
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. SCI. COMPUT. © 2020 Society for Industrial and Applied Mathematics
Vol. 42, No. 5, pp. A3030–A3054

SPECTRALLY ACCURATE ALGORITHM FOR POINTS
REDISTRIBUTION ON CLOSED CURVES∗

YUNCHANG SEOL† AND MING-CHIH LAI‡

Abstract. In this paper, we present a novel numerical method that redistributes unevenly given
points on an evolving closed curve to satisfy equi-arclength(-like) condition. Without substantial dif-
ficulty, it is also capable of remeshing or employing adaptive mesh refinement. The key idea is to find
the discrete inverse of the arclength(-like) function in the framework of the Fourier spectral method
to obtain overall spectral accuracy. Both equi-arclength and curvature-dependent redistributions
are extensively studied, and their spectral accuracy is verified by application to smoothly perturbed
points on various curves. We further confirm that our method converges even for the points being
perturbed nonsmoothly and randomly. To leverage the robustness of our method, a remeshing tech-
nique is applied in which the accuracy is not affected. Application to a periodic planar curve without
any modification of our algorithm is also discussed. Then, to show the practical applicability, an
evolving curve with large deformation is studied by coupling with point redistribution and remeshing
in various flows such as mean curvature flow, Willmore flow, and Stokes flow.

Key words. redistribution, reparametrization, remeshing, equi-arclength, spectral method,
monitor function

AMS subject classifications. 65D15, 65D17

DOI. 10.1137/20M1314690

1. Introduction. In fluid-structure interaction problems with large deforma-
tions, it is essential to maintain the mesh quality of a discretized structure boundary.
For instance, a droplet in shear flow undergoes a rotating motion or an elongational
deformation [22]. In the former case, the points approximating the droplet interface
can be clustered, causing numerical instability, and in the latter case, the points can
be isolated, causing volume loss. To avoid such difficulties, in this paper, we propose
a spectrally accurate numerical method that redistributes the points on an evolving
closed curve satisfying desired conditions.

A numerical method, known as de Boor’s algorithm described in [7, 25] and [12,
Chap. 2.2.1], is a simple but effective approach for finding equi-arclength redistribu-
tion of points. This method is based on piecewise constant or linear interpolation of
monitor function and still commonly used to generate an initially good approximation
of a given curve before applying other methods which establish better approximation
[17]. In [25], its convergence rate is observed to be second-order for data given in the
Sobolev space W 2,∞. To achieve high accuracy, the spline is popularly used in many
works [2, App. B] and [23, 24, 1], where the applicability of equi-arclength redistri-
bution is shown to be worthy of study in computer-aided design and fluid dynamics.
Grid generation is also closely related [16, 12]. To achieve higher accuracy, Fourier ap-
proximation is used particularly in pattern recognition and data fitting [13, 10, 4, 15].
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ALGORITHM FOR POINTS REDISTRIBUTION ON CURVES A3031

To the best of our knowledge, however, a highly accurate algorithm has not been
presented yet, whereas our method indeed achieves spectral accuracy.

Our numerical method proposed here can be considered as an accuracy-improved
version of de Boor’s algorithm, in which the idea is to find the inverse of an
arclength(-like) function in a discrete sense. As discussed in [21], it is rarely possible
to satisfy the exact equi-arclength condition since an integration is only numerically
approximated. To achieve spectral accuracy in our method, however, most of the
variables are represented in Fourier series as possible, and then the spectral calculus
is performed extensively. In [4], the authors presented a similar algorithm but based
on the function of tangent angle to a closed curve, hence the procedure is a little
bit different from de Boor’s algorithm. On the other hand, our method is based on
the arclength(-like) function as in de Boor’s algorithm so that the understanding of
our algorithm is transparent, seen as a straightforward extension in the framework of
Fourier spectral methods.

In the aspect of tangential redistribution of points, there is another type of
method, namely a moving mesh method presented in [11, 14, 12, 17]. Such an ap-
proach requires the velocity information with respect to time and space, while our
method requires only the position vector of given points at fixed time. Thus, to save
computational cost in time-dependent dynamics, our method can be applied at cer-
tain selected times when the points are unevenly distributed. Meanwhile, in practical
situations, growing complexity of an evolving boundary gives rise to the importance
of remeshing or adaptive mesh refinement (AMR). Our method is also capable of
controlling the number of points without much effort to modify the code. We need to
find solutions associated with only the desired number of points, while the rest of the
procedure remains the same.

An outline of this paper is as follows. In section 2, the reparametrization of a
closed curve under equi-arclength(-like) conditions is described. In section 3, its nu-
merical scheme is realized by redistributions of points, and therein the equi-arclength
and curvature-dependent redistributions are described together with spectral calcu-
lus. A remeshing algorithm controlling the number of points is also presented. In
section 4, to estimate accuracy and convergence rate, the equi-arclength redistribu-
tion is applied to perturbed points on the unit circle. Then in section 5, to identify the
qualitative effectiveness, both redistributions are applied to various fixed curves and
evolving curves in dynamic flow. Conclusions and future works are given in section 6.

2. Curve reparametrization and related equations. In this section, we
begin with an introduction to the fundamentals of differential geometry of a curve,
and then describe the equi-arclength(-like) reparametrization of a curve.

2.1. Differential geometry of a curve. For a sufficiently smooth closed curve
X(θ) = (X(θ), Y (θ)) with a given parameter θ, the unit tangent vector is

τ (θ) = Xθ/‖Xθ‖ := (τ1, τ2),

and the outward unit normal vector is

n(θ) = (τ2,−τ1),

where the subscript θ of the position vector X denotes the derivative with respect to
θ as Xθ := dX

dθ , and the stretching element is ‖Xθ‖ =
√
X2
θ + Y 2

θ . This notation will
also be used for other variables throughout this paper. The signed curvature of the
curve is obtained by
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A3032 YUNCHANG SEOL AND MING-CHIH LAI

κ(θ) =
XθYθθ − YθXθθ

‖Xθ‖3
(2.1)

and will be used later for the curvature-dependent reparametrization and for the ap-
plication in mean curvature flow. We note that the above curvature can be computed
in spectral accuracy by Fourier approximation of X.

For the application of Willmore flow, we need to express the full expansion of
the Laplace–Beltrami operator of curvature. Thereby, the term κss and its related
variables can also be written as

κss :=
1

‖Xθ‖
∂

∂θ

(
1

‖Xθ‖
∂κ

∂θ

)
=
−Xθ ·Xθθ

‖Xθ‖4
∂κ

∂θ
+

1

‖Xθ‖2
∂2κ

∂θ2
,(2.2)

where

∂κ

∂θ
= (XθYθθθ − YθXθθθ)‖Xθ‖−3 − 3κ(Xθ ·Xθθ)‖Xθ‖−2,

∂2κ

∂θ2
=(XθθYθθθ +XθYθθθθ − YθθXθθθ − YθXθθθθ)‖Xθ‖−3

− 3(XθYθθθ − YθXθθθ)(Xθ ·Xθθ)‖Xθ‖−5 − 3κθ(Xθ ·Xθθ)‖Xθ‖−2

− 3κ(Xθ ·Xθθθ + ‖Xθθ‖2)‖Xθ‖−2 + 6κ(Xθ ·Xθθ)
2‖Xθ‖−4.

2.2. Equi-arclength reparametrization. For a closed curve X(θ) over θ ∈
[0, 2π), the 2π-normalized arclength function of the curve is defined by

s(θ) = 2π

∫ θ

0

‖Xα‖ dα

/∫ 2π

0

‖Xα‖ dα.(2.3)

Here the 2π-normalization is only for convenience. Then constructing an equi-
arclength parametrization with respect to X is up to finding the inverse function
s−1(θ). In principle, the inverse can be easily obtained by the exchange of variables
between s and θ. As illustrated in Figure 1, the inverse function is the reflection of
the normalized arclength function along the straight line, s(θ) = θ. However, the ana-
lytic form of inverse function is not available in practice. Therefore, in this paper, we

Fig. 1. A 2π-normalized arclength function s(θ) and its inverse function s−1(θ) are reflective
on the straight line s(θ) = θ.
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ALGORITHM FOR POINTS REDISTRIBUTION ON CURVES A3033

attempt to find the numerical inverse of the 2π-normalized arclength function within
spectral accuracy so that an equi-arclength reparametrization can be achieved. In dif-
ferential geometry [20, Chap. 2], such a curve parameterized by arclength is usually
called a unit-speed curve.

2.3. Equi-arclength-like reparametrization with monitor function. As a
generalization of the equi-arclength parametrization described in the previous subsec-
tion, we can further consider the equi-arclength-like reparametrization with monitor
function which is closely related to the adaptive mesh method [17]. The 2π-normalized
arclength-like function is defined by

s(θ) = 2π

∫ θ

0

M(α)‖Xα‖ dα

/∫ 2π

0

M(α)‖Xα‖ dα,(2.4)

where the monitor (or weight) function M(α) > 0 is chosen so that the arclength-
like function increases monotonically. Similar to equi-arclength reparametrization,
the inverse function s−1 of (2.4) will give the equi-arclength-like reparametrization.
When M = 1, this function reduces to the arclength function written in (2.3). One
can design an appropriate monitor function to suit a special purpose. For instance, a
curvature-dependent function defined by

M(α) = |κ|1/2 + C, where C =

∫ 2π

0
|κ|1/2‖Xα‖ dα∫ 2π

0
‖Xα‖dα

,(2.5)

is used in [17] for forced curve shortening flow.

3. Numerical method. In this section, we describe the algorithm that obtains
the equally redistributed points of a discretized curve by solving the equi-arclength
(-like) reparametrization numerically described in the previous section. To achieve
the spectral accuracy of the numerical solution, we use the Fourier approximation,
the spectral differentiation, and the spectral integration for associated variables. We
further demonstrate the availability of increment/decrement of point number in our
method, which remeshes the discretized curve.

3.1. Equi-arclength redistribution of points. For given N points as an
approximation of a closed curve, we set the constant angle width by ∆θ = 2π/N
and the corresponding equispaced angle by θj = (j − 1)∆θ for j = 1, . . . , N . This
is the initial parametrization of a given curve. Referring to (2.3), the 2π-normalized
discrete arclength function is obtained from

s(θj) = 2π

∫ θj

0

‖Xα(α)‖ dα

/∫ 2π

0

‖Xα(α)‖ dα,(3.1)

where the stretching element is computed by ‖Xα(αj)‖ =
√
X2
α(αj) + Y 2

α (αj) after
applying spectral differentiations to X and Y . For later use in this algorithm, we keep
the Fourier coefficients X̂ and Ŷ . To compute the arclength values for all j, spectral
integration is used to obtain spectral accuracy. The details on spectral calculus are
described in subsection 3.3.

We now need to find the discrete inverse function s−1(θj) for all j which is equiv-
alent to the new angle θ′j satisfying the equi-arclength redistribution; see Figure 1.
To do this, as similarly set for the initial angle, we set the constant arclength width
by ∆s = 2π/N and the corresponding equispaced arclength by sj = (j − 1)∆s for
j = 1, . . . , N . We remark that the given N points can be transformed to any desired
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A3034 YUNCHANG SEOL AND MING-CHIH LAI

number of points for curve remeshing, which will be discussed in subsection 3.5. Then
for fixed equispaced sj , we seek the new angle θ′j satisfying the equation

sj = 2π

∫ θ′j

0

‖Xα(α)‖ dα

/∫ 2π

0

‖Xα(α)‖dα := s(θ′j)(3.2)

by root finding. We note that the function s(θ′j) can be modified to be a 2π-periodic
function so that the Fourier approximation is used to achieve spectral accuracy; see
the details in subsection 3.4. As the final step of our method, we directly compute
the inverse DFT to update the position vector X by using the new angle θ′j referring
to (3.6) as

X(θ′j) =

N/2−1∑
k=−N/2

X̂(k)eikθ
′
j ,(3.3)

where the coefficients X̂ = (X̂, Ŷ ) were already obtained from initially given points
with equispaced angles in the beginning of this algorithm. It is clear that the updated
position vector X(θ′j) meets the equi-arclength redistribution of points, whenever θ′j is
chosen to hold (3.2) within machine precision. So, the overall accuracy of the present
method also depends on the error of new angle in the root finding step.

3.2. Curvature-dependent redistribution of points. Referring to (2.4) and
(2.5), in order to have curvature-dependent redistribution of points, we only need to
replace the discrete arclength function (3.1) by

s(θj) = 2π

∫ θj

0

M(α)‖Xα‖ dα

/∫ 2π

0

M(α)‖Xα‖ dα,(3.4)

where the discretized monitor function associated with curvature-dependence is given
by

M(αj) = |κ(αj)|1/2 +

∫ 2π

0

|κ|1/2‖Xα‖dα

/∫ 2π

0

‖Xα‖ dα.

As in the equi-arclength case, the spectral integration is used to compute the arclength-
like values in (3.4). In computing curvature κ, we applied spectral differentiations to
the position vector and then used (2.1). As done for the equi-arclength condition in
(3.1), we seek new angle θ′j over fixed equispaced sj satisfying

sj = 2π

∫ θ′j

0

M(α)‖Xα‖dα

/∫ 2π

0

M(α)‖Xα‖ dα := s(θ′j).(3.5)

After performing the rest of the procedure illustrated in subsection 3.1, we obtain the
curvature-dependent redistribution of points.

3.3. Spectral differentiation and integration. The Fourier approximation
of a scalar function f or inverse DFT is

f(θj) =

N/2−1∑
k=−N/2

f̂(k)eikθj ,(3.6)D
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ALGORITHM FOR POINTS REDISTRIBUTION ON CURVES A3035

where i is the imaginary number and j = 1, . . . , N . Its Fourier coefficient or DFT is

f̂(k) =
1

N

N∑
j=1

f(θj)e
−ikθj ,

where k = −N/2, . . . , N/2 − 1. To the position vector X = (X,Y ), we apply these
transforms individually.

Based on Fourier representation, the nth differentiation of f(θ) is

dnf(θ)

dθn
=

N/2−1∑
k=−N/2

(ik)nf̂(k)eikθ.(3.7)

After direct calculation [4], we also have the spectral integration as∫ θ

0

f(α) dα =

∫ θ

0

N/2−1∑
k=−N/2

f̂(k)eikα dα = f̂(0)θ +

N/2−1∑
k=−N/2

ĝ(k)eikθ,(3.8)

where

ĝ(k) =


−
∑
j 6=0

f̂(j)

ij
if k = 0,

f̂(k)

ik
otherwise.

For given points labeled with natural numbers, fast computation of spectral differen-
tiation in (3.7) is done by applying the forward fast Fourier transform (FFT) to the

function f to obtain the coefficient f̂(k) and then the inverse FFT to the modified

coefficient (ik)nf̂(k). The fast spectral integration of a function f(θ) in (3.8) is also
accomplished by applying the inverse FFT to the coefficient ĝ(k), followed by adding

f̂(0)θ to the result. To find total arclength(-like) value, we explicitly calculate the
series formulation written in the rightmost part of (3.8) after replacing θ by 2π. For
de-aliasing, the 2/3-rule filter is adopted.

3.4. Root finding. In finding a new angle (or discrete inverse function) as de-
scribed in subsections 3.1 and 3.2, we use the false position method, a variant of the
bisection method. This method guarantees finding the approximate solution when a
proper interval is initially given. In our approach of root finding, the existence of an
inverse function ensures that there exists a unique solution in [0, 2π) [20].

For the equispaced normalized arclength(-like) value denoted by sj = (j − 1)∆s
with ∆s = 2π/N , we seek new angle θ′j which configures the equi-arclength(-like)
redistribution of points satisfying

sj = θ′j +

N/2−1∑
k=−N/2

ĥ(k)eikθ
′
j := s(θ′j).(3.9)

Here ĥ is the Fourier coefficients of a 2π-periodic function newly defined by h(θj) =
s(θj) − θj over equispaced θj , where s(θj) given in (3.1) and (3.4) is computed by

spectral integration. Then fixing sj and ĥ in the above equation, the false position
method solves sj = s(θ′j) by finding θ′j within a specified precision. Note that as the
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right-hand side of (3.2) and (3.5) is denoted by s(θ′j), they are approximated by the
series formulation in (3.9). In the implementation level of the false position method,
we choose 100 as the maximum number of iterations and 10−15 as the error tolerance
to stop the iteration.

3.5. Control of the number of points. In our method, it is an easy task
to control the number of points, i.e., an increment and a decrement of the number
of points under the equi-arclength(-like) condition. Let us choose an integer M , the
desired number of points. Our code is rarely modified to obtain the M -number of
points from the given points. To do this, in finding roots as described in subsection 3.4,
we find the new angle θ′j for sj = (j − 1)∆s, where ∆s = 2π/M and j = 1, . . . ,M .
After directly computing the inverse DFT in (3.3) with θ′j , we immediately obtain the
remeshed curve having M number of points.

In subsection 4.4, we provide some numerical results of equi-arclength remeshing
for points perturbed smoothly on the unit circle. Then in subsection 5.2, a star-
shaped curve in mean curvature flow is studied under both types of remeshing, where
the decrement in number of points mainly occurs. To see the effect of point-number
increment, both types of remeshing are applied to shear-induced droplet deformation
in subsection 5.4. To determine the desired number of points in terms of time, we use

M(t) =

⌈
L(t)

L(0)/M(0)

⌉
,(3.10)

where L(t) is the total arclength of a given curve at time t and M(0) is the initial
number of points. By doing so, the deforming curve in time keeps the almost constant
arclength in the case of equi-arclength remeshing; see Figures 14(a) and 17(a). In the
case of curvature-dependent remeshing, the above relation (3.10) is also used. This
strategy enables AMR when required; see Figure 17(b).

3.6. Summary of the algorithm and its cost. We end this section by provid-
ing a brief step-by-step description of our numerical algorithm and its computational
cost.
Step 1. Compute the Fourier coefficients of a given curve for each spatial component.
Step 2. Using spectral differentiations, compute the derivatives of the position vector

X and then obtain the stretching element ‖Xθ‖. In the case of curvature-
dependent redistribution, compute the related monitor function as well.

Step 3. Obtain the 2π-normalized discrete arclength(-like) function by using spectral
integration.

Step 4. By root finding over equispaced arclength(-like) value, obtain the new angle
θ′ which is exactly the discrete inverse function with respect to equispaced
angle θ; see Figure 1.

Step 5. By inserting the new angle θ′ one by one into the Fourier representation (3.3)
with the Fourier coefficients obtained in Step 1, compute the position vector
X(θ′) which gives the equi-arclength(-like) redistribution of points.

The computational cost in Steps 1–3 for N -number of points is mainly dependent
on the FFT operations, thus O(N logN). In Step 4, for each iteration, it costs O(N2)
operations to directly compute the Fourier series in (3.9), so this step has the highest
computational cost in our algorithm. Again in Step 5, the direct computing of Fourier
series at N angles requires O(N2) operations, but done only once with the solution
of new angles. Thus, the overall cost of our algorithm is O(N2) due to Steps 4 and
5 and is strongly dependent on the number of iterations for finding new angles in
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Step 4. We will show later that the average number of iterations is almost constant
for different numbers of points.

4. Numerical accuracy and convergence rate. In this section, we investi-
gate the accuracy and the convergence rate of our numerical algorithm for points
distributed on the unit circle. The applications of our method for complex curves and
dynamic flows will be shown in the next section. The circle is chosen in this section
because the exact solution under an equi-arclength condition is obvious, so the error
can be easily computed. We test three cases where points are initially perturbed
by smooth angles, nonsmooth angles, and randomly chosen angles. In addition, the
remeshing of a curve by controlling the number of points is performed.

Before the tests, we mention the norms and the convergence rates used in this
paper. For a vector field V(θ) = (U(θ), V (θ)), the L∞ norm is defined by

‖V‖∞ = max
i

{(
U2(θi) + V 2(θi)

)1/2}
and the L2 norm on the unit circle by

‖V‖2 =

(
1

N

N∑
i=1

(
U2(θi) + V 2(θi)

))1/2

,

where N is the number of points. In general except the unit circle, we use

‖V‖2 =

(
1

2π

N∑
i=1

(
U2(θi) + V 2(θi)

)
∆si

)1/2

,

where the computed arclength element is ∆si = ‖Xθ(θi)‖∆θ with ∆θ = 2π/N for
i = 1, . . . , N . So the errors of the position vector X with its length N in L∞ and L2

are respectively defined by

EN∞ = ‖XN −Xe‖∞, EN2 = ‖XN −Xe‖2,

where Xe is the exact solution or the numerical solution obtained in a finer resolution.
The convergence rate of the position vector X in L∞ norm is obtained from

Rate = log2

(
EN∞/E

2N
∞
)
,

and the rate in L2 norm is similarly obtained. When a numerical solution obtained
in a finer resolution is used instead of the exact solution, the error is computed after
the projection of numerical solution onto the coarse resolution.

4.1. Smooth perturbation. For N -number of points fixed by X(0) = (1, 0),
the unit circle written by

X(θ) := (X(θ), Y (θ)) = (cos θ, sin θ)

has the equi-arclength distribution of points only when the angle (or parameter) θ is
equispaced by θi = (i− 1)2π/N for i = 1, . . . , N .

In this test, we initially perturb the points by replacing the angle θ by

θ̃ = θ + 0.25 sin(ωθ),(4.1)
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A3038 YUNCHANG SEOL AND MING-CHIH LAI

so the points perturbed smoothly on the unit circle are obtained from X(θ̃) = (cos θ̃,
sin θ̃). Onto these points, we apply our algorithm to obtain the equi-arclength redis-
tribution described in section 3, specifically in subsection 3.1. We tested for different
frequencies ω = 1, 2, 3 in (4.1) and different numbers of points N = 16, 32, 64, 128.
In Table 1, the spectral accuracy is clearly observed for ω = 1, 2, 3 respectively when
N = 32, 64, 128. This identifies that the more perturbed, the more points required to
achieve spectral accuracy, which is an inherent property of Fourier approximation. A
qualitative result when ω = 3 and N = 32 is shown in Figure 2, where the exact so-
lution is compared with the numerical solution obtained from the initially perturbed
points. One can clearly see that the numerical solution using our method agrees well
with the exact solution.

As described in subsection 3.4, the computational cost of our algorithm is highly
dependent on the number of iterations in the root finding step, since the inverse DFT
is directly computed. In Figure 3, the average number of iterations is plotted with re-
spect to number of points N , where different frequencies ω are used. This corresponds
to the cases shown in Table 1. We observe that as the frequency ω or the complex-
ity of the curve increases, the average number of iterations increases as predictable.
Fortunately, however, at fixed ω the increment of average number of iterations is rel-
atively small compared with that of number of points. This implies that the average
number of iterations is almost independent of number of points, once the complexity
of the curve is fixed. So, we can conclude that the actual computational cost of our
method is still O(N2) for a given stationary curve as discussed in subsection 3.6.

Table 1
Convergence analysis of the position vector X in L∞ and L2 norms in the case of smooth

perturbation with different frequencies ω = 1, 2, 3 in (4.1). An instance with N = 32 is shown in
Figure 2.

N EN
∞ EN

2 EN
∞ EN

2 EN
∞ EN

2

(ω = 1) (ω = 2) (ω = 3)
16 1.040E-05 7.523E-06 7.792E-03 6.411E-03 1.555E-02 1.150E-02
32 2.076E-14 1.474E-14 2.651E-07 2.438E-07 3.445E-04 2.407E-04
64 1.299E-15 6.028E-16 1.053E-15 5.175E-16 1.044E-10 9.185E-11
128 2.512E-15 6.289E-16 1.790E-15 6.440E-16 3.975E-15 9.121E-16

Fig. 2. In the case of smooth perturbation with the frequency ω = 3: (a) given 32 points (red +),
exact solution (blue ©), and numerical result (blue •), (b) the x-position function of points with
respect to point label.
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ALGORITHM FOR POINTS REDISTRIBUTION ON CURVES A3039

Fig. 3. In the case of smooth perturbation, the average number of iterations in root finding.

Table 2
Convergence analysis of the position vector X in L∞ and L2 norms in the case of nonsmooth

perturbation written in (4.2). An instance with N = 32 is shown in Figure 4.

N EN
∞ Rate EN

2 Rate

64 5.645E-02 - 4.051E-02 -
128 3.259E-02 0.79 2.246E-02 0.85
256 1.875E-02 0.79 1.244E-02 0.85
512 1.068E-02 0.81 6.905E-03 0.84

1024 5.915E-03 0.85 3.811E-03 0.85

Fig. 4. In the case of nonsmooth perturbation at θ = 0: (a) given 32 points (red +), exact
solution (blue ©), and computed result (blue •), (b) the x-position function of points with respect
to point label.

4.2. Nonsmooth perturbation. Unlike the preceding test, we initially perturb
the points by replacing the equispaced angle θ by

θ̃ = θ2/(2π),(4.2)
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which gives nonsmooth distribution of points at θ = 0 or 2π. As shown in Table 2, the
error is far from machine precision. This is predictable since the Fourier representation
of the nonsmooth function has large error near the nonsmooth region, known as the
Gibbs phenomenon. A case with N = 32 is plotted in Figure 4, where the exact
solution is compared with the numerical solution obtained from the initially perturbed
points. It shows that the numerical solution using our method does not agree well with
the exact solution. Fortunately, as seen in the table, it still converges with a roughly
first-order convergence rate, regardless of norms. This indicates that our method is
definitely applicable to practical problems. To support this conclusion, curve motion
in various flows will be studied in section 5.

4.3. Random perturbation. To test an extreme case, we choose the angles
randomly over [0, 2π) so that the points are distributed randomly on the unit circle.
For computational convenience beforehand, a point at θ = 0 is always included and the
chosen points are ordered by angle. As already indicated in the case of nonsmooth
perturbation, we never observe spectral accuracy in this test as shown in Table 3.
The written error is the mean value obtained from 100 samples for each case, and its
standard deviation is provided in parentheses. Surprisingly, we observe in the table
that our numerical solutions of position vector converge with the half-order. The
corresponding standard deviations also decrease as the number of points increases.
This confirms that our method works successfully even for randomly given points. In
Figure 5, an example with N = 32 is shown. One can see that our numerical result
gives quite well-distributed points under the equi-arclength condition, although the
initial distribution of points is severely nonsmooth overall.

Table 3
Statistical convergence analysis of the position vector X in L∞ and L2 norms in the case of

random perturbation with 100 samples. The mean value and its corresponding standard deviation
in parentheses are given. An instance with N = 32 is shown in Figure 5.

N EN
∞ Rate EN

2 Rate

64 9.828E-02 (±4.506E-02) - 5.291E-02 (±2.954E-02) -
128 7.235E-02 (±3.218E-02) 0.44 3.570E-02 (±1.806E-02) 0.56
256 4.914E-02 (±1.808E-02) 0.55 2.255E-02 (±1.017E-02) 0.66
512 3.394E-02 (±1.381E-02) 0.53 1.584E-02 (±8.247E-03) 0.50

1024 2.615E-02 (±9.133E-03) 0.37 1.177E-02 (±5.179E-03) 0.42

Fig. 5. An instance of random perturbation: (a) given 32 points (red +), exact solution (blue
©), and computed result (blue •), (b) the x-position function of points with respect to point label.
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4.4. Decrement/increment of the number of points. So far, we have fixed
the number of points during application of the equi-arclength redistribution. We now
test the availability of our method in controlling the number of points, the so-called
remeshing technique. To do so, we choose the initial data by the points used in
the case of smooth perturbation with fixed ω = 3 and N = 16, 32, 64, 128 shown
in subsection 4.1. We decrease and increase the number of points N to the desired
number of points M = 13 and 131, respectively. As described in subsection 3.5, we
shall find only M -number of new angles, rather than N , with respect to equispaced
arclength function. Then the rest of the procedure is the same as for N -number of
new angles. In Table 4, interestingly regardless of N , our numerical results for both
M = 13 and 131 are quite comparable with the ones shown in Table 1, meaning that
the remeshed curve has no loss in accuracy. So it appears that the accuracy of our
approach is entirely independent of the desired number of points. In Figure 6, the
numerical results of remeshed curve with N = 32 are shown. For both cases of the
decrement (M = 13) and the increment (M = 131), the exact solutions perfectly
agree with our numerical solutions obtained from the smoothly perturbed points.

5. Numerical results. So far, we have fixed the curve to be the unit circle since
the exact solution is easily obtained. In this section, to demonstrate the versatility
of our method, various curves are examined by comparison with numerical solution
obtained in a finer resolution. It then follows by a series of numerical tests on curve
motion in mean curvature flow, Willmore flow, and Stokes flow.

For all tests carried out in this section, we apply the equi-arclength and curvature-
dependent redistributions described in subsections 3.1 and 3.2, respectively. The ini-
tially given curves are approximated by N -number of points over equispaced angles
by θi = (i − 1)2π/N for i = 1, . . . , N . We provide both the quantitative and quali-
tative results for fixed closed curves and a fixed periodic planar curve, but only the
qualitative result for evolving closed curves in dynamic flow.

5.1. Fixed curves. We apply our method to fixed closed curves such as an
ellipse, a star-shaped curve, and a more complex curve. A periodic planar curve is
tested as well.

5.1.1. An ellipse with aspect ratio 6 : 1. Apart from a circle, an ellipse is a
highly compelling candidate in our study of a fixed curve, because an ellipse is often
used in theory as an approximated solution and in practice as initial data. We use an
ellipse with aspect ratio 6 : 1 defined by

(X(θ), Y (θ)) = (6 cos θ, sin θ),(5.1)

where θ is initially equispaced and new values shall be found to satisfy equi-arclength
or curvature-dependent redistribution of points.

In Table 5, the almost machine precision is achieved when 512 points are used.
Compared to the unit circle observed in Table 1, the ellipse with aspect ratio 6 : 1
requires more points to obtain spectral accuracy. As illustrated in Figure 7, one can
see that our numerical results agree qualitatively well with the numerical solution
obtained in a finer resolution with N = 2048. We observe in the table that for fixed
N , the accuracy in the case of curvature-dependent redistribution is lower than in
the case of equi-arclength redistribution. We attribute this to dependence of suffi-
cient points (or frequency modes) to Fourier approximation of discrete arclength(-
like) function used in (3.9). This idea will be strengthened below in successive
tests.

D
ow

nl
oa

de
d 

10
/0

7/
20

 to
 1

40
.1

13
.1

0.
24

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A3042 YUNCHANG SEOL AND MING-CHIH LAI

Table 4
Decrement/increment of number of points from N to the desired number of points M = 13 and

131. An instance with N = 32 is shown in Figure 6.

N EN
∞ EN

2 EN
∞ EN

2

(M = 13) (M = 131)
16 1.555E-02 1.082E-02 1.558E-02 1.124E-02
32 3.445E-04 2.329E-04 3.445E-04 2.392E-04
64 1.032E-10 9.159E-11 1.060E-10 9.195E-11
128 2.065E-15 9.938E-16 2.742E-15 8.625E-16

Fig. 6. Control of the number of points: (a), (b) decrement of number of points from 32 to 13,
(c), (d) increment of number of points from 32 to 131, given points (red +), exact solution (blue
©), and computed result (blue •). This corresponds to the case of smooth perturbation with the
frequency ω = 3.
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Table 5
For an ellipse defined in (5.1), convergence analysis of the position vector X in L∞ and L2

norms. Here the equi-arclength redistribution (Equi.) and the curvature-dependent redistribution
(Curv.) are tested. The numerical solution Xe is obtained by using 2048 points. The cases with
N = 64 correspond to Figure 7.

N EN
∞ EN

2 EN
∞ EN

2

(Equi.) (Curv.)
64 5.345E-05 5.649E-05 1.851E-04 2.594E-04
128 6.578E-07 3.992E-07 2.289E-06 2.977E-06
256 7.510E-11 4.491E-11 4.310E-10 5.309E-10
512 1.251E-14 6.003E-15 1.200E-13 7.587E-14

Fig. 7. An ellipse defined in (5.1): (a) equi-arclength redistribution, (b) curvature-dependent
redistribution, given 64 points (red +), numerical solution obtained from 2048 points (blue ©), and
computed result from the given points (blue •).

5.1.2. A star-shaped curve. We now test for a star-shaped curve given by

(x, y) = (1 + 0.5 sin(5θ)) (cos θ, sin θ).(5.2)

This curve has higher curvature compared to the ellipse tested above.
In Table 6, the errors are shown for N = 64, 128, 256, 512, 1024, 2048. Machine

precision is obtained for N = 2048 in the case of equi-arclength redistribution, while
it is never obtained in the case of curvature-dependent redistribution. Compared
to the results obtained for the ellipse above, more points are required for the star-
shaped curve to obtain a fixed desired accuracy, no matter what redistribution is
used. From these observations, one can expect that the number of points needed
to achieve a specified accuracy depends not only on the type of redistribution but
also on the complexity of the initially given curve. This is not surprising as seen in
subsection 4.1, since both the curve position vector and its arclength function are
approximated by truncated Fourier series. We will observe similar behavior in the
next test for a complex curve. Before ending, we plot an example with N = 64
in Figure 8, in which the numerical result agrees well with the solution under the
equi-arclength condition, while it disagrees somewhat under the curvature-dependent
condition. This illustrates the tendency mentioned here and in the case of the ellipse.
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Table 6
For a star-shaped curve defined in (5.2), convergence analysis of the position vector X in

L∞ and L2 norms. Here the equi-arclength redistribution (Equi.) and the curvature-dependent
redistribution (Curv.) are tested. The numerical solution Xe is obtained by using 8192 points. The
cases with N = 64 correspond to Figure 8.

N EN
∞ EN

2 EN
∞ EN

2

(Equi.) (Curv.)
64 4.633E-03 2.608E-03 6.089E-02 4.007E-02
128 4.500E-04 2.359E-04 8.349E-03 4.888E-03
256 2.466E-05 8.770E-06 4.915E-03 2.952E-03
512 1.505E-07 5.072E-08 1.816E-03 8.596E-04
1024 3.711E-11 1.004E-11 1.077E-04 5.794E-04
2048 9.390E-15 3.487E-15 1.955E-04 8.345E-05

Fig. 8. A star-shaped curve defined in (5.2): (a) equi-arclength redistribution, (b) curvature-
dependent redistribution, given 64 points (red +), numerical solution obtained from 8192 points (blue
©), and computed result from the given points (blue •).

5.1.3. A complex curve. We test a more complex curve defined by

(x, y) =
(
cos θ, 0.5 sin θ + sin(cos θ) + (0.2 + sin θ sin2(3θ)) sin θ

)
.(5.3)

This curve is also used in other papers [19, 17].
In a comparison between results in Tables 6 and 7, the overall errors are almost

comparable to each other. So, this result supports the argument presented in the
case of a star-shaped curve. As a result, it suggests to choose a proper number of
points by taking the desired accuracy, the complexity of the curve itself, and the type
of redistribution into account as a whole. In Figure 9, an example with N = 64 is
plotted. As discussed above, our numerical result agrees closely with the solution
in the case of equi-arclength redistribution, while it disagrees at many points in the
case of curvature-dependent redistribution. This again indicates that, in practice, a
considerable number of points may be used to achieve spectral accuracy under the
curvature-dependent condition.

5.1.4. Periodic planar curve. As the last test of this subsection, we apply our
method to a 2π-periodic planar curve defined by

(X(θ), Y (θ)) = (θ + 2 sin θ, 0.5 sin θ),(5.4)
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Table 7
For a complex curve defined in (5.3), convergence analysis of the position vector X in L∞ and

L2 norms. Here the equi-arclength redistribution (Equi.) and the curvature-dependent redistribution
(Curv.) are tested. The numerical solution Xe is obtained by using 8192 points. The cases with
N = 64 correspond to Figure 9.

N EN
∞ EN

2 EN
∞ EN

2

(Equi.) (Curv.)
64 6.083E-03 2.851E-03 2.730E-02 1.538E-02
128 4.566E-04 1.883E-04 2.175E-02 1.069E-02
256 9.849E-06 2.745E-06 6.725E-03 3.757E-03
512 3.575E-08 7.106E-09 1.337E-03 6.918E-04
1024 1.101E-12 2.146E-13 4.863E-04 1.959E-04
2048 5.978E-15 1.690E-15 2.376E-04 9.288E-05

Fig. 9. A complex curve defined in (5.3): (a) equi-arclength redistribution, (b) curvature-
dependent redistribution, given 64 points (red +), numerical solution obtained from 8192 points
(blue ©), and computed result from the given points (blue •).

where θ ∈ [0, 2π) is an initial equi-spaced parameter, and we shall find a new angle
satisfying equi-arclength or curvature-dependent redistribution of points. The numer-
ical method presented in section 3 still works without any modification. In computing
the first derivative of X(θ), however, care must be taken to achieve spectral accuracy.
Suppose that the planar curve denoted by (X(θ), Y (θ)) has β-periodicity in the X-

direction. From the relation X = X̃ + β
2π θ where X̃ is a β-periodic function, one can

use FFT for X̃ instead of X. By applying spectral differentiations to X̃, we obtain

the derivatives of X by dX
dθ = dX̃

dθ + β
2π and dnX

dθn = dnX̃
dθn for n ≥ 2. Then after applying

our algorithm to (X̃(θ), Y (θ)), we have (X̃(θ′), Y (θ′)) with newly obtained angle θ′,

so the solution of X can be recovered from X(θ′) = X̃(θ′) + β
2π θ
′.

In Table 8, machine precision is observed when the number of points used is larger
than 512 under an equi-arclength condition. Compared to this, under a curvature-
dependent condition, it is hard to achieve spectral accuracy although the error de-
creases with increasing N . This again confirms that the equi-arclength will work
better in practice than the curvature-dependent one when the moderate number of
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Table 8
For a 2π-periodic planar curve defined in (5.4), convergence analysis of the position vector X

in L∞ and L2 norms. Here the equi-arclength redistribution (Equi.) and the curvature-dependent
redistribution (Curv.) are tested. The numerical solution Xe is obtained by using 8192 points. The
cases with N = 64 correspond to Figure 10.

N EN
∞ EN

2 EN
∞ EN

2

(Equi.) (Curv.)
64 6.334E-05 2.332E-05 8.146E-03 5.143E-03
128 8.169E-07 2.444E-07 3.205E-03 1.837E-03
256 5.589E-10 1.586E-10 1.144E-03 6.529E-04
512 4.584E-15 1.869E-15 4.112E-04 2.298E-04
1024 5.416E-15 1.646E-15 1.537E-04 7.917E-05
2048 5.412E-15 1.795E-15 5.261E-05 2.568E-05

Fig. 10. A 2π-periodic planar curve defined in (5.4): (a) equi-arclength redistribution, (b)
curvature-dependent redistribution, given 64 points (red +), numerical solution obtained from 8192
points (blue ©), and computed result from the given points (blue •).

points are used to approximate given curve. As shown in Figure 10, one can clearly
observe that our numerical results even for the periodic planar curve agree qualita-
tively well with the numerical solution obtained in a finer resolution with N = 8192.
So, the applications to elastic membrane [18] and hydroelastic wave propagation [5]
will be promising candidates for a future research topic.

5.2. Mean curvature flow. From now on, we consider curves immersed in
various flows to investigate the practical feasibility of our method in more general
problems. As the first test, in this subsection, we study mean curvature flow of
two curves, a star-shaped and a more complex, initially given by (5.2) and (5.3),
respectively. The mean curvature flow (or curve shortening flow) is governed byD
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∂X

∂t
= −κn,

where the signed curvature κ and the outward unit normal vector n are described in
subsection 2.1. We discretize this equation by

Xn+1
i −Xn

i

∆t
= −κni nni ,(5.5)

where the superscript n denotes the time step and the subscript i denotes the ith point
on the curve. As seen, we simply use the forward Euler method for time integration,
where the time step size is set by ∆t = 10−5. Approximating the curves with 128
points, the numerical results are obtained up to t = 0.5 for a star-shaped curve and
t = 0.34 for a complex curve, respectively. The redistributions are applied initially
once and every 100 time steps in both cases.

For comparison, we test the evolution of two curves in short time without applying
the redistribution. As shown in Figure 11, for both curves, numerical instability
occurs mainly due to the point clustering near the high curvature region. We now
show that our method of point redistribution can contribute to avoid such instability.
In Figures 12 and 13, we plot the time evolution of two curves with applying the
redistribution. For both curves, its evolving motion equipped with the equi-arclength
redistribution is shown in the left figure and that with the curvature-dependent one
is in the right. We see that all curves in mean curvature flow converge to a circular
curve following to the theoretical behavior of decrement in total arclength as time
goes on. Refer to [19, Figure 1] and [17, Figure 8(b)] to compare with Figure 13(a)
and also compare [17, Figure 8(c)] with Figure 13(b). One can see that the results
obtained between two redistributions are qualitatively similar for all time steps, while
in early times the deforming curves using the curvature-dependent redistribution give
better approximation near high curvature regions.

Fig. 11. Without applying the redistribution, the mean curvature flow of two curves approxi-
mated with 128 number of points: (a) star-shaped curve defined in (5.2), (b) complex curve defined
in (5.3).
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Fig. 12. For some chosen times, the mean curvature flow of an initially star-shaped curve
defined in (5.2) approximated with 128 points: (a) equi-arclength redistribution, (b) curvature-
dependent redistribution. The redistribution is applied initially and every 100 time steps.

Fig. 13. For some chosen times, snapshots of the mean curvature flow of an initially complex
curve defined in (5.3) approximated with 128 points: (a) equi-arclength redistribution, (b) curvature-
dependent redistribution. The redistribution is applied initially and every 100 time steps.

Although not shown here, we found that the application of curvature-dependent
redistribution in every time step may cause an oscillatory shape of the curve dur-
ing time-dependent simulations. We attribute such behavior to the low accuracy of
arclength(-like) function as seen in Table 6, because small error near high curvature
regions would generate and accumulate large error later when curvature-dependent
redistribution is often used. Thus, a strategy of applying at the proper time steps is
suggested for the curvature-dependent one. Unlike this, the equi-arclength redistri-
bution generally leads to a smooth solution regardless of its application period. For
fixed time step size ∆t, we also found that the simulations are more stable by using

D
ow

nl
oa

de
d 

10
/0

7/
20

 to
 1

40
.1

13
.1

0.
24

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ALGORITHM FOR POINTS REDISTRIBUTION ON CURVES A3049

Fig. 14. By applying remeshing, for some chosen times, the mean curvature flow of an initially
star-shaped curve defined in (5.2) approximated with 128 points: (a) equi-arclength remeshing, (b)
curvature-dependent remeshing. The remeshing is applied initially and every 100 time steps. This
corresponds to Figure 12.

the equi-arclength redistribution than by using the curvature-dependent one; refer
[11] for related discussions.

To the star-shaped curve defined in (5.2), we now apply remeshing algorithm
presented in subsection 3.5. Figure 14 shows its motion in mean curvature flow
under both types of remeshing. In the case of the equi-arclength one (a), a smooth
solution is obtained which is comparable to Figure 12(a), even though only 24 points
remain to approximate the curve motion in the final time. Contrary to this, in the
case of the curvature-dependent one (b), the curve has an oscillatory shape as the
number of points decreases. A similar issue was raised when the curvature-dependent
redistribution is often used even with fixed 128 points as discussed above. In the
current test, however, we attribute such numerical instability to the inaccuracy of
geometric quantities due to few frequency modes. We will show in subsection 5.4 that
the curvature-dependent remeshing works well for an elongated droplet due to many
points i.e., enough frequency modes.

5.3. Willmore flow. A curve in Willmore flow deforms to decrease the energy
of total squared mean curvature, and the one-dimensional curve in Willmore flow is
governed by

∂X

∂t
=

(
κss +

κ3

2

)
n,(5.6)

where κss is the Laplace–Beltrami operator of curvature as defined in (2.2). Using
the forward Euler method, we discretize this equation by

Xn+1
i −Xn

i

∆t
=

(
(κss)

n
i +

(κni )3

2

)
nni ,(5.7)

where similar notation is used as in (5.5). Here the time step size is set by ∆t = 10−6

and the number of points is N = 128. The numerical results are obtained up to
t = 0.2 for both the star-shaped curve and the complex curve defined in (5.2) and (5.3),
respectively. Due to the fourth derivative associated with the term κss, Willmore flow
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Fig. 15. For some chosen times, snapshots of the Willmore flow of two curves approximated
with 128 points: (a) an initially star-shaped curve defined in (5.2), (b) an initially complex curve
defined in (5.3). Only the equi-arclength redistribution is applied to both curves initially and every
time step.

is much more difficult to solve numerically than mean curvature flow. Fortunately
as similarly discussed above and in [11], the equi-arclength condition suppresses the
numerical instability induced by the fourth derivative. So, in this test, only the equi-
arclength redistribution is applied initially and every time step.

In Figure 15, two different curves, a star-shaped and a complex, are initially given.
In Willmore flow, the contribution of the fourth derivative greatly reduces the total
squared curvature, so the deformation in a short time is quite large. Nonetheless,
in all snapshots we observe that the curves qualitatively satisfy the equi-arclength
condition, meaning that our method works well even in the case of large and quick
deformation. They deform to a circular curve in a short time, then evolve slowly.
In the literature [9, 3], different curves are studied in Willmore flow, where a similar
tendency of behaviors is also observed.

5.4. Shear-induced droplet deformation in Stokes flow. As an application
to fluid-structure interaction problems, we consider a droplet immersed in Stokes flow.
The evolving motion of a droplet is governed by

0 = −∇p+ µ∆u−
∫ 2π

0

σκnδ(x−X(θ))‖Xθ‖dθ,

∇ · u = 0,

∂X

∂t
= u,

where x is the Eulerian points in bulk fluid, X is the Lagrangian points on a droplet,
and δ(·) is the Dirac delta function. We denoted the fluid pressure by p, the fluid
velocity by u, the fluid viscosity by µ, and the surface tension of a droplet by σ. As
studied in [6], for a blob given by φε(X) = 2ε3/[2π(‖X‖2 + ε2)5/2], the regularized
formulation of fluid velocity in two-dimensional Stokes flow is
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u(θi, t) = u0(θi, t) +

N∑
k=1

−fk
4πµ

[
log(Rk + ε)− ε(Rk + 2ε)

(Rk + ε)Rk

]
(5.8)

+
1

4πµ
[f · (Xi −Xk)](Xi −Xk)

Rk + 2ε

(Rk + ε)2Rk
,

where Xi = X(θi) and Rk =
√
‖Xi −Xk‖2 + ε2. The position vector is updated

accordingly by

Xn+1
i −Xn

i

∆t
= u(θi, t).(5.9)

The background shear flow is given by u0(θi, t) = (Y (θi, t), 0) for the droplet initially
configured as the unit circle. The blob size denoted by ε must be chosen carefully
so that the volume loss of the droplet is small enough during simulations. In this
test, we set it by ε = 0.2‖Xθ(θk)‖∆θ adjusting based on the magnitude of arclength
element at each point. The fluid viscosity is set by µ = 1 and the time step size is by
∆t = 10−4. The numerical solution is obtained up to t = 5.

In Figure 16, droplet motions are plotted, where different surface tensions are
set by σ = 2.5 in (a), (b) and σ = 1.25 in (c), (d). When σ = 2.5, the droplet

Fig. 16. For some chosen times, under shear flow, snapshots of initially circular droplet de-
formation with σ = 2.5 in (a), (b) and σ = 1.25 in (c), (d): (a), (c) equi-arclength redistribution,
(b), (d) curvature-dependent redistribution. Both redistributions are applied initially and every 1000
time steps.
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deforms to an elliptical shape, then tends to tank-tread. In this case, the difference of
effects between two redistributions is ignorable. Contrary to this, when σ = 1.25, the
droplet elongates more, and the effect of curvature-dependent redistribution is clearly
shown at the tips of the droplet. In droplet dynamics, the region with high curvature
is important since its approximation with more points captures the droplet motion
better. Our numerical results indicate that the curvature-dependent redistribution
has great potential to be applied in practice.

When the surface tension decreases more to σ = 0.625, the droplet in shear flow
tends to elongate more. Figure 17 shows the higher elongation under both types
of remeshing. As seen, in both cases, the initial 128 points increases as time goes
on and becomes about 270 points in the final time. One can certainly see that two
types of remeshing still satisfy their own condition very well. In the case of the equi-
arclength one (a), we observe almost constant distance between two consecutive points
as we defined the desired number of points by (3.10), whereas better approximation
of droplet tips is shown in the case of the curvature-dependent one (b).

Fig. 17. By applying remeshing, for some chosen times, under shear flow, snapshots of initially
circular droplet deformation with σ = 0.625: (a) equi-arclength remeshing, (b) curvature-dependent
remeshing. The remehsing is applied initially and every 1000 time steps.
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6. Conclusions and future work. In this paper we presented a numerical
method to obtain the equi-arclength(-like) redistribution of points on evolving closed
curves. In the framework of the Fourier representation of variables, spectral accu-
racy was obtained for smoothly perturbed points on the unit circle. In addition, our
approach was able to obtain convergent results not only for nonsmoothly perturbed
points, but also in the sense of statistics for randomly perturbed points. For other
various curves, the equi-arclength redistribution and the curvature-dependent redis-
tribution performed well, still achieving spectral accuracy, although a larger number
of points was required to increase the accuracy for a complex curve, particularly with
the curvature-dependent one. To check the applicability of our method, we consid-
ered three flows: mean curvature flow, Willmore flow, and Stokes flow. In all cases,
both types of redistribution were successfully applied. As discussed here and in the
literature, the equi-arclength redistribution was stable regardless of its application
period and the number of points used. Unlike this, the curvature-dependent redis-
tribution is slightly unstable when it is often used and when few points are used. In
practice, however, the curvature-dependent redistribution had great potential, giving
qualitatively better approximation in the presence of high curvature regions such as
elongated droplet tips. We further showed that our algorithm is applicable to a pe-
riodic planar curve without any modification. Although not shown here, our method
is not limited to a curve in two dimensions, so one can further apply it to a curve
in arbitrary dimensions by defining proper functions associated with arclength and
curvature.

Our method can be useful in time-dependent dynamics coupled with a scalar
function. For instance, an insoluble surfactant as a scalar function flows along the
curve and needs to be interpolated according to the points redistribution. Our method
enables one to spectrally interpolate the mass density of surfactant using the newly
obtained angle. Meanwhile, since a doubly periodic surface consists of periodic curves
in two directions, our approach may be adapted to such surfaces. Fast computing of
Fourier series over nonequispaced angles as in [8] will be helpful to speed up our algo-
rithm, and theoretical studies on convergence analysis as in [21, 25] are also promising.
In addition, application of our method to an open curve is an obvious extension. We
leave these for future work.
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