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We develop an immersed boundary projection method for solving the Naiver-Stokes 
equations and Newton-Euler equations to simulate the fluid-rigid body interactions in 
two and three dimensions. A novel fractional step algorithm is introduced for which fast 
solvers can be applied by exploiting the algebraic structure of the underlying schemes. 
The Navier-Stokes equations are decoupled while the Newton-Euler equations are solved 
simultaneously with a constraint equation of the immersed boundary force density. In 
contrast to previous works, the present method preserves both the fluid incompressibility 
and the kinematic constraint of the rigid body dynamics at a discrete level simultaneously 
while maintaining numerical stability. We demonstrate the numerical results of the present 
method involving spherical and spheroidal rigid bodies with a moderate range of density 
ratios, which are congruent with the results in the literature.

© 2022 Published by Elsevier Inc.

1. Introduction

The immersed boundary (IB) method [1] is a classical numerical method for simulating the fluid-rigid body interactions 
(FRI). The fundamental principle of the IB method is based on a Lagrangian description of the rigid body interface immersed 
in an Eulerian description of the fluid domain. The fluid and rigid body interactions are coupled through the convolution 
with a regularized delta function. Hence, the IB method requires minimal geometric information to handle complex moving 
rigid bodies without sophisticated mesh generation [2]. The numerical study of FRI is widely utilized in various engineering 
applications, including aerospace, energy, biomedical, etc. The transient dynamics are characterized by the constraints, i.e., 
kinematic no-slip boundary condition, Cauchy’s stress theorem, and fluid incompressibility, which pose a range of challenges 
in developing robust numerical schemes in terms of computational cost, accuracy, and numerical stability. In general, a 
majority of the proposed IB methods for solving FRI problems are the extension of the baseline IB methods for static 
and moving rigid bodies (one-way coupling) by incorporating the Newton-Euler equations to account for the rigid body 
dynamics. In the context of the IB formulation that uses a regularized delta kernel for the coupling of fluid and rigid body 
dynamics, a plethora of algorithms have been developed due to its simplicity and robustness. The fundamental difference 
between these proposed algorithms can be classified into several categories. For instance, direct forcing IB methods [3–9], 
penalty IB methods [10], and projection-based methods [11–15].
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The direct forcing approach [3] employs an explicit formulation of the FRI force to satisfy the constraint directly. The 
discrete delta kernel is utilized for the interaction of the fluid velocity and IB force density between the Eulerian and 
Lagrangian representations. It is observed that the approach does not enforce the kinematic constraint exactly and does 
not maintain the numerical stability when the density ratio is close to unity. An iterative procedure [6] is developed to 
enforce the kinematic constraint and the boundary conditions at the rigid body interface. On the other hand, stabilized 
schemes [6,7] have been proposed to extend the accessible density close to zero. However, these improvements impose 
additional algorithm complexity and computational overhead. Recently, a non-iterative procedure for the explicit forcing 
approach is proposed for spherical [8] and spheroid rigid bodies [9] to address the aforementioned drawbacks. The kinematic 
constraint of the rigid body dynamics and boundary conditions at the interface can be enforced while maintaining the 
numerical stability for arbitrary density ratio.

The penalty formulation has been adopted in the IB framework to impose the rigid body constraint as a velocity con-
straint for the Navier-Stokes equations [2]. The fundamental principle is to apply the constraint residual to act as a penalty 
force. This concept is further utilized to solve FRI problems [10] in 2D and 3D. However, there exist several drawbacks to 
the penalty IB formulation. Firstly, the penalty force inevitably introduces an empirical penalization parameter that highly 
depends on the problems. Achieving the optimal value of the parameter remains a challenging topic since it varies spatially 
and temporally throughout the simulation. In practice, the numerical stability is severely jeopardized due to the high value 
of the parameter. The computational time step is therefore restricted to O (h2) or higher, where h is the mesh size. Hence, 
satisfying the rigid body constraints consistently up to the local truncation error or a prescribed tolerance while maintaining 
numerical stability remains a critical numerical issue in the context of the IB method.

The projection-based method has been proposed by Taira and Colonius [16] for simulating incompressible flows over 
moving rigid bodies, based on the fractional step analysis of Perot [18] applied to the IB framework. The primary principle 
is to derive the linear system into a block-LU decomposition. A modified Poisson equation is required to solve the coupled 
singular IB force and fluid pressure, which act as the Lagrange multipliers to satisfy rigid body constraints and fluid in-
compressibility. A nullspace approach [17] based on the vorticity-stream function eliminates the need to solve the modified 
Poisson equation for fluid pressure. In [11], the nullspace approach is coupled with Newton-Euler equations to solve rigid 
body dynamics iteratively with a relaxation scheme. Similarly, an extension is proposed to solve the FRI problems involving 
thin deforming body dynamics [13]. Such nullspace approach is recently extended by [15] to solve the FRI problems by 
discretizing the coupled system implicitly in the target-fixed non-inertial frame. The original IBPM [16] is further extended 
by [12] to incorporate the rigid body dynamics by solving the Newton-Euler equations using the primitive variables. The 
fluid motion and rigid body motion are implicitly coupled, and stable solutions for very small density ratios are obtained.

The main objective of the present study is to develop an immersed boundary projection method (IBPM) for solving 
the FRI problems in 2D and 3D involving spherical and spheroidal rigid bodies with a moderate range of density ratios. 
Based on the fractional analysis [18,16], we propose a numerical algorithm to decouple the Navier-Stokes equations and 
Newton-Euler equations while maintaining numerical stability, accuracy, and efficiency. The remainder of the present study 
is organized as follows. In Section 2, we define the governing equations of a rigid body immersed in an incompressible 
viscous fluid domain. In Section 3, we describe the details of the computational domain, i.e., staggered finite difference 
framework and the interface representation by a triangulated surface composed of Lagrangian markers, followed by the 
numerical discretization of the governing equations. In Section 4, we derive the numerical algorithm of the IBPM for solving 
the FRI problems based on the fractional analysis [18,16]. Then, we demonstrate the grid convergence rates of Navier-Stokes 
solver and IBPM in Section 5. After the numerical validation, we further explore the dynamics of FRI in a quiescent fluid 
and shear flow by varying the critical parameters. The numerical results are justified by comparing to the existing analytical 
and numerical results obtained from the literature. Finally, we summarize the conclusion of the present study in Section 6.

2. Governing equations of motion

The fluid-rigid body interaction problem can be described by the Navier-Stokes equations for the incompressible fluid 
flow and the Newton-Euler equations for the combined translational and rotational dynamics of a rigid body [19], i.e.

ρ f

(
∂u

∂t
+ (u · ∇)u − ν�u + ∇p

)
=
∫

∂�s

F(α,β, t) δ (x − X(α,β, t)) dA in � f , (1)

∇ · u = 0, in � f , (2)

∂X(α,β, t)

∂t
=
∫

� f

u(x, t)δ (x − X(α,β, t)) dx = Uc + Q (t)ωc × (X(α,β, t) − Xc) on ∂�s, (3)

Ms
dUc

dt
= −

∫
∂�s

F(α,β, t)dA + (ρs − ρ f
) |�s|g, (4)

Is
dωc

dt
+ ωc × Isωc = −Q ᵀ(t)

∫
(X(α,β, t) − Xc) × F(α,β, t)dA, (5)
∂�s

2
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Fig. 1. Discretization of computational domain. (a) Fluid velocity (u, v, w) and fluid pressure p defined on the staggered grid. (b) A 1-ring of triangles 
around a vertex X = Xi

1, and the effective area (colored in red) of the vertex X on triangulated closed interface. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

where u(x, t) = (u, v, w) is the fluid velocity, p(x, t) is the fluid pressure, ρ f is the fluid density, and ν is the kinematic 
viscosity. Here, x = (x, y, z) is the Cartesian coordinates in the fluid domain � f . The pressure p acts as the Lagrange 
multiplier to enforce the fluid incompressibility, i.e. Equation (2) on the entire fluid domain � f . The boundary of the 
rigid body ∂�s is represented by a set of Lagrangian markers X (α,β, t) with two parameters α and β . Ms = ρs |�s| is 
the mass of the rigid body where ρs is its density. The moment of inertia tensor Is ∈ R3×3 of the rigid body is given by 
Is = ∫

�s
ρs(|�|2 I − � ⊗ �)dx where � = x − Xc . Uc(Xc, t) is the translational velocity of the rigid body at the its center of 

mass Xc , while ωc(Xc, t) = (ωx, ωy, ωz) is the angular velocity in the body-fixed non-inertial frame. Solving Equation (5)
for the angular velocity ωc in the non-inertial frame is favorable since the time-derivative of the moment of inertia tensor 
is absent in this case. Rotating the vector in the non-inertial frame to inertial frame or vice versa can be done using the 
orthogonal rotation matrix Q (t) which we will further elaborate in the following section. Note that, the Navier-Stokes 
equations and the Newton-Euler equations are coupled through the IB force density F(α, β, t). Lastly, g is the gravitational 
acceleration acting on the massive rigid body. Of course, Equations (1) to (5) should be accompanied with suitable initial 
and boundary conditions as we shall describe specifically later in numerical experiments.

3. Numerical discretization

In the present study, the fluid variables are defined on the staggered finite difference grid in a computational rectangu-
lar domain � f = [a, b] × [c, d] × [e, f ] as shown in Fig. 1(a). The pressure p is defined at the cell-center x = (xi, y j, zk) =
(a + (i − 1/2)�x, c + ( j − 1/2)�y, e + (k − 1/2)�z), i = 1, 2, · · · , Nx , j = 1, 2, · · · , N y , and k = 1, 2, · · · , Nz , while the ve-
locity components u, v , and w are defined at cell-edges (xi−1/2, y j, zk) = (a + (i − 1)�x, c + ( j − 1/2)�y, e + (k − 1/2)�z), 
(xi, y j−1/2, zk) = (a + (i −1/2)�x, c + ( j −1)�y, e + (k −1/2)�z), and (xi, y j, zk−1/2) = (a + (i −1/2)�x, c + ( j −1/2)�y, e +
(k − 1)�z), respectively. For brevity, we assume a uniform grid size of h = �x = �y = �z. To represent the immersed rigid 
body �s and its surface ∂�s , we define an embedded domain �s ⊂ � f and approximate by a triangulated surface com-
posed of the T -number of triangles and the K -number of vertices. Therefore k-th vertex or Lagrangian marker is denoted 
by Xk for all k ∈ {1, 2, · · · , K } and the three vertices which form the i-th triangle for all i ∈ {1, 2, · · · , T } are denoted by Xi

1, 
Xi

2, and Xi
3. Given k-th vertex, we set Xk = Xi

1, and subsequently define Xi
2 and Xi

3 accordingly in the counter clockwise 

direction, so that the unit normal vector of the i-th triangle ni = (Xi
2−Xi

1)×(Xi
3−Xi

1)

(

∣∣∣Xi
2−Xi

1)×(Xi
3−Xi

1)

∣∣∣ points to the outward direction of the 

surface. Referring to Fig. 1(b), let a set of T (Xk) triangles form the 1-ring surrounding Xk , then the effective local area at 
the vertex Xk is evaluated by

�A(Xk) =
∑

i∈T (Xk)

dAi

3
, dAi = 1

2

∣∣∣(Xi
2 − Xi

1

)
×
(

Xi
3 − Xi

1

)∣∣∣ .
In the present study, the governing equations (1)-(5) are discretized using backward Euler method as follows,

un+1 − un

�t
+ (un · ∇h

)
un − ν�hun+1 + ∇h pn+1 = 1

ρ f

K∑
k=1

Fn+1
k δh

(
x − Xn

k

)
�A(Xn

k), (6)

∇h · un+1 = 0, (7)
3
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∑
x

u(x)n+1δh
(
x − Xn

k

)
h3 = Un+1

c + Q
(
ωn+1

c × �0
k

)
∀k, (8)

Me
Un+1

c − Un
c

�t
= −

K∑
k=1

Fn+1
k �A(Xn

k) + (ρs − ρ f
) |�s|g, (9)

Ie
ωn+1

c − ωn
c

�t
+ ωn

c × Ieω
n
c = −

K∑
k=1

�0
k × Q ᵀFn+1

k �A(Xn
k). (10)

The spatial operators ∇h and �h are the second-order central difference approximations to the gradient and Laplacian on the 
staggered finite difference grid, respectively. ∇h· is the discrete divergence operator corresponding to the discrete gradient. 
For the nonlinear convective term, the skew-symmetric form is explicitly applied as 

(
un · ∇h

)
un = 1

2

(
un · ∇h

)
un + 1

2 ∇h ·(
un ⊗ un

)
. We employ the effective mass Me = (1 − ρ f /ρs)Ms and effective moment of inertia tensor Ie = (1 − ρ f /ρs)Is

for the rigid body to account for the internal fluid effect in �s [3]. The radius from the rigid body’s surface to its center is 
defined as �k = Xk − Xc , thus �0

k = X0
k − X0

c is defined at the initial time.
In Eqs. (8) and (10), Q is an orthogonal matrix denotes the rotation from body-fixed frame to inertial frame using a unit 

quaternion representation. Consider a rotation of angle α by the right-hand rule about an axis represented by a unit vector 
n, the unit quaternion representation for the rotation is defined as in [20]

q = [q0,q1,q2,q3]ᵀ =
[

cos
α

2
,nx sin

α

2
,ny sin

α

2
,nz sin

α

2

]ᵀ
, |q|2 = q2

0 + q2
1 + q2

2 + q2
3 = 1.

Therefore Q is defined as

Q =
⎡
⎣q2

0 + q2
1 − q2

2 − q2
3 2q1q2 − 2q0q3 2q0q2 + 2q1q3

2q0q3 + 2q1q2 q2
0 − q2

1 + q2
2 − q2

3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q0q1 + 2q2q3 q2
0 − q2

1 − q2
2 + q2

3

⎤
⎦ . (11)

Quaternions are elegant and relatively stable when used numerically to represent rotation compared to rotation matrices 
based on Euler angles. In addition, they avoid the drawback of gimbal lock caused by the Euler angles [20]. We note that 
employing the unit quaternion in the governing equations for the rotation representation yields a block skew-symmetric 
linear system, as we will see later in the following section. In practice, the Euler angles � can be evaluated from the 
quaternion via the relation [20]

� =
⎡
⎣φx

φy

φz

⎤
⎦=

⎡
⎢⎢⎢⎢⎣

tan−1
(

2(q0q1+q2q3)

1−2
(
q2

1+q2
2

)
)

sin−1 (2(q0q2 − q1q3))

tan−1
(

2(q0q3+q1q2)

1−2
(
q2

2+q2
3

)
)
⎤
⎥⎥⎥⎥⎦ .

The time derivative of the quaternion is then evaluated by the angular velocity components ωc = (ωx, ωy, ωz) and the 
quaternion itself, given by

dq

dt
= 1

2

⎡
⎢⎢⎣

0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

q0
q1
q2
q3

⎤
⎥⎥⎦= W q. (12)

It is necessary to preserve the constraint of a unit quaternion |q| = 1 to resolve the rigid body dynamics. In order to enforce 
the constraint, re-normalization is usually required at each time-step. However, this approach inevitably alters the relation 
between the four parameters of the quaternion, and modifies the rotation it represents [21]. To preserve the constraint 
without re-normalization, Equation (12) is evaluated by using the method of integrating factor and the backward Euler time 
integration, so the resulting exponential map is expressed by the Taylor series [22], i.e.

qn+1 = exp
(
W n+1�t

)
qn

=
⎡
⎣cos

(∣∣ωn+1
c

∣∣�t/2
)

I + 2∣∣∣ωn+1
c

∣∣∣ sin
(∣∣ωn+1

c

∣∣�t/2
)

W n+1

⎤
⎦qn. (13)

It is important to mention that aforementioned numerical scheme (6)-(10) is a linearly semi-implicit scheme though the 
governing equations (1)-(5) are nonlinear. The convective terms (u · ∇h)u and ωc × Ieωc are discretized explicitly. While 
the IB force is discretized implicitly, the spreading operator and the interpolation operator are linearized by lagging one 
4
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time step �t for the Lagrangian markers from t = (n + 1)�t to t = n�t . Therefore, lagging the spreading and interpolation 
operators results a linear system of equations instead of the nonlinear one. In the next section, we focus on the development 
of an efficient IBPM to solve the linearly semi-implicit system.

4. Immersed boundary projection method

The main objective of the present study is to develop an IBPM to solve the aforementioned discretized system of equa-
tions (Equations (6) to (10)) for u, p, F, Uc , and ωc efficiently. The present method follows the algebraic approach based on 
the fractional step analysis of Perot [18] applied to the IB framework by Taira and Colonius [16], for simulating incompress-
ible flows over moving rigid body. The primary principle is to cast the entire linear system into a block-LU decomposition 
and then make appropriate approximations to obtain several fractional steps that can be efficiently solved. To facilitate the 
numerical algorithm development, we consider first the governing equations in linear operator form as follows

Hun+1 + Gpn+1 + E S Fn+1 = r + bc1, (14)

Dun+1 ≡ −Gᵀun+1 = bc2, (15)

E I u
n+1 + R�n+1 = 0, �n+1 = [Un+1

c ωn+1
c

]ᵀ
, (16)

M�n+1 + E R Fn+1 = s, (17)

where H = 1
�t I − νL is the discrete modified Helmholtz operator, L is the discrete Laplacian operator, G is the discrete 

gradient operator, D ≡ −Gᵀ is the discrete divergence operator, and r = un

�t − (un · ∇h
)

un is the explicit source term of the 
Navier-Stokes equations including the nonlinear convective term. The term bc1 is the boundary condition resulting from 
the Helmholtz operator, whereas bc2 is the boundary condition resulting from the divergence operator. E I is the discrete 
interpolation operator that interpolates velocity components defined at the cell-edges onto the Lagrangian markers. E S is 
the discrete spreading operator that regularizes the singular surface force F over the adjacent Eulerian grid. R is the discrete 
rigid body motion operators related to the translation and rotational dynamics. E R represents the discrete stress tensor 
operator related to the force and torque components acting on the rigid body. M contains the effective mass Me , effective 
moment of inertia tensor Ie , and the discrete time derivative operator. The vector s represents the explicit source term of 
the Newton-Euler equations.

Following the fractional step analysis [16] in the context of IB framework, we apply the transformed forcing function F ≡
−(E I E S)

−1 E I Eᵀ
I F̂ = (ρ f h3/�A

)
F̂. Note that the Newton-Euler equations are also scaled accordingly, i.e. M̂�n+1 + Ê R F̂n+1 =

ŝ. We drop the overhead symbol 
(
.̂
)

hereafter for the ease of presentation. Since E I ≡ −Sᵀ and Ê R ≡ −Rᵀ , Equations (14)
to (17) produce a block skew-symmetric algebraic system of equations in the following form⎡

⎢⎢⎣
H G S 0

−Gᵀ 0 0 0
−Sᵀ 0 0 R

0 0 −Rᵀ M

⎤
⎥⎥⎦
⎡
⎢⎢⎣

un+1

pn+1

Fn+1

�n+1

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

r + bc1
bc2
0
s

⎤
⎥⎥⎦ . (18)

Now, our objective is to solve the linear system (18) efficiently. In the remainder of this section, we derive the IBPM 
based on the approach of [16]. To begin with, several augmented operators are first introduced;

G̃ = [G S 0
]
, R̃ =

⎡
⎣0 0 0

0 0 R
0 −Rᵀ M

⎤
⎦ , b̃c =

⎡
⎣bc2

0
s

⎤
⎦ , �n+1 =

⎡
⎣ pn+1

Fn+1

�n+1

⎤
⎦ .

Thus, Equation (18) can be written in a compact form as[
H G̃

−G̃ᵀ R̃

][
un+1

�n+1

]
=
[

r + bc1

b̃c

]
. (19)

It is realized that p and F act as the Lagrange multipliers to enforce the fluid incompressibility and the kinematic no-slip 
boundary condition on the surface, respectively. Subsequently, the block LU decomposition of Equation (19) reads[

H 0
−G̃ᵀ R̃ + G̃ᵀH−1G̃

][
I H−1G̃
0 I

][
un+1

�n+1

]
=
[

r + bc1

b̃c

]
In light of the approach by [16], H−1 can be approximated by B N ,[

H 0
−G̃ᵀ R̃ + G̃ᵀB N G̃

][
I B N G̃
0 I

][
un+1

�n+1

]
=
[

r + bc1

b̃c

]
+
[(

H B N − I
)

G̃�n+1

0

]
(20)
5
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where B N is the N-th order Neumann series expansion of H−1,

H−1
� B N = �t

(
I + �tνL + (�tνL)2 + · · · + (�tνL)N−1

)
= �t

N−1∑
k=0

(�tνL)k .

Let us define u∗ = un+1 + B N G̃�n+1 as an intermediate velocity. Then, we can rewrite Equation (20) in the following 
sequential form,

Hu∗ = r + bc1 + (H B N − I
)

G̃�n+1,(
R̃ + G̃ᵀB N G̃

)
�n+1 = G̃ᵀu∗ + b̃c,

un+1 = u∗ − B N G̃�n+1.

We observe that u∗ and �n+1 can be decoupled by omitting the term 
(

H B N − I
)

G̃�n+1 at the righthand side of the 
momentum equation which results in a fractional step procedure. Hence, the term 

(
H B N − I

)
G̃�n+1 is the corresponding 

splitting error occurring in the momentum equation. It should be noted that the splitting error for the kinematic constraint 
equations is absent since we are able to preserve −G̃ᵀun+1 + R̃�n+1 = b̃c in Equation (19). By setting B N = �t I (N = 1), 
the above scheme becomes

Hu∗ = r + bc1 + (H�t − I) G̃�n+1︸ ︷︷ ︸
first-order splitting error

+O
(
�t2
)
,

(
1
�t R̃ + G̃ᵀG̃

)
�n+1 = 1

�t

(
G̃ᵀu∗ + b̃c

)
,

un+1 = u∗ − �tG̃�n+1.

The leading first-order splitting error of momentum equation has the form (H�t − I) G̃�n+1 = −ν�tLG̃�n+1 due to H =
1
�t I − νL. As in the classical projection method [23,24] for solving the incompressible fluid flows, the first-order splitting 
error is neglected herein. The first equation involves solving the modified Helmholtz equation for u∗ by using a Fast Fourier 
Transform (FFT)-based solver. Once u∗ is computed, the remaining goal is to solve the above second equation, i.e., the 
coupled system of pn+1, Fn+1, and �n+1⎡

⎣GᵀG GᵀS 0
SᵀG SᵀS 1

�t R
0 − 1

�t Rᵀ 1
�t M

⎤
⎦
⎡
⎣ pn+1

Fn+1

�n+1

⎤
⎦= 1

�t

⎡
⎣Gᵀu∗ + bc2

Sᵀu∗
s

⎤
⎦ .

We first define an intermediate pressure p∗ = pn+1 − L−1GᵀSFn+1. Subsequently, applying the block LU decomposition again 
yields

Lp∗ = − 1
�t (Gᵀu∗ + bc2) ,[

SᵀS + SᵀGL−1GᵀS 1
�t R

− 1
�t Rᵀ 1

�t M

][
Fn+1

�n+1

]
= 1

�t

[
Sᵀu∗

s

]
−
[

SᵀGp∗
0

]
,

pn+1 = p∗ + L−1GᵀSFn+1,

(21)

where L ≡ −GᵀG is the discrete Laplacian operator. It should be noted that, pn+1 and 
[
Fn+1 �n+1

]ᵀ
are decoupled without 

compromising the accuracy since the performed block LU decomposition is exact. A constraint equation for the IB force 
density is derived as

Sᵀ
(

S + GL−1GᵀS
)

Fn+1 + 1

�t
R�n+1 = Sᵀ

(
u∗

�t
− Gp∗

)
that satisfies the boundary condition at the surface and the kinematic constraint of the fluid-rigid body interaction. The 
Newton-Euler equations are now solved simultaneously with the constraint equation. It is observed that, in case of the 
neutrally buoyant rigid body (ρs/ρ f = 1 or the operator M = 0 in Equation (21)), the translational and angular velocity of 
the rigid body � act as the Lagrange multipliers to satisfy the force-free and torque-free constraints of rigid body motion, 
respectively. That is, −RᵀFn+1 = s or precisely,

K∑
k=1

Fn+1
k �A(Xn

k) = 0,

K∑
�0

k × Q ᵀFn+1
k �A(Xn

k) = 0.
k=1

6
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The numerical stability is not violated as the linear system in Equation (21) remains non-singular when the operator M = 0. 
Hence the present method is capable of computing a moderate range of density ratios including the unity without any 
modification. On the other hand, the method in [12] is unstable for the neutrally buoyant rigid body case due to the 
singularity of the inertial matrix. Although a modified Poisson system was proposed to circumvent this issue, it was not 
practically implemented therein.

For convenience, the numerical algorithm of the IBPM for solving the fluid-rigid body interaction problem is summarized 
in Algorithm 1. We also analyze the computational efficiency for each computation step in Algorithm 1. For the current 
implementation, the discrete Laplacian operator L and discrete modified Helmholtz operator H are diagonalizable in Fourier 
space. We, therefore, do not explicitly construct the inversion of H and L but applying the FFT-based modified Helmholtz 
and Poisson solvers directly to compute the intermediate velocity u∗ , intermediate pressure p∗ and pressure pn+1 in Line 4, 
Line 5, and Line 7, respectively. In Line 6, we apply the GMRES iterative solver [25] to solve the coupled system of equations 
for Fn+1 and �n+1. Each GMRES iteration requires applying one FFT-based Poisson solver using a reverse communication 
mechanism and sparse matrix-vector products. The rigid body has at most six degrees of freedom in 3D, and the size of the 
sparse matrix-vector product is proportional to the number of Lagrangian markers, which is one dimension lower than the 
Eulerian grid number. Hence the computational cost is dominated by the number of the FFT-based Poisson solver applied. 
In practice, an average number of 1-5 GMRES iterations is required to converge to the prescribed error tolerance of order h2. 
Once the pressure pn+1 and force density Fn+1 are available, we update the intermediate velocity u∗ at Line 8 to the velocity 
un+1 that satisfy both the discrete fluid incompressibility and discrete kinematic no-slip boundary condition on the surface. 
Note that, the present velocity interpolation and boundary force spreading operators are all time-lagged in the discrete delta 
function computations so that an O (�t) error is introduced to the boundary condition. Instead of using the interpolation 
formula to compute the surface velocity and updating the surface position vector Xn+1, we adopt the principle of rigid body 
dynamics as in [26]. In Line 9, the position vector of the rigid body’s center of mass Xn+1

c is computed once the translational 
velocity Un+1

c is obtained. Then, in Line 10, we evaluate the unit quaternion qn+1 by performing time integration on W n+1

and 
∣∣ωn+1

c

∣∣ as derived in Equation (13). At last, we compute the matrix Q and update the position vector Xn+1 of the rigid 
body in Line 11. At this point, one can evaluate the angular velocity in the inertial frame ω̄n+1

c = Q ωn+1
c . Clearly, Line 8

to Line 11 are just variable substitutions, so the overall computational cost is dictated by the cost of the total number of 
FFT-based fast solvers applied.

Algorithm 1: IBPM for fluid-rigid body interaction problem.

1 Initialize Eulerian variables u0, p0.
2 Initialize Lagrangian variables X0

c , X0, F0, �0 = [U0
c ω0

c ]T .
3 while tn+1 ≤ Tfinal do
4 Solve Hu∗ = r + bc1 with FFT-based modified Helmholtz solver.

5 Solve Lp∗ = − 1
�t (Gᵀu∗ + bc2) with FFT-based Poisson solver.

6 Solve 
[

Sᵀ S + SᵀGL−1Gᵀ S 1
�t R

− 1
�t Rᵀ 1

�t M

][
Fn+1

�n+1

]
= 1

�t

[
Sᵀu∗

s

]
−
[

SᵀGp∗
0

]
with GMRES. At each iteration, FFT-based Poisson solver is applied 

using reverse communication mechanism.
7 Solve pn+1 = p∗ + L−1Gᵀ SFn+1 with FFT-based Poisson solver.
8 Compute un+1 = u∗ − �t

(
Gpn+1 + SFn+1

)
.

9 Compute Xn+1
c = Xn

c + �t
(
Un+1

c − Un
c

)
.

10 Compute qn+1 =
[

cos
(∣∣ωn+1

c

∣∣�t/2
)

I + 2∣∣∣ωn+1
c

∣∣∣ sin
(∣∣ωn+1

c

∣∣�t/2
)

W n+1

]
qn , and then Q by Eq. (11).

11 Compute Xn+1
k = Xn+1

c + Q �0
k , ∀k.

12 end

The present IBPM holds a key feature such that both the discrete fluid incompressibility and discrete kinematic no-
slip boundary condition on the rigid body surface are satisfied simultaneously at every time step, i.e., −Gᵀun+1 = bc2 in 
Equation (15) and −Sᵀun+1 = −Rᵀ�n+1 in Equation (16). For completeness, we state the proof as follows. By applying the 
discrete divergence operator −Gᵀ on un+1 in Line 8 of Algorithm 1 yields

− Gᵀun+1

= − Gᵀu∗ + �t
(
GᵀGp∗ + GᵀSFn+1)

=�tLp∗ + bc2 + �t
(
GᵀGpn+1 + GᵀSFn+1) by Line 5

= − �t
(
GᵀGpn+1 + GᵀSFn+1)+ bc2 + �t

(
GᵀGpn+1 + GᵀSFn+1) by L ≡ −GᵀG and Line 7

=bc2.

Hence, the discrete fluid incompressibility is satisfied. In a similar manner, by applying the interpolation operator −Sᵀ on 
un+1 in Line 8 of Algorithm 1 yields
7
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− Sᵀun+1

= − Sᵀu∗ + �t
(

SᵀGpn+1 + SᵀSFn+1)
= − �t

(
SᵀGp∗ + SᵀGL−1G SFn+1 + SᵀSFn+1)− R�n+1 + �t

(
SᵀGpn+1 + SᵀSFn+1) by Line (6)

= − �t
(

SᵀGpn+1 − SᵀGL−1G SFn+1 + SᵀGL−1G SFn+1)− R�n+1 + �t
(

SᵀGpn+1) by Line (7)

= − R�n+1.

Hence, the discrete kinematic no-slip boundary condition on the body surface is also satisfied.
We conclude this section by summarizing the differences and novelty of the present Algorithm 1 comparing to the 

previous similar work in [12] as follows.

• At the prediction step, we solve the fluid velocity u∗ (Line 4) and the pressure p∗ (Line 5) sequentially while in [12], 
the authors solve the fluid velocity and rigid body velocities (the translational velocity Uc and angular velocity ωc) 
altogether. So in our prediction step, FFT-based fast modified Helmholtz and Poisson solvers can be efficiently applied 
to find u∗ and p∗ , respectively. Thus, our prediction step remains identical to the original pressure projection method 
for the incompressible Navier-Stokes equations. In Line 6, we directly solve the Newton-Euler equations for the rigid 
body velocities without the prediction step to ensure the discrete fluid incompressibility and discrete kinematic no-slip 
boundary condition on the body surface at every time step, i.e., −Gᵀun+1 = bc2 and −Sᵀun+1 = −Rᵀ�n+1.

• In Line 6, the immersed boundary force density Fn+1 and the rigid body velocities �n+1 are solved in a coupled linear 
system while in [12], the IB force density and the pressure are solved together instead. One can immediately see the 
size of the present linear system is significantly smaller than the one used in [12]. Precisely speaking, in 3D case, the 
number of unknowns in present linear system is 3K + 6, while the number of unknowns in the linear system in [12]
is 3K + N3; here, K denotes the number of Lagrangian markers and N = Nx = N y = Nz denotes the grid number used 
in each coordinate direction. In addition, the present linear system in Line 6 can be solved via GMRES iterative method 
while each GMRES iteration requires applying one FFT-based Poisson solver using a reverse communication mechanism 
and sparse matrix-vector products.

• We apply the present IBPM to fluid-rigid body interaction problems using 2D and 3D spherical and spheroidal rigid 
bodies (see Section 5), while in [12] the rigid body is a 2D circular cylinder. Certainly, we believe that the proposed 
method in [12] can be applied to 3D different geometries too. However, from the authors’ point of view, 3D fluid-rigid 
body interaction problem is significantly more complex than its 2D counterpart, and the extension is non-trivial. For 
instance, in the present study, we employ an orthogonal rotation matrix represented by a unit quaternion in 3D fluid-
rigid body interaction problems which is not needed in 2D case. By introducing such rotation matrix, the dynamics of 
3D rigid bodies of arbitrary geometry can be computed efficiently.

5. Numerical results

5.1. Grid convergence study for the Navier-Stokes solver

First, we perform a grid convergence study for the present Navier-Stokes solver using a fully three-dimensional analytic 
solution based on the generalized Beltrami flows [27], i.e.

uexact = 4
√

2

3
√

3

{
[a cos(kx) + b sin(kx)] [−c sin(ky) + d cos(ky)] [e cos(kz) + f sin(kz)]

− [−a sin(kz) + b cos(kz)] [c cos(kx) + d sin(kx)] [e cos(ky) + f sin(ky)]

}
e3νk2t u0,

vexact = 4
√

2

3
√

3

{
[a cos(ky) + b sin(k)] [−c sin(kz) + d cos(kz)] [e cos(kx) + f sin(kx)]

− [−a sin(kx) + b cos(kx)] [c cos(ky) + d sin(ky)] [e cos(kz) + f sin(kz)]

}
e3νk2t v0,

wexact = 4
√

2

3
√

3

{
[a cos(kz) + b sin(kz)] [−c sin(kx) + d cos(kx)] [e cos(ky) + f sin(ky)]

− [−a sin(ky) + b cos(ky)] [c cos(kz) + d sin(kz)] [e cos(kx) + f sin(kx)]

}
e3νk2t w0,

where
8
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Fig. 2. Grid refinement analysis of fluid solution variables, i.e. the velocity u and pressure p for the Navier-Stokes solver.

a = −
√

3 + R

2
√

1 + R2
, b = 1 − √

3R

2
√

1 + R2
, c =

√
3 − R

2
√

1 + R2

d = 1 + √
3R

2
√

1 + R2
, e = 1√

1 + R2
, f = R√

1 + R2
.

Here, R = 1/
√

3, k is the wavenumber, L = 2π/k is the wavelength, and u0, v0, w0 are the reference velocity components. 
Note that all the velocity components depend non-trivially on all three Cartesian coordinate directions. In the present study, 
we set u0 = v0 = w0 = 1, L = 1 and define the periodic fluid domain � f = [0, 1] × [0, 1] × [0, 1]. For a linear refinement, 
a time step of �t = h is employed in conjunction with a series of grid resolution h = 1/32, 1/64, 1/128, 1/256. All the 
simulations are time-marched from t = 0 to t = 1.0. To quantify the grid convergence rate of the solution variables, the 
normalized L2-norm errors are evaluated by taking the difference between the numerical solutions and analytic solution. 
Fig. 2 shows the grid refinement analysis of the Eulerian variables, i.e., the fluid velocity u, and pressure p. The numerical 
results indicate that the velocity and the pressure both exhibit first-order convergence rate in L2-norm as h decreases.

5.2. Grid convergence study for the immersed boundary projection method

We conduct a grid convergence study for the IBPM by simulating the sedimentation of a 3D oblate spheroid in a qui-
escent fluid. The shape of the oblate spheroid is parameterized by X (α,β) = (a cosα sinβ,b sinα sinβ,b cosβ), with a < b. 
The aspect ratio of the oblate spheroid is defined as ar = b/a =

(
1 + √

5
)

/2. Given an equivalent spherical diameter D =
3
√

6V s/π = 1, the oblate spheroid is initially placed in a quiescent fluid domain � f = [−2D, 2D] × [−2D, 2D] × [−2D, 2D]
with periodic boundary condition at all directions, and inclined at angle � = (−π/4, −π/4, −π/4). A time step of �t = h/4
is employed in conjunction with a linear refinement of grid resolution h = D/16, D/32, D/64, D/128. Referring to Fig. 3, 
the mesh of the oblate spheroid is defined by a linear transformation applied to the mesh of a sphere which is created by 
successive geodesic subdivisions from a dodecahedron, i.e. dividing pentagons into triangles with a center point. In practice, 
the size of the Lagrangian mesh should be chosen as �A ≈ O (h2). The number of markers is therefore inversely propor-
tional to the mesh width. According to the numerical experiments, the optimal ratio of �A to h2 is found to be ranging 
from 1/2 to 2 in order to maintain the desired accuracy and robustness of the IBPM. A higher ratio will cause fluid leakage 
across the immersed boundary, whereas a smaller ratio will degrade the robustness and increase the number of iterations of 
GMRES required to converge to a prescribed tolerance, thus increasing the total computation time. The density ratio is set as 
Rρ = ρs/ρ f =

(
1 + √

5
)

/2 with ρ f = 1, and the gravitational acceleration is set as g = (0, −1, 0). The stopping tolerance of 

GMRES is set to be h2. All the simulations are time-marching from t = 0 to t = 1.0. The average number of GMRES iteration 
with tolerance h2 is maintained at 1 to 4 iterations for all the grid resolutions, which is essentially grid-independent. The 
numerical solution of a fine grid resolution h = D/256 is taken as the reference solution since the analytical solution is not 
available. The grid convergence rate of the solution variables is quantified using the normalized L2-norm errors evaluated 
by taking the difference between the numerical solutions and interpolated reference solutions. Fig. 4 shows the grid refine-
ment analysis of the velocity u, pressure p, and IB force density F. The numerical results indicate that both the Eulerian and 
Lagrangian variables exhibit an average of first-order convergence rate in L2-norm. Nevertheless, a slightly better accuracy 
than formally first-order is observed at finer grid resolution primarily due to the adoption of the interpolated numerical 
9
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Fig. 3. (a) A mesh of a sphere created by successive geodesic subdivisions from a dodecahedron. (b) A mesh of an oblate spheroid created by a linear 
transformation applied to the mesh of a sphere.

Fig. 4. Grid refinement analysis of the velocity u, pressure p, and force density F for the IBPM.

solution from the finest mesh as the reference solution since the analytical solution is not available. This practice inevitably 
causes certain deviations, and should be perceived in the present convergence study.

5.3. Neutrally buoyant circular cylinder in a shear flow

We consider the dynamics of a neutrally buoyant 2D circular cylinder Me = Ie = 0 with diameter D in a shear flow 
u = (γ y/L, 0). Note that in 2D, Ie is simply a scalar representing the moment of inertia about the z-axis. The circular 
cylinder is initially placed in a channel with a height of L = 4D and at an offset of D vertically from the centerline of 
the channel. Following the previous work [12], the Reynolds number based on the shear rate is Reγ = γ L2/ν = 40. Under 
the prescribed condition, the cylinder rotates and migrates from the initial position to the centerline of the channel. The 
cylinder eventually settles its position at the centerline and continues to rotate at a constant rate of 0.47γ approximately. 
We time-march the simulation from γ t = 0 to γ t = 256 using a mesh size of h = D/32 with D = 1 and a time step of 
�t = h/L. The average number of GMRES iteration is 2.16 in this case.

Fig. 5 shows the comparison between the present study and the numerical solution of [12]. Both the transient profile of 
the vertical displacement y/L and angular velocity in the inertial frame ω̄z/γ are in excellent agreement with the numerical 
solution of [12]. In contrast to the previous studies, the present method eliminates the oscillation in the migration trajectory 
observed in the previous studies. This oscillating behavior in the IB simulation of fluid-rigid body was referred to as ‘grid 
locking’ [28]. As a concluding remark, the present method shows the ability to efficiently and stably solve the fluid-rigid 
body interaction problem for a neutrally buoyant rigid body without any ad hoc numerical modification.

5.4. Sedimentation of an elliptic cylinder

We consider a 2D elliptic cylinder falling under gravity force in a rectangular domain filled with quiescent fluid. The 
minor and major axes of the elliptic cylinder are set as D and 2D , respectively. The width of the rectangular domain is 
10
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Fig. 5. Numerical solution of a neutrally buoyant circular cylinder in a shear flow compared to the previous study of [12]. (a) Vertical displacement y/L. (b) 
Angular velocity ω̄z/γ .

L = 8D , and the height is 20L. Here, as in [29,30], we use the fixed side walls for which the homogeneous Dirichlet boundary 
condition is imposed for the velocity while the homogeneous Neumann boundary condition is imposed for the pressure in 
the Navier-Stokes equations. Given the density ratio of the solid cylinder to the fluid Rρ = ρs/ρ f , the corresponding mass 
and inertia are Ms = Rρρ f (π D2/2) and Is = 5Ms D2/4, respectively. Note that in 2D, Is is simply a scalar representing the 
moment of inertia about the z-axis.

Following the previous works [29,30], three cases of different density ratio are considered, i.e. Rρ = 1.01, 1.1, 1.5 with 

the corresponding Galileo number Ga = 10, 30, 70, where Ga :=
√

|Rρ − 1||g|D3/ν . The elliptic cylinder is initially posi-

tioned at x = L/2 and y = 15L, inclined at angle φz = −π/4. Given the time λt = √
D/ |g|, we time-march the simulation 

using a mesh size of h = D/16 with D = 1 and a time step of �t = λth/L. The sedimentation of the elliptic cylinder of three 
different density ratios Rρ with ρ f = 1 is simulated starting from its prescribed initial position until it reached the bottom 
surface. The corresponding average number of the GMRES iteration for the simulations are 1.1, 1.3, 2.2, respectively.

Fig. 6 shows the snapshots of the sedimentation of an elliptic cylinder from the position y = 10L to y = 15L for (a) 
Rρ = 1.01, (b) Rρ = 1.1, (c) Rρ = 1.5. Fig. 7(a) and (c) shows the comparison between the present numerical solutions and 
the numerical results of [30] based on IB-lattice Boltzmann method. Fig. 7(b) shows the comparison between the present 
numerical solution and the numerical solution of [29] based on the finite element method. As shown in Fig. 6, all the elliptic 
cylinders tremendously rotate and drift away from their initial position right after released from their initial position and 
angle. Subsequently, the elliptic cylinders with Rρ = 1.01 and Rρ = 1.1 are gradually orientating their major axis normal to 
the direction of gravity force and migrating toward the initial horizontal position x = L/2 while descending to the bottom 
surface of the domain. Referring to Fig. 7 (a)-(d), the trajectory of the elliptic cylinder with Rρ = 1.1 exhibits a small ampli-
tude in contrast to the elliptic cylinder with Rρ = 1.01. As shown in Fig. 7 (e)-(f), the elliptic cylinder with Rρ = 1.5 shows 
a large amplitude of zig-zag motion on the contrary, while descending to the bottom surface. This behavior is attributed 
to the fluctuating drag forces acting on the cylinder. The present numerical solutions show an excellent agreement with 
the numerical solutions from the literature. The present method correctly captures the flow physics of the sedimentation 
of the elliptic cylinder of different density ratios, including the one close to unity which poses a challenge in the previous 
numerical studies.

5.5. Sedimentation of a sphere

We consider the sedimentation of a 3D sphere falling under gravity in a rectangular domain filled with quiescent fluid. 
The diameter of the sphere is D . The height of the rectangular domain is L = 10D , while the width and length of the 
rectangular domain is (2/3)L. Given the density ratio of the sphere to the fluid Rρ = ρs/ρ f , the corresponding mass and 
inertia are Ms = Rρρ f (π D3/6) and Is = Ms D2/10I, respectively, where I is the identity matrix.

Following the previous experimental work [31] using a particle image velocimetry system, three cases of different density 
ratio are considered, i.e. Rρ = 1.155, 1.164, 1.167 with the corresponding Galileo number Ga = 5.88, 19.85, 38.87. Initially, 
the sphere is positioned at y = 8D from the bottom surface. We time-march the simulation using a mesh size of h = 5D/96
with D = 1 and a time step of �t = h/4D . The sedimentation of the sphere of three different density ratios Rρ with ρ f = 1
11
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Fig. 6. Snapshots of the sedimentation of an elliptic cylinder from y = 10L to y = 15L. (a) Rρ = 1.01, (b) Rρ = 1.1, (c) Rρ = 1.5. A marker is used to track 
the orientation of the elliptic cylinder.

is computed starting from its prescribed initial position until it reached the bottom surface. The corresponding average 
number of the GMRES iteration for the simulations are 1.3, 1.1, 4.3, respectively.

Fig. 8(a) shows the vertical trajectory of the sphere with respect to time. The present numerical results agree well 
with the experimental results for all three cases. Fig. 8(b) shows the falling normalized vertical velocity of the sphere with 
respect to time. We observe a slight discrepancy between the present numerical results and experimental results in terms of 
maximum terminal velocity. Nevertheless, the present numerical results show that the acceleration and deceleration profiles 
are captured correctly for all three cases.

5.6. Neutrally buoyant ellipsoid in a shear flow

We consider the dynamics of a neutrally buoyant 3D prolate spheroid Me = 0, Ie = 0 in a planar shear flow u =
(γ (y/L − 1/2),0,0). The prolate spheroid is parameterized by X (α,β) = (a cosα sin β,b sinα sin β,a cosβ), with a < b. The 
aspect ratio is defined as ar = b/a =

(
1 + √

5
)

/2. Given an equivalent spherical diameter D = 3
√

6V s/π = 1, the computa-

tional domain’s length, width, and height are set as L = 8D . The spheroid is initially placed at the center of the domain with 
zero translational and angular velocity. The initial orientation is set as � = (0, −π/4, 0). The Reynolds number based on the 
shear rate is Reγ = γ D2/ν = 1. We time-march the simulation from γ t = −2 to γ t = 256 using a mesh size of h = D/32
and a time step of �t = h/L. In order to minimize the error caused by abrupt start, the spheroid is fixed from γ t = −2 to 
γ t = 0, and a slowly increasing shear flow u = (γ (y/L − 1/2) sin(π(γ t + 2)/4),0,0) is imposed. Afterward, the spheroid is 
free to move from γ t = 0 to γ t = 256. The average number of GMRES iteration for the simulation is 3.9.

Fig. 9 depicts the transient profiles of the prolate spheroid in the planar shear flow from γ t = 1 to γ t = 16. The prolate 
spheroid tumbles in the flow-gradient plane periodically and is constrained to rotation in the shear plane. The distribution 
of the normalized surface shear stress magnitude is also depicted in the figure by contour plots. One can observe that, 
the higher values occur at the surface normal to the flow direction. In addition, the maximum shear stress is observed to 
be varying with time due to the varying orientation angle while the minimum shear stress always occurs at the center of 
rotation. Fig. 10 compares the present numerical results with Jeffery’s analytical solution [32] in terms of angular velocity in 
the inertial frame about z-axis ω̄z and the corresponding orientation of the ellipsoid φz with respect to time. The analytical 
solution [32] is given by

tanφz = ar tan

(
2πt

T
+ φ0,z

)
, T = 2π

(
ar + a−1

r

)
γ

,

ω̄z = γ
2 2

(
b2 cos2 φz + a2 sin2 φz

)
,

a + b
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Fig. 7. Numerical solution of the sedimentation of an ellipse cylinder compared to the previous numerical solutions [29,30]. (a), (c), (e) are the trajectory 
of the ellipse cylinder with Rρ = 1.01, Rρ = 1.1, Rρ = 1.5, respectively. (b), (d), (f) are the orientation angle for the cases Rρ = 1.01, Rρ = 1.1, Rρ = 1.5, 
respectively.

where φ0,z is the initial orientation of the ellipsoid. Clearly from the analytical solution, the specific ellipsoid orbit depends 
on the shear rate, its aspect ratio, and initial orientation. The present numerical results and the theoretical solutions are in 
excellent agreement, hence validating the present method in resolving the tumbling motion of the ellipsoid.

6. Conclusion

In the present study, we have developed an immersed boundary projection method (IBPM) for solving the coupled 
Naiver-Stokes and Newton-Euler equations to simulate the fluid-rigid body interaction problems in 2D and 3D, applicable 
to different geometries and density ratios. We solve the Naiver-Stokes equations in the inertial frame, while for the rigid 
body dynamics, we solve translational velocity in the inertial frame and angular velocity in the non-inertial frame. Thus the 
13
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Fig. 8. Numerical solution of the sedimentation of a sphere compared to the experimental data of [31]. (a) Vertical trajectory of the sphere with respect to 
time. (b) Falling vertical velocity of the sphere with respect to time.

Fig. 9. Transient profiles of the prolate spheroid tumbles in the planar shear flow from γ t = 1 to γ t = 16. The contour levels are representing the distribu-
tion of the normalized surface shear stress magnitude.

time derivative of the moment of inertia tensor can be eliminated in this case. Rotating the vector in the non-inertial frame 
to the inertial frame or vice versa can be done using an orthogonal rotation matrix represented by the unit quaternion. 
Applying the transformed force density, the governing equations can be cast in a block skew-symmetric algebraic form.

By utilizing the fractional step analysis of the IB formulation [16], we have exploited the algebraic structure of the 
underlying scheme and applied the block LU decomposition technique to develop the numerical algorithm. As a result, all 
the Eulerian variables are decoupled while maintaining numerical stability and accuracy, which allows us to solve each of 
14
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Fig. 10. Comparison between the present numerical solution and analytical solution [32]. (a) Angular velocity ω̄z . (b) Orientation angle φz .

the Eulerian variables independently. Furthermore, the Newton-Euler equations are coupled with the constraint equation of 
the IB force density. Nevertheless, the coupled system can be solved with ease since the rigid body has at most six degrees 
of freedom in 3D, and the number of Lagrangian markers is one dimension lower than the Eulerian grid number.

The key feature of the present IBPM lies in its computational efficiency. The governing equations can be decomposed 
into several sub-equations and then solved sequentially in a single time step. At the same time, both the discrete fluid 
incompressibility and discrete kinematic no-slip boundary condition can be satisfied simultaneously. For the present im-
plementation, we utilize the FFT-based Poisson and modified Helmholtz solvers to compute the inverse of the Laplacian 
and modified Helmholtz operators, respectively. The coupled system for the IB force density and rigid body velocities is 
computed iteratively using the GMRES method. Each GMRES iteration requires only to call a FFT-based solver once and 
sparse matrix-vector products. In addition, the numerical results have shown that the average number of GMRES iteration 
is between 1 to 5. In contrast to the conventional IB formulation, numerical stability is maintained naturally in the present 
method for a moderate range of density ratios including unity without any ad hoc modification, which is the primary stabil-
ity issue in the previous studies [3,12] of the immersed boundary method. The present IBPM can deal with a larger density 
ratio since the IBPM is derived carefully from the implicit discretization of the coupled Navier-Stokes and Newton-Euler 
system. Note that the rigid body dynamics will dictate the system in case of a large density ratio. Therefore, the time step 
(CFL condition) will be restricted by the rigid body dynamics rather than the fluid flows.

We have demonstrated the accuracy and robustness of the present algorithm by solving the fluid-rigid body interac-
tion problems in 2D and 3D involving spherical and spheroidal rigid bodies with a moderate range of density ratios. The 
numerical results are agreed well with the analytical and previous numerical results from the literature. Moreover, the com-
putational framework provides excellent versatility in the implementation and future extension. We envision a long term 
study utilizing IBPM to simulate more physically complex fluid-rigid body interaction dynamics, including conjugate heat 
transfer, electrohydrodynamics and magnetohydrodynamics.
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Appendix A

In the immersed boundary framework, the rigid body surface is considered to be infinitesimally thin and treated as a 
singular force generator. To write the equations as a whole, the rigid body is filled with the internal fluid. The internal fluid 
effect has taken into account in �s by considering the effective mass Me = (1 − ρ f /ρs)Ms and effective moment of inertia 
tensor Ie = (1 − ρ f /ρs)Is for the rigid body. As shown by [3], this internal fluid effect can be included in Equation (4) and 
Equation (5) as follows

ρs |�s| dUc

dt
= −

∫
∂�s

F(α,β, t)dA + ρ f
d

dt

∫
�s

udx + (ρs − ρ f
) |�s|g, (22)

Is
dωc

dt
+ ωc × Isωc = −Q ᵀ(t)

∫
∂�s

(X(α,β, t) − Xc) × F(α,β, t)dA + ρ f
d

dt
Q ᵀ(t)

∫
�s

(X(α,β, t) − Xc) × udx. (23)

Note that Equation (23) is the Euler rotation equation in a non-inertial frame in contrast to [3] which is expressed in an 
inertial frame. The Transport Theorem relates the time derivatives in an inertial frame to its time derivatives in a non-
inertial frame. Following [3], we show the detail derivation of Equation (22) and Equation (23) to Equation (9) and (10), 
respectively, as follows. Here, the ρ f and ρs have the same dimensionality. The rate-of-change term in Equation (22) holds 
for an incompressible fluid which satisfies a rigid-body motion in �s as

ρ f
d

dt

∫
�s

udx = ρ f |�s| dUc

dt
. (24)

Also, the internal fluid effect contributing to the Equation (23) is approximated by

ρ f
d

dt
Q ᵀ(t)

∫
�s

(X(α,β, t) − Xc) × udx = ρ f

ρs

(
Is

dωc

dt
+ ωc × Isωc

)
. (25)

Substituting Equation (24) and Equation (25) into Equation (22) and Equation (23), respectively, yields(
1 − ρ f

ρs

)
Ms

dUc

dt
= −

∫
∂�s

F(α,β, t)dA + (ρs − ρ f
) |�s|g, (26)

(
1 − ρ f

ρs

)(
Is

dωc

dt
+ ωc × Isωc

)
= −Q ᵀ(t)

∫
∂�s

(X(α,β, t) − Xc) × F(α,β, t)dA. (27)

Finally, discretizing Equation (26) and Equation (27) yields

Me
Un+1

c − Un
c

�t
= −

K∑
k=1

Fn+1
k �A(Xn

k) + (ρs − ρ f
) |�s|g, (28)

Ie
ωn+1

c − ωn
c

�t
+ ωn

c × Ieω
n
c = −

K∑
k=1

�0
k × Q ᵀFn+1

k �A(Xn
k). (29)
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