of �t = h/4, and with a series of grid resolution 
h = 1/32, 1/64, 1/128, 1/256 to conduct the linear refinement analysis. The stopping tolerance of all GMRES is set to h2. 
All the simulations are time-marching from time t = 0 to t = 5.0. In a similar manner, we utilize the numerical solution 
evaluated from a fine grid resolution of h = 1/512 as the reference solution. Then, the L2-norm errors are computed by 
evaluating the difference between the computed and interpolated reference solutions.

Table 5 shows the grid refinement analysis of the Eulerian variables, i.e., velocity components u and v , and pressure p, 
while Table 6 tabulates the grid refinement analysis of the Lagrangian variables, i.e. position vectors X and Y , and elastic 
tension σ . Similar to the prior grid convergence study, the numerical results demonstrate a first-order convergence rate 
in L2-norm for all the solution variables. Since the vesicle exhibits a tank-treading motion in a shear flow, we examine 
the convergence rate of the evolution frequency ω = 2π/ 

∫
�

dl
u·τ in addition to the enclosed area A and total arc-length. L. 

Table 7 tabulates the grid refinement analysis of these computed quantities. The conservation of the enclosed area and total 
arc-length of the vesicle are gradually improved at a first-order rate, as the grid is linearly refined, The evolution frequency 
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Table 7
Grid convergence study 2: grid refinement analysis of the enclosed area A, total arc-length L, and evolution 
frequency ω.

h |Ah − A0|/A0 Rate |Lh − L0|/L0 Rate |ωh − ωref| Rate

1/32 4.733 × 10−3 - 5.362 × 10−3 - 1.236 × 10−2 -
1/64 2.695 × 10−3 0.81 2.723 × 10−3 0.98 4.706 × 10−3 1.39
1/128 1.410 × 10−3 0.93 1.371 × 10−3 0.99 1.867 × 10−3 1.33
1/256 7.185 × 10−4 0.97 6.880 × 10−4 0.99 5.879 × 10−4 1.67

Fig. 4. A vesicle undergoes tank-treading motion in a shear flow at t = 5.0. The associated flow topology is illustrated by the pressure contour and velocity 
vectors. The resultant elastic tension σ profile is plotted in term of phase angle φ/π . (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

Table 8
Grid convergence study 2: performance of the preconditioned GMRES for solving the incre-
mental elastic tension δσ . The prescribed stopping tolerance is indicated in the bracket.

h Average GMRES iteration

Un-preconditioned (h2) Preconditioned (h2) Preconditioned (10−12)

1/32 5.2 1.6 14.1
1/64 11.4 2.2 15.5
1/128 26.6 3.6 18.8
1/256 53.6 5.0 20.0

ω also converges at first-order rate. Fig. 4 depicts the vesicle shape and its elastic tension profile at t = 5.0 using the grid 
resolution of h = 1/256. The pressure contour and velocity vectors illustrate the complex flow topology. The present method 
is capable of computing the elastic tension profile without numerical wiggles under an external hydrodynamical force. In 
Section 5.6, we further explore the tank-treading motion of the vesicle systematically.

We also repeat the simulation to investigate further the performance of the preconditioned GMRES to solve δσ by 
comparing with un-preconditioned GMRES using the same stopping tolerance h2 and preconditioned GMRES with tight 
stopping tolerance of 10−12. In a similar manner, Table 8 summarizes the performance of the GMRES method in terms of 
average iteration counts for different grid resolutions. We confirm that the preconditioner is still very effective (an only 
slight increase of iteration number as the grid is linearly refined) even when an external hydrodynamical force is applied.

The previous IB formulations [15–20] have suffered a time-step restriction of O (h2) or higher in practice. In contrast, the 
present method allows a larger time-step restriction of O (h). Given simulation time T , the number of time-steps required 
by the previous IB methods exhibits quadratic or higher growth with respect to the grid resolution. As a result, the total 
CPU time for the same simulation time T required by the previous IB methods would greatly exceed the one required by 
the present method. Comparing to the IB method with multifrontal solver [28], the present IBPM avoids explicit matrix 
entries and factorization at each time-step. Also, the expensive matrix inversion is replaced by FFT-based solvers. As shown 
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Fig. 5. CPU time complexity of IBPM with un-preconditioned and preconditioned GMRES method using stopping tolerance of h2 and preconditioned GMRES 
method using stopping tolerance of 10−12. The simulations are time-marching from time t = 0 to t = 5.0 using �t = h/4.

in Fig. 5, we report the CPU time complexity of IBPM with un-preconditioned and preconditioned GMRES method using 
the stopping tolerance of h2, and preconditioned GMRES method using stopping tolerance of 10−12. The computational cost 
required by IBPM is significantly lower than the previous IB method [28]. Fig. 5(a) and Fig. 5(b) show that both the CPU 
time per time-step and total CPU time of all the cases are indeed linearithmic O (1/h2 log 1/h2), which confirms that the 
FFT-based solvers are the dominant part of the computational cost.

5.4. Equilibrium shape in a quiescent fluid

We simulate the dynamics of a vesicle with an initial ellipse shape immersed in a quiescent fluid domain. Since the 
initial shape of the vesicle does not correspond to its equilibrium shape, it deforms to minimize the Helfrich energy until 
reaching its equilibrium state. We define the reduced area V = A/(π R0)

2 to classify the vesicle configuration with the 
length-scale R0 = L/2π . We perform the simulations of a vesicle with unit area, immersed in a quiescent fluid domain 
� = [−2, 2] ×[−2, 2], by varying its reduced area V = 0.5, 0.6, 0.7, 0.8, 0.9. The simulations are conducted using a time-step 
of �t = 0.25h and a fine grid resolution of h = 1/128. All the simulations are computed up to the steady state occurs.

Fig. 6 illustrates the initial states and equilibrium states of the vesicle with different reduced area V = 0.5, 0.6, 0.7, 0.8, 
0.9. We also use color contour to show the elastic tension distribution σ R2

0/cb along the interface. We observe that the 
results are congruent with the literature [23], which indicate that the reduced area V dictates the equilibrium shape of 
vesicle dynamics.

5.5. Vesicle dynamics in Poiseuille flow

We explore the vesicle dynamics in Poiseuille flow imposed with a parabolic distribution of the velocity u =
umax

[
1 − (y/L y)

2
]

where umax is the maximum velocity at the center line located at y = 0 and 2L y is the width of the 
channel. Fig. 7 is a schematic diagram of the initial placement of a vesicle in Poiseuille flow. When the vesicle is initially 
released at a position symmetric about the centerline, it develops a symmetric parachute shape. However, with a small 
offset from the centerline c0, the vesicle develops an asymmetric slipper shape and migrates. We define the dimensionless 
velocity w = umaxλt/R0 with the time-scale λt = νR3

0/cb to characterize the vesicle dynamics in Poiseuille flow. We per-
form a series of simulations of a vesicle with unit area and reduced area V = 0.7 by varying the offset from the centerline 
c0 = 0, R0, −R0, and w = 60 in a fluid channel � = [0, 384] × [0, 6]. The confinement ratio is L y/R0 ≈ 5. The simulations 
are time-marching from t = 0 to t = 96 using a time-step of �t = 0.125hλt/(w R0) and a grid resolution of h = 1/32.

Fig. 8 depicts the transient evolution of a vesicle in Poiseuille flow initially placed at (a) c0 = 0, (b) R0, and (c) −R0. 
The contour plot represents the elastic tension distribution σ R2

0/cb along the interface. When c0 = 0, the vesicle develops 
a parachute shape with negative curvature at the rear due to the symmetric distribution of the velocity. The symmetric 
distribution of elastic tension is identified on the interface with the lowest value occurring at the tips of the vesicle. Since 
the shear rate is minimal at the centerline, we notice higher elastic tension occurs at the region away from the centerline 
due to the increasing shear rate. When the vesicle is initially released at an offset from the centerline c0 = R0, the vesicle 
migrates to the centerline gradually while undergoes deformations; from an initially elliptical, to an asymmetric slipper 
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Fig. 6. Initial states and equilibrium states of a unit area vesicle with different reduced area V = 0.5, 0.6, 0.7, 0.8, 0.9, in conjunction with contour plot of 
the elastic tension distribution σ R2

0/cb along the interface.

Fig. 7. Schematic diagram of the initial placement of a vesicle in Poiseuille flow where c0 is an offset from the centerline.

shape, and finally to a parachute shape settles at the centerline. The formation of the asymmetric slipper shape is attributed 
to the unequal shear rate imposed by the Poiseuille flow on the vesicle, which is responsible for the lateral migration. As 
a result, asymmetric distribution of elastic tension is observed on the interface, with the highest value occurring in the 
top-front region and the lowest value occurring in the top region. Similar transient behaviors are also observed in the case 
c0 = −R0 in terms of lateral migration and the elastic tension distribution. In general, c0 appears to be a critical parameter 
that determines the vesicle shape evolution and lateral migration in Poiseuille flow. The shape evolution is qualitatively 
congruent with the numerical results from the literature [40,41].

5.6. Vesicle dynamics in a shear flow

We explore the vesicle dynamics in an applied shear flow. A vesicle undergoes a tank-treading motion once it reaches the 
equilibrium under the condition of the matched viscosity between the exterior and the interior fluids. The dimensionless 
shear rate is defined as χ ≡ γ̇ λt with the time-scale λt = νR3

0/cb to characterize the vesicle dynamics in shear flow. 
Systematically, we perform the simulations of a vesicle with unit area by varying its reduced area V = 0.5, 0.6, 0.7, 0.8, 0.9, 
and the dimensionless shear rate χ = 1, 10, 100 in a fluid domain � = [0, 8] × [0, 8]. The simulations are computed up to 
the steady state using a time-step of �t = 0.125hλt/χ and a grid resolution of h = 1/64.
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Fig. 8. Transient evolution of a vesicle with reduced area of V = 0.7 in Poiseuille flow with initial placement (a) c0 = 0, (b) c0 = R0, and (c) c0 = −R0. 
The dashed line represents the centerline of Poiseuille flow, and the solid dot represents the center of mass of the vesicle. For the initial placement c0 = 0, 
the vesicle develops a parachute shape. For the initial placement c0 = R0, and −R0, the vesicle migrates to the centerline while deforms to an asymmetric 
slipper shape, and finally to a parachute shape settles at the centerline.

Fig. 9 depicts the transient behavior of a vesicle with a reduced area of V = 0.5 under a shear flow with a dimensionless 
shear rate of χ = 1. In the beginning, the vesicle deforms, and orients itself to a fixed inclination angle with the flow di-
rection. After that, it undergoes tank-treading motion with a constant frequency proportional to the shear rate. Notably, the 
elastic tension distribution σ R2

0/cb is steady in terms of the phase angle φ/π in the steady tank-treading regime. Fig. 10
shows the equilibrium vesicle shapes with reduced area of V = 0.5, 0.6, 0.7, 0.8, 0.9 and with dimensionless shear rate of 
χ = 1, 10, 100. The elastic tension distributions are also depicted in the figure by contour plots and scaled individually for 
each case with the positive value (red-end) representing tension and the negative value (blue-end) representing compres-
sion. One can see that, the highest values occur in the middle of the vesicle, while the lowest values occur at both ends of 
the vesicle coinciding to the inclination angle.

To quantify the vesicle dynamics in a shear flow, Fig. 11 plots the inclination angle θ/π and the scaled tank-treading 
evolution frequency ωλt/χ of the vesicle in terms of reduced area V at their equilibrium shape under the shear flow. Both 
the quantities are observed to be independent of the dimensionless shear rate χ but directly proportional to the reduced 
area V . As shown in Fig. 11, the present numerical results are in a good agreement with Keller-Skalak analytical model [42]
and the numerical results obtained from the penalty IB method [20].

6. Conclusion

We have developed an IBPM based on an unconditionally energy stable scheme for modeling the vesicle dynamics in a 
viscous fluid. In light of the fractional step analysis of the previous works [29,30], we have exploited the algebraic structure 
of the underlying scheme and utilized the block LU decomposition technique to develop the numerical algorithm. Both the 
discrete fluid incompressibility and discrete interface inextensibility are satisfied simultaneously. This is in contrast to the 
previous approaches adopted by [15–20] in the context of IB method where a penalty formulation is applied by modifying 
the elastic tension energy, and a severe time-step must be imposed due to the stiffness of the penalization parameter. In 
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Fig. 9. Transient evolution of a vesicle with reduced area of V = 0.5, in a shear flow with dimensionless shear rate of χ = 1. The marker acts as a reference 
point to track the tank-treading motion of the vesicle.

Fig. 10. The equilibrium vesicle shapes of V = 0.5, 0.6, 0.7, 0.8, 0.9 under shear rate of χ = 1, 10, 100. The elastic tension distributions are represented 
by contour plots which are scaled individually for each case with the positive value (red-end) representing tension and the negative value (blue-end) 
representing compression.

conjunction with the implicit discretization of bending force, the present numerical algorithm significantly alleviates the 
severe time-step restriction, and the numerical stability is assured by the non-increasing of total discrete energy during the 
simulation. Another appealing advantage of IBPM is its computational efficiency. All the solution variables are decoupled 
while maintaining numerical stability and accuracy, which allows us to solve each of the variables independently.

For the present implementation, the overall algorithm is matrix-free and takes a linearithmic complexity. We utilize the 
FFT-based Poisson and modified Helmholtz solvers to compute the inverse of the Laplacian and modified Helmholtz opera-
tors, respectively. The implicit treatment of bending force and the solution of elastic tension are computed iteratively using 
the GMRES method, while each GMRES iteration requires a FFT-based solver and sparse matrix-vector products. To further 
accelerate the computation, we have constructed a simple and efficient GMRES preconditioner based on an incomplete 
LU factorization of the approximated Schur complement. The preconditioner has proved effective and shown essentially 
grid-independent for the GMRES iteration. We have demonstrated the accuracy and robustness of the present algorithm by 
simulating the vesicle dynamics in a quiescent fluid, Poiseuille flow, and shear flow. The numerical results are congruent 
with the analytical and other numerical results obtained from the literature.

The present IBPM can be extended to 3D. This extension is highly non-trivial due to the discretization of elastic tension 
and bending force terms on an evolving closed surface triangulation. The primary challenge is to develop a 3D uncondition-
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Fig. 11. A comparison of the present inclination angle and tank-treading frequency with the results obtained by the Keller-Skalak theory [42] and the 
penalty IB method [20]. Inclination angle θ/π and the scaled tank-treading evolution frequency ωλt/χ of the vesicle in terms of reduced area V at their 
equilibrium tank-treading regime. The solid line represents Keller-Skalak analytical model [42].

ally energy stable scheme (see the 2D counterpart in [28]) as in Eqs. (7)-(12). Currently, we had made progress in dealing 
with the elastic tension discretization in 3D. The discrete skew-adjoint property for the elastic tension and velocity on a 
triangulated closed surface can be proved and verified numerically. The aforementioned property is important to establish a 
discrete energy estimate. (More precisely, it can be used to prove that the elastic tension has no contribution on the decay-
ing energy rate when the surface incompressibility is imposed in 3D). In addition, to handle the bending force, it is required 
to approximate the mean curvature, Gaussian curvature, and also surface Laplacian of mean curvature on a triangulated 
closed surface, which poses another challenging task when the vesicle surface is not known a priori. The second author and 
his coworkers have published a 3D vesicle simulation [19] based on a nearly incompressible approach (without solving the 
elastic tension) in which the elastic tension and bending force are computed explicitly. Certainly, the scheme in [19] is not 
unconditionally energy stable and has a rather restrictive time-step. Based on those challenges mentioned above, we will 
leave the full 3D extension to future work. We envision a long-term study by utilizing IBPM to simulate more physiologically 
complex dynamics, including the effect of membrane elasticity; the dependence on the physical properties such as viscosity 
ratio and density ratio; as well as the external effect of gravity and electrohydrodynamics.
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