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Abstract In this paper, we extend the MAC scheme for Stokes problem to the Stokes/Darcy
coupling problem. The interface conditions between two separate regions are discretized
and well-incorporated into the MAC grid setting. We first perform the stability analysis of
the scheme for the velocity in both Stokes and Darcy regions and establish the stability for
the pressure in both regions by considering an analogue of discrete divergence problem.
Following the similar analysis on stability, we perform the error estimates for the velocity
and the pressure in both regions. The theoretical results show the first-order convergence of
the scheme in discrete L2 norms for both velocity and the pressure in both regions. Moreover,
in fluid region, the first-order convergence for the x-derivative of velocity component # and
the y-derivative of velocity component v is also obtained in discrete L? norms. However,
numerical tests show one order better for the velocity in Stokes region and the pressure in
Darcy region.

Keywords Stokes—Darcy flow - MAC scheme - Stability - Convergence - Finite difference
method - Staggered grids

1 Introduction

The coupling of incompressible fluid flow with porous media flow has been an active research

topic in recent years due to various applications of the filtration in biological and environmen-
tal engineering. The mathematical modeling of such physical processes consists of Stokes or
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Navier—Stokes description in the incompressible fluid region and Darcy’s law in the porous
media region. These two flow regions are coupled at the fluid—porous interface through some
physical interface conditions which we shall describe later. A detailed modeling, analysis and
numerical approximation for the problem can be found in a recent review [13]. For past years,
numerical methods for Stokes and Darcy coupling problems have been investigated mainly in
the framework of finite element method such as in [1,5-10,12-15,19,20,23], just to name a
few. Among those finite element discretizations, the fully coupled system can be either solved
as a whole [5,9,10] or be decoupled into two separate subproblems with iteratively updating
solution information across the interface [12,20]. There are other numerical approaches for
the Stokes/Darcy coupling problem, such as spectral method (or pseudospectral method)
[18,30], and boundary integral method [2] etc. Recently, an augmented immersed interface
method based on finite difference scheme for Stokes/Darcy coupling problem with complex
interface has been proposed in [21]. However, unlike most of the finite element methods,
there is lack of convergence analysis of the method. This may be due to the absence of the
variational formulations. In this paper, we propose a MAC (marker and cell) scheme for the
Stokes/Darcy coupling problem and give the convergence proof for the scheme. To the best
of our knowledge, this result is new.

The MAC scheme proposed by Harlow and Welch [16] has been a popular finite difference
scheme for Stokes and Navier—Stokes equations. The scheme adopts a nice grid layout in
finite difference setting in which the velocity and pressure are located at different locations of
a grid cell. More precisely, in 2D, the x component velocity u and the y component velocity
v are defined at the middle points of vertical and horizontal edges, respectively; while the
pressure p is defined at the cell center as depicted in Fig. 1. Although the MAC scheme
has been developed in the 1960s, the first analysis and convergence for Stokes equations
were carried out until 1992 by Nicolaides [24] simply because only limited mathematical
tools are available for finite difference method. The author showed that the vorticity and the
pressure are both first-order accurate. Later Han and Wu [17] proved that the MAC scheme
can be obtained from a new mixed finite element method and showed that the first-order
convergence for both the velocity (in the H ! norm) and the pressure (in L? norm). Several
similar convergent results using different finite element discretization can be found in the
[25]. Until very recently, Li and Sun [22] proved the superconvergence (both velocity and
pressure are second-order convergent in L> norm) for the MAC scheme on non-uniform
grids using finite difference approach. Under the assumption of second-order convergence
for the pressure, the authors were able to prove the second-order convergence of the velocity.
However, the second-order convergence for the pressure is not exactly proved in the MAC
framework. Rui and Li [25] established the inf-sup condition and the stability for both velocity
and pressure; thus, the superconvergence for the MAC scheme can be obtained on non-
uniform grids. For unstructured grids, we refer the interested reader to [3,4] for more details.
For block-centered finite difference methods that is another type of MAC scheme, the second-
order convergence of the block-center scheme for incompressible and compressible Darcy-
Forchheimer problems has proven in [27,28] and a two-grid block-centered finite difference
scheme is also studied in [26].

In this paper, we first develop a finite difference discretization based on the MAC scheme
for the Stokes/Darcy coupling equations. The interface conditions are discretized and can be
well-incorporated into the MAC grid setting. Following the similar spirit used in [22,25] for
Stokes equations, we conduct a stability and convergence analysis for the scheme on uniform
grids. We would like to emphasize that the extension from Stokes problems to Stokes/Darcy
coupling ones is not standard, especially in the proof of stability and convergence of the
scheme. The major difficulty comes from the estimates of those relevant terms near the

@ Springer



J Sci Comput

fluid—porous interface where three different interface conditions are imposed. Our analysis
shows the first-order convergence in discrete L> norms for the velocity and the pressure
in both incompressible fluid and porous regions. Moreover, in fluid region, the first-order
convergence for the x-derivative of velocity component u and the y-derivative of velocity
component v is also obtained in discrete L> norms.

The rest of paper is organized as follows. In Sect. 2, we present the problem with the
interface conditions. In Sect. 3, we present the MAC scheme for the Stokes/Darcy coupling
equations and the discretization of the interface conditions. The major stability and error
analysis are given in Sects. 4 and 5, respectively. Two numerical tests are given in Sect. 6
showing better convergence results than the theory. Concluding remarks are made in Sect. 7.

2 The Stokes/Darcy Coupling Problem

In this paper, the model under consideration consists of Stokes flow in the fluid region €2 ¢
and Darcy’s law in the porous media domain €2, where these bounded domains €2y and
Q, C R? are assumed to be rectangular and separated by an interface I as illustrated in
Fig. 1. Let the boundary I" /(I')) be 0Q ¢\I" (0€2,,\I") respectively and n s (n),) be the unit
outward normal vector of the domain 2 (£2,) respectively.

Let us denote u = (u, v) and p by the fluid velocity and pressure in 2 ¢ and u,, and ¢ by
the fluid velocity and pressure in €2,,. In the region Q2 ¢, the Stokes flow (u, p) satisfies the
following equations

—vAu+Vp = fi, inQy, 2.1
V.u =0, in Qy, 2.2)
u=0,inly, 2.3)

where v is the viscosity and f| = (f¥, f") is the external force; in the region €2, the Darcy’s
flow (u, ¢) satisfies the following equations

u, =—KvV¢, in Q,, 24
V.u, = fr,inQp, (2.5)
up-n, =0, inl, (2.6)

where K is a symmetric and positive definite tensor representing the rock permeability divided
by the fluid viscosity and f is the external source. For simplicity, we choose K = « I, where
Kk is a positive constant and I is 2 x 2 identity matrix. By combining equations (2.4) and
(2.5), we obtain

— V- (V) = f2, in Q. 2.7
Here, the source f> is assumed to satisty the solvability condition
/ frdx =0, (2.8)
QI’
which is due to the no-slip (2.3) and no-flow boundary condition (2.6) on the boundaries I' s
and I'j,, respectively; and the mass conservation uj, - n, +u - ny = 0 across the interface

I'. In the present setting, this mass conservation across the interface results in (2.10). More
detailedly, we have
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/V-udx+/ V.u,dx = frdx=0.
Qy Q Q

The pressures (p, ¢) are assumed to satisfy the condition for the uniqueness of the solutions

as follows:
/ pdx—}-/ ¢dx =0. 2.9
Qf Qp

To complete the problem (2.1)—(2.6), three conditions across the interface I" should be
satisfied; namely, the mass conservation, the balance of normal forces, and the Beavers—
Joseph—Saffman (BJS) condition, see the detailed physical meanings of those conditions in
[13,20]. Readers who are interested in the well-posedness of the problem with above three
interface conditions can refer to the review article [13]. Since the considered interface I" is a
straight line in this paper, those three interface conditions can be simplified into

B]
v=—x—¢, (2.10)
dy
ov
p—¢=20—, (2.11)
dy
k(o 9
u=£ a L ovy 2.12)
ap \Jdy  Ox

where k = vk and «; are positive constants. Here, the form of \/I?/oq has the physical
meaning of friction coefficient.

3 Finite Difference Discretization Based on the MAC Scheme

In this section, the finite difference discretization based on the MAC scheme for solving the
problem (2.1)—(2.12) is presented. We start with the mesh description. Let 2 = QU Q).
For simplicity in presentation, the domain €2 is assumed to be [0, L] x [—L,, Ly] where
Qr=1[0,L]x[0,L,],R2,=1[0,Ly]x[—Ly,0]and L,, L, are positive constants. Given
positive integers M and N, the mesh widths Ax and Ay are equal to Ly/M and Ly /N
respectively. Let the nodal points (x;, y;),0 <i <M +1,—N < j < N + 1 be defined as

follows:
o1 o1
X = 1—5 Ax, yj = j—i Ay.

For possible integers i, j, 0 <i < M,—N < j < N, we define x;112 = (x; + xi11)/2
and yji1/2 = (yj + yj+1)/2. Here, the staggered grids are applied. Namely, the pressure
is defined on one set of grid points while the velocities are defined on another set of grid
points. We let u; 1,2, ;, v; j+1/2 and p; ; denote discrete approximations of the flow veloc-
ity u(x;11/2, yj), v(xi, yj+1/2) and the pressure p(x;, y;) respectively; let ¢; ; denote the
discrete approximation of the pressure ¢ (x;, y;) (see Fig. 1).

To discretize (2.1), we employ central differences and derive

_v<ui+3/2,j —2uit1/2,j +Ui-1/2,; IESVEN S 2uit12,j + ”i+1/2,j71)

(Ax)? (Ay)?
+%: M lSiSM—11<j<N, G.D
- ,
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(a) y(4) (b)
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Fig. 1 a Schematic representation of the finite difference discretization within the staggered grid framework.
p and ¢ are defined at the cell centres, while u and v are defined at the centre of the cell faces. The interface
is defined along j = 1/2. b Staggered arrangement of the variables

and
o Vitriti/a — 2vi j 4172 + Vie1,j+1/2 n Vi j+3/2 = 2Vi j+1/2 + Vi j-172,
(Ax)? (Ay)?
Pi,j+1 — Di,j . .
+7Ay =flpplsi<M 1<j<N-1, (3.2)

where

Y= s ) £, v) dxdy

+ , . = 9 9

/g AxAy [xixip11x[yj—1/2,¥j+1/2]

1
isip = // fU(x, y)dxdy.
Bt AxAy [xi—172.%i+12]% [y}, yj+1]

To discretize (2.2), we derive its discrete approximation at the mesh points (x;, y;). That
is, we obtain

Ujt+1/2,j — Ui—1/2,j + Vij+1/2 — Vi, j—1/2

0, 1<i<M,1<j<N. 3.3)
Ax Ay
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As for the finite difference discretization of the equation (2.7), similarly, we have

_ Giv1j =26+ bi-1y il =200 — i1 N
(Ax)2 K (Ay)2 - (f2)1,]7

l<i<M,-N+1<;<0, (3.4

where
1

(i = x| fox, v) dxdy,
AxAy [xi—12,%i4121x[yj—1/2,yj+1/2]

The discrete approximations (3.1)—(3.4) are employed to determine the pressure and the
velocity at the interior points in €2 except the ones on the interface boundary I". For certain of
these equations, the information about the boundary conditions and the ghost points should
be provided. For boundary conditions, we have

uippj =um+12,;=0,j=1...,N, 3.5)
viNyl2=0,i=1,.... M, (3.6)
b0,j =1,j,0my1,j =¢Mm,jj=—N+1,...,0, (3.7
Gi.-N =¢i—Ny1,i=1,..., M. (3.8)

As for the extrapolation of the ghost points on the boundary I' y U T, we use linear extrap-
olation and the boundary condition which lead to

Uit1/2,N+1 = —Ui+12,N, L =0,..., M, (3.9)
V0,j+1/2 = —V1,j+1/2s ] = 0, ...,N, (3.10)
UM41,j+1/2 = —UM,j+1/2, J =0,..., N. (3.11)

Regarding the interface conditions on I', we introduce the values of ¢; 1,1 <i < M (the
pressure on the Darcy region) and u; 12,0, 1 <i < M — 1 (the velocity on Stokes region)
defined on the ghost points (x;, y1) and (x; 11,2, yo) respectively. Furthermore, the interface
conditions (2.10)—=(2.12) can be approximated by choosing the values of ¢; 1 and u;11/2,0
such that the following discretizations hold:

di1— dio .
v; = —Kxk—>—,i=1,...,. M, 3.12
i 1/2 Ay (3.12)
Vi — V;
pit — o =202 B2y, (3.13)
Ay
Uit1/2,1 + Uit1/2,0 Vi Wit1/2,1 — Wi+1/2,0  Vi+1,1/2 — Vi,1/2
=— + :
2 o] Ay Ax

i=1,....M—1. (3.14)

The idea of the discrete approximations (3.12) and (3.14) is to approximate the differential
operators on the interface I" as follows:
¢ din—¢io du  uivip1 —Uit120 OV Vigl1/2 = Vil)2
ay Ay 7y Ay " ox Ax

’

and apply the linear approximation to obtain the value of u on the interface I' as follows:

e Ui+1/2,1 + Uit+1/2,0
7 .
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We remark that the discrete approximation (3.13) of (2.11) is applied by using one-sided first
order finite difference methods. The convergence for the unknowns (u, p) and ¢ in discrete
L? norm is shown to be of first order in Sect. 4. However, the first order approximation on the
interface condition does not contaminate the convergence of the second order for the velocity
field which is illustrated by numerical experiments in Sect. 5.

To discretize (2.9), we apply direct integration as follows:

M N M 0
DD pijAxAy+> 0 Y ¢ jAxAy =0. (3.15)

i=1 j=I i=1 j=—N+1

Remark that the following compatibility condition should be satisfied directly due to the
definition of (f2);,;:

M 0
Y > (fijaxay =o. (3.16)
—N

i=1 j=—N+1

Now, we introduce the following standard forward and backward difference operators
DY, Dy, DY and Dy as follows:

Ui43/2,j — Uit+1/2,j

_ Wit1/2,j — Ui—1/2,j
D+M'+12'= ,DM‘+12‘= ’ S
x Wi+1/2,) Ax x Wi+1/2,) Ax
w L A wi o .
" i+1/2,j+1 — Uit1)2,j 172, — Wit1/2,j—1
Diuitip,j = A s Dyuigip,j = A .
y y

Similarly, we can define the notations for D v; j1/2, Dy vi, j+1,2, D;r Vi, j+1/2> Dy vi jy172,
D{pi i, Dy pij, D;rp,-’j and Dy p; ;. These notations are also applied for Darcy’s flow.
In summary, we rewrite the finite difference scheme for (3.1) to (3.4) as follows:

+p- +p- - — fu
—vD D ujv1y2,j —vDyDyuivipj+ Dy pivij = fiiip, )

I<i<M-1,1<j<N, 3.17)
—vDID v ji12 = vDY DY v 12 + Dy pijt = 410

I<i<M, 1<j<N-I, (3.18)
Diuivipj+ Dyvijyip=0,1<i <M, 1=<j=<N, (3.19)

—kD¥ Dy i j — kDI Dy ¢ij = (f)ij, 1 <i <M, -N+1<j<0. (320

4 Stability Analysis

In this section, the stability analysis for the scheme (3.17)—(3.20) will be presented. Assume
that the discrete solutions u; 11,2, j, v;, j+1,2 and ¢; ; satisfy the boundary conditions and inter-
face conditions described in (3.5)—(3.14). We begin with introducing the following discrete
norms that will be used later:

M—-1 N
flull® ZZMHM AxAy, 4.1
i= 1]
M — M
AxAy
llv)? ZZ|vl-,,-+1/z|2AxAy+2|vi,1/2|2 R 4.2)
1

i=1 j=lI
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M N
Ipl* = ZZ |pi.jI> AxAy, (4.3)
i=1 j=1
M 0 M 0
1> =Z > |¢,-,,~|2AxAy, IAIP=Y" > I(fijlAxAy,  (44)
i=1 j=—N+ i=1 j=—N+1
M—-1 N
LN = | £ 0, P Ax Ay, 4.5)
i=1 j=1
M N-1
AxAy
LI =D 1l AxAy+Z|f'q/2|2 : (4.6)
i=1 j=I i=l1
M N
IDyull> = > > D uis1y2 I AxAy, (4.7)
i=1 j=1
M—-1N-1
1Dy ull* = |D; uig1y2. 411> Ax Ay
i=1 j=1
M—1
_ _ AxA
+ (|Dy“i+l/2,N+l|2+|Dy“i+1/2,1|2) zy’ (4.8)
i=1
M N-—1
IDyvl* =) Dy vijr12lPAxAy
i=2 j=1
N—1
- _ AxAy
+ (1D vp+1,j+121* + D511 21) >
j=1
M AxAy AxAy
+Z|Dx_vi,1/2|27+(|D;U1,1/2|2+|D;¢_UM+1,1/2|2) YR
i=2
(4.9)
M N
ID; v))* = ZZ Dy v jr1p2l* AxAy, (4.10)
M—1 0
1Dy ¢l* = Z Z |D;¢i+1,,-|2AxAy, (@.11)
i=1 —N+
M 0 M AxAy
— 2 — 2 — 2
1Dy 1> = ; ZN D} ¢ AxAy+;|Dy¢,»,1| R (4.12)

Notice that by the definition of f | 2. ( fl” 12 and (f2);,;) respectively, we have the
inequality [|f“ll < II/*ll2 CIL/"I < I1f"llz2 and [[f2ll < |l f2]|.2) respectively where
Il - Il 2 denotes its corresponding L? norm. This implies that the discrete L? norms of the
forcing terms are independent of the mesh widths. Before proceeding the stability analysis,
we need the following discrete Poincare inequalities:
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Lemma 4.1
lull® < L3I Dy ull?, (4.13)
A _
vll* < (Ly + %) Ly| Dy v|?, (4.14)
M 1/2
Z Z (F2)iji.; Bx By <,/2(L2+L2)||fz||<||D 91+ D5 ¢||) :
i=1 j=—N+1
4.15)

Proof To show (4.13), we have

M—-1 N
2 _ 2
lul)* = ZDZ CUmt1/2,; AXPAx Ay

i=1 j=1 m=l1
M—-1 N M—

=3 S PUTTHING IS
i=1 j=I m=1

< LD ul*. (4.16)

As for (4.14), by applying similar techniques, we have

M N-1 N 2 M N ZAxAy
li>=>">" ( > D;v,-,m+1/sz) AxAy+ ) ( > D;w,mszy) 5
i=1 j=l1

m=j+1 i=1 “m=l1

M N-1
Z (Zw;vi,mﬂm )N(Ay)h + 2= ||D* I
1

Ay — 2
< Ly + 7 Ly”Dy U” . (4.17)

As for (4.15), forany i > i’ and j > j’' we have

(f2)i,j¢i,/ (fZ)t j¢)l/ J’
< |<.fz>,»,,,|< Z Dy ¢m,|Ax+Z|Dy¢, m|Ay) 4.18)
m=i"+1 m=0

Multiplying (4.18) by AxAy and summing all i and j, applying the condition (3.16) and
using Cauchy—Schwarz inequality, (4.15) is obtained.
Then, the proof of Lemma 4.1 is complete. O

Now, in order to make our presentation of the stability analysis clear, we need the following
lemmas.

Lemma 4.2
— DD uiy1y2,j —vDy Dy vijr12=0,1<i <M —1,1<j<N, (419
—vDy Diuiyijpj—vDy Dy v jr12=0,1<i<M,1<j<N-—1 (420

The proof of Lemma 4.2 is established by directly applying (3.19).
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Lemma 4.3

M—-1 N N—

M
D0 i1 Dy pivi jAXAY + )
i=1

i=1 j=1 =l j=

M

== viippiiAx, “.21)
i=1
M

1
Vi, j+1/2Dy pi,j+1Ax Ay
]

0
Z (D;D;qsi,j+D;D;¢,~,j>¢,~,ijAy
—N+

0 M
:x||D;¢||2+xZ Y (DY) AxAy —« ) DydiidioAx. (4.22)

i=1 j=—N+2 i=1

Proof To show (4.21), we have

S

—1

N
Uit1/2,j Dy pit1,jAxAy = Z Ui1/2,j(Pi+1,j — Di,j)AY
j=1

M—-1 N

I
—

i=1 j=1
M-1
Uit1/2,jDi+1,j — Z Mi+1/2,jpi,j>Ay
i=1
M-1

Wi—1/2,jPi,j — Z Mi+1/2,j1?i.j>Ay
i=1

E

Il
TMz
0

I
M=
Ma 'Z',ME

1(
>

1

-
Il

j=li

D ujt1)2,jpi,jAxAy, (4.23)
1

where the boundary conditions (3.5) are applied. By applying the same technique, we have

M N-—1 M N M
Vi j+1/2Dy pi jr1AxAy = — Z Z Dy v jy172pi,jAxAy — Z Vi 1/2Pi, 1A%,
i=1 j=1 i=1 j=1 i=1
(4.24)
where the boundary conditions (3.6) are applied. (4.21) can be derived by summing (4.23)
and (4.24) and applying (3.19). Similar procedures can be applied to obtain (4.22). O
Lemma 4.4
M-1 N
—v > Y wig1y2, D Dy w12, AxAy = v||Dyul)?, (4.25)
i=1 j=1
M-1 N
-V Uit1/2, ,D Dyujtiy2,jAxAy =v|Dy ul?
i=1 j=1
M—1
o Z Uit1/2,1 + Uit+1/2, OD;uiH/z,le, (4.26)
i=1
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M N-1 M-1N-1
—v Z Z Vi,j+12Df Dy vi jy10AxAy = v Z Z ID;vi,j41/21* AxAy
i=1 j=1 i=1 j=1
L V-
+§ Z <|DX_UM+1,j+1/2|2 + |D;Ul,j+l/2|2> AxAy, (4.27)
i—1
N

~

1
Ui.j+l/2D;_D;Ui,j+l/2AXAy = v||D;v||2

—V

iMs
Il

i=1j

M
+v Z vi,12Dy vi3pAx, (4.28)
i=1
M—-1 N

—v Z Zui+1/2,ijD;vi,j+1/2AxAy
im1 j=1

M—1N-1
=V Dy uiv1/2,j+1Dy Vit1, j+128x Ay
i=1 j=I
M-1
+v Z wit1/2,10, Viy1,12Ax, (4.29)

i=1

M
—UZ vi,j+1/2D;rD;ui+1/2,jAXAy

=v Dy uiyiy2,j+1D; vig1,j+1/2AxAy. (4.30)
i=1 j=1

Proof To show (4.25), we observe that

M-1 N
—v Z ZMi+1/2,jD;D;Mi+l/2,jAXAy

N
_ + -
=—v Z (Mz+1/2,ij Wiv1/2,j — Wi+1/2,j Dy ui+1/2,/>Ay

N M—1 M—1

_ + -

=-vy ( wiv12 D i1y — Y wit1y2,5D; ui+1/2,/>Ay
j=1 i=1 i=1

M M1
Zui—]/Z,jD;ui+]/2,j - Z Mi+1/2,jD;”i+1/2,j>Ay
J=1 Ni=2 i=1

—Ml/z,ij_u3/2,jAy>

= v||Dyul?, (4.31)
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where boundary conditions (3.9) are applied. Then (4.25) is derived. As for (4.26), we have

M—1

-V uz+1/2,jD;rD;Mi+1/2,ijAy

gle

i=

-1, N N

-V Z (Zulﬂ/z,,‘D;’MiH/z,j — Z”i+1/2,jD;”i+1/2,j>Ax
i=1 j=1 Jj=1
M—1 ,N+1 N

—v Z ( Uit1/2,j—1Dy uig1/2,j — Z Mi+1/2,jD;Mi+1/2,j>A)C
i=1 j=2 j=1

§

uMz

vl(

—Mi+1/2,1D;Mi+1/2,1Ax>

|D;”i+1/2,j|2AXA)’ +uivi/2,NDyuig12, N+1A%

-1 M—1

N
- v - -
=vy Z 1D} uig1/2,1* AxAy + 3 > (IDy wiv12,8+11> + 1Dy Mi+1/2,1|2> AxAy
i=1 j=2 i=1

— Uit 12,1 F Uig1/2,0
+v Z 5 Dy uiy1/2,1Ax
im1

M—1
_ Ujr1/2,1 +Ui+1/2,0 _
=v|Dyul? +v Y~ ; H2O D uig1o Ax, (4.32)
i=1

where the linear extrapolation conditions (3.9) are used. Then (4.26) is obtained. (4.27) and
(4.28) can be derived by using similar techniques. The proofs are omitted.
To prove (4.29), we observe

D;FD;vi’jJrl/z = D;D;rv,-,j-,l/z. (4.33)
Notice that

M-1 N
—v Zuz+l/2,ij_D;_Ui,j—l/2AXAy

i=

._
~.
I
.

M—1, N N
+ +
=-v Z <Zui+l/2,ij Vi j4+1/2 — Zui+l/2,ij Ui,jfl/Z)Ax
i=1 N j=1 j=1
M—1 ,N+1 N
+ +
=-v Z < uit1/2,j—1D; vi j—172 — Z”i+1/2,ij Ui,j71/2>Ax
i=1 N j=2 j=1
M-1 , N
- + +
=-v <Z —Dyuit12,j Dy vi j—12Ax Ay +uip1/2,N Dy vi Ny1/2A
i=1 N j=2

—ui+1/2,1D;rvi,1/2AX>
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M—1 M—1

N
=v Z D;“i+l/2,jD;vi,jfl/2AXAy +v Z uir12,1DFvi1pAx. (4.34)
i=1 j=2 i=1
Then, (4.29) is proven.

Again, (4.30) can be done by using the same technique which proof is omitted.
Finally, the proof of Lemma 4.4 is complete. O

Now, we are in a position to state and show the following theorem for the stability analysis
of the scheme (3.1)—(3.14) as follows:

Theorem 4.1 Given the mesh widths Ax and Ay satisfying

. VK 201%
Ay <min{—, — ¢, (4.35)
2L, L,
where oy = 2[ , we have
7||M||2+7|| I +*||D_ I +*||D_ I
212 8L2 + 2vk
M—1N-1 5
+v Z (D;ui+1/z,j+1 + D;Ui+1,j+1/2) AxAy
i=1 j=l1
Moo , AxAy
v 2 IDyuivipnal”—
i=1
v N—1
5 (ID7v1 j101* + D vp1, j41,21) AxAy
j=1
+21D; 917 + 511D g1
2 2!
L2 + VK (L2 + L2)
<C ||f" 1?4+ =22 + 7||f II%. (4.36)

Proof By multiplying (3.17), (3.18), (3.20), (4.19) and (4.20) by u; 1,2, j AxAy, v j+1,2
AxAy, ¢i jAxAy, uiy1/2, jAxAy and v; j11/2Ax Ay respectively, summing the resulting
equations for all i and j, and applying Lemmas (4.3) and (4.4), we obtain

M—-1N-1

2
WD Ul +v Y Y (D;ui+1/z,j+1 + D;vi+1,j+1/2> AxAy
i=1 j=I

S

+v <|D;ui+l/2,N+l 2 + |Dy uiv1/2,1 |2)

i

AxAy
2

Il
=

v - 2 - ) 2
+5 (IDy i j4121° + D5 vpr41,j+1/21°) AxAy

=

<
Il

+2v

|D;vl” + 1Dy o1 + | Dy ¢
M

= Z (Ui,l/ZPi,l + KDy ¢i1¢i0 — 2vvi,1/2Dy_vi,3/2) Ax
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M- S M—1
i+1/2,1 i+1/2,0 . _ _
-V E el 5 l Dyuit121Ax —v E wiy1/2,1D vig1,12Ax
i=1 i=1

2 AxAy

+ > 1Dy il

M=

S

-1 N M N-1
+ D0 D i1y fa jAXAY + D0 D v p Ay
i=1 j=1

i=1 j=1
M 0
+ Z Z (f2)i,j i, j AxAy
i=1 j=—N+1
=L+ hL+6L+ 14+ Is. 4.37)
Now, we estimate the terms /;,i = 1,...,5. For the term [;, by applying the interface

conditions (3.12) and (3.13), we obtain

M

I = Z <Ui,1/2(l7i,1 — $i0) — ZVUi,l/ZD;Ui,Z%/Z) Ax =0. (4.38)

i=1

To estimate the term I, we have

M-1

Uit1/2,1 + Uit1/2,0 ( _
h=-vY — / 5 =Y (Dyui+]/2,l+vai+1,1/2)Ax
i=1

) Z Ui+1/2,1 — Ui+1/2,0
2
i=1

D vit1,120x

E

2
i+1/2.1 + Uiy1/2,0 Wi1/2,1 — Uit1/2,0
< Ax —v E 5 D vit1,1240x,
P i=1

(4.39)

where the interface conditions (3.14) are applied. To estimate the second term on the right-
hand side of (4.39), we have

—(Ay —a2) aA

y _
u; ———D_v; s 4.40
Ay o l+1/2,1+Ay+a2 L Vit1,1/2 (4.40)

Uj+1/2,0 =
where the constant o5 is equal to (2\//?) /(a1). This leads to

Wit1/2,1 = Hit1/2,0 _ Ay Wit — arAy i
2 Byt T Ay ay

4.41)

Plugging (4.41) into the second term on the right-hand side of (4.39), we obtain
N, Uit1/2,1 — Uig12,0
vy 5

D vit1,120x
i=1

_ Ay Ay B
=—v = L 08 ey, D A
; (Ay +a2uz+1/2,l 2Ay + @ ) i+1,1/2 e Vitl1,1/2A%
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M—1
Ay 2 Ay
=V IXI: A})TMHI/Z 1D vig1,120x +v Z m| Ui+1,1/2|2AX
To estimate the term J;, we have
J1=—V$MX_:1M'121 Vit1,1/2 — Vi1)2
Ay tay & MBI TR
Ay M M—1
= —v—- U; v - u; v;
v O OSISUSEED DI
M
Ay
=v— D u Vi 12Ax
Ay T ! Z i+1/2,1Vi,1/2

Ay M N
y———— D u; - D v ; Ay | Ax
FeSR DL X o5 ))

(due to Young’s inequality)

Ay M L o N 2
y - 2 -
<v—"— X \D7u; —= DT v AxA
< Ay+azz<4oz2| 12,107 + L‘~<Z Y z,,+1/2) ) y
i=1 S j=1
L Ay _ 2 (2%} — 2
— 2 N DTuip11PAxAy + v————| DTV
4a2(Ay+a2)Zl| it/ AxAy +v Dy
LyAy __ _
< v~ ID ul* + v Dy vl (4.43)
day

To estimate the term J;, we have

M—1 asz
Jr=v —————— D Vit1.1)2 2Ax
§2<Ay+a2>' x Vi1l

M—
_ arAy Z < 2 wig1/2,1 + Uit1/2,0

2
— D u; A
"2(Ay +an) ¢ a 2 y M'H/z’l) *
ar Ay 4 Uit1/2,1 + Uit1/2,0\2 _ 5
Z (7%( 2 ) + Dy uit1/2,11

- )
2By +a) &

A uiy1/20 FUiv12,0
o 2

D;Mi+1/2,1)Ax
M—1 5
2A 2 . .
< viy (1 + 7) Z <ul+l/2,1 +ul+1/2,o> Ax
(Ay +a2) a2 €)= 2

M—1

o ( e) _ 5, AxAy
—(1+ = D7 u; , 4.44
+v Ayt + > ;:1 IDy uit1/2,11 > (4.44)

where € is a positive parameter which will be determined later.
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Combining (4.39), (4.43) and (4.44), we obtain

M—1 2
2 2A i i
< v (az 3 y) Z <M1+1/2,1 + ul+1/2,0> Ax
a (Ay +az) € 2

i=1

an ey Mo AxAy
v — (1 + f) Y 1D uisiyaal
Ay + ap 2 = 2
LyAy _
+v == | Dy ull* + v Dy vl (4.45)
o ’
Now, set € = %, we can infer from (4.45) that
M AxAy L,Ay
L<v) IDjuisipal o | DL ull® + Dy vl (4.46)

v
2 2
= 4oy

To estimate the term /3, we have

M M
1 ) AxAy 1 AxAy
= 1Y PR s;Z(ZlD vwm) .

i=1 i=1 *j=I1
L,A

<

Yoo
1D} . (4.47)

To estimate the term I4, by applying discrete Poincare inequalities and Young’s inequality,
we have

Ly < Nlullll 00 ol

- u Ay - v
< LylIDiullll fYNl + /Ly Ly+7 1Dyl fo

Ly (Ly+%)

v 2
> e (4.48)

v v L?
< ~IDgul®*+ < IDy vll? + == 12
< SIDull™ + SUDywlI” + 217 +

To estimate the term /s, by applying Lemma 4.1, we have

15 /2 (L3 + 12) 121 1D5 812 + 1 D5 62

2 2
w I f211%. (4.49)

K — 2 — 2
= 3 (ID7 812 + 105 61%) +

Combining the estimates of /;,i =1, ..., 5, we can infer from (4.37) that
3L M—1N-1
(5 ™ )VllD ull> +v Z Z (D U412, j+1 + Dy viq, /+1/2) AxAy
2 i=1 j=I1
M

AxAy
- 2
+v Z 1Dy i1 24117 —

—
| B>
\<

=
L

(lD;Ul,jH/zl2 + |D;UM+1,j+1/2|2)AXAy
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v LyAy _ LT K-
+<,_ y >||Dyv||2+5||Dx¢||2+§||Dy¢||2

2 2k
A
L a2 Ly<Ly+Ty> V2 <L§+L§) 2
= AN+ 111+ 112" (4.50)
2v 2v K
By taking Ay to satisfy the following conditions
3 LyA LyA
oS o and s - 22 Y 4.51)
2 40{% 2 2k 4
which implies
. VK 201%
Ay < min ,—=1, (4.52)
2Ly, L,
the proof of Theorem 4.1 is complete by using Lemma 4.1. O

To show the boundedness of the pressure p and ¢, we need the following lemmas:

Lemma 4.5 Let the mesh widths satisfy (4.35) and Ay = Ax, we have

M-1
3 Wip1/2.1 + Uiv12,0\° Ax <K =2c, 4 B2y +2 &
5 = w7 L, v

i=1

Proof To begin with, we rewrite the summation for D v, apply the triangle inequality and
have

M-1 M-1 , N Ay
— 2 _ —_
> (Dyvig11/2)7 AxAy = ) ( > <— Dyvity j+12+ D, Ui,j+1/2> E) AxAy

i=1 i=1 j=1

4LyAy 5
< Ay Dy vlI>. (NAy =Ly) (4.53)
Then, we use (4.41) and have
M—1
Ay Y (Dyuig10,1)* AxAy
i=1
M-1 2 M-1
8Ay ) a5 Ay - 2
<—" u; AXAy + —2""—= N (D vi11.12)" AxAy.
(Ay +a2)? ; e (Ay + )2 ; S
8Ay _
< =5 Il +8L,ID; vlP, (4.54)
2

where the condition Ay = Ax and the inequality (4.53) are applied.
To show the desired inequality, we rewrite (4.37) in Theorem 4.1 as follows:
M—1N-1 5
20| Dy ul* +v Z Z (D;Mi+1/2,j+1 + D;vi+1,j+1/2) AxAy
i=1 j=1
M—1
+v Z |D;Mi+1/2,N+1|2

i=1

=

AxAy v — 2 _ 2
> t3 (1D 141721 + Dy vpg1,j11/217) AxAy
Jj=1

@ Springer



J Sci Comput

+20[ Dy vl? + | Dy 1° + 1| Dy ¢|1”

= Z (Ui,l/ZPi,l +«Dy di1¢i0 — 2VUi,1/2D;Ui,3/2>Ax

M-l S M—1
i+1/2,1 T Uir1/2,0 _
-V E 5 Dyujt1p1Ax —v E wiy1/2,1 D vig1,120%

1 i=1
-1

i

S

|Dy_ui+1/2,1|2AXAy
1

N <

i

) AxAy

i 2

IDy il

'Mi

Il
—_

N-1

M—1 N M
F YD w2 i AXAY DY v 12 [ pAx Ay
i=1 j=I i=1 j=1

0

Z Z (f2)1/¢szXAy

i=1 j=—N+1
= I1+12+I3+I4+15. (4.55)

§

The estimates for the terms /;, i = 1, 3, 4, 5 remain the same as in (4.38), (4.47), (4.48) and
(4.49). To estimate the term I}, we have

20 NS (i Fuis0\ v
1 N 1 N _ _
I =—— ( > ) Ax — 5 Z Dy uit172,1 D vig1,1/2 AxAy
2 i3 iz
M-1
v - 2
3 IDy uit1/2,11"Ax Ay
im1
M1
_ <Mi+1/2,1 + Mi+1/2,o>2 Ax
oy 4 2
i=1
v " (i + i 20
- ( ml. anre >D;m+1/2,1 AxAy
oy 4 2 )
i=1
v (g 12,1 + Uit1/2,0 y = 2
<2 izt ui20)" ) L Ay (D—- )AA
S ( > + 2 4042 Z y Hit1/2,1 XAY,

i=1 i=1

(4.56)

where Cauchy—Schwarz and Young’s inequalities are applied from the second line to the
third line.

Combining the estimates (4.38), (4.47), (4.48), (4.49) and (4.56) and applying (4.35), we
obtain

Uit1/2,1 + Ui+1/2,0 VAYy l 2 1.57
] L —
;1 ( ) ) X =Cy + | ;] y i+1/2,1 X )

The desired inequality is obtained due to (4.57), (4.54), (4.35) and Theorem 4.1. ]
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In addition to Lemma 4.5, we need the following lemma extended from the discrete diver-
gence problem for finite difference scheme for Stokes equations to the present Stokes/Darcy
coupling equations on a staggered grid.

Lemma 4.6 Forany given p; j, 1 <i <M,1 <j<Nand¢; j, 1 <i <M,-N+1=
J =< 0 satisfying (3.15), there exist two vectors iij1,2,;,0 <i < M,0 < j <N+ 1and
Vi j+1/2,0 <i <M +1,0 < j < N satisfying the following properties:

uy,j =upm41,2,j=0,0<j<N+1, (4.58)

Uit1/2,N+1 = —li+12,8, 0 <i < M, (4.59)
ViNt12=0,0<i<M+1, (4.60)

00, j4+1/2 = —U1j41/2, UM+1,j+1/2 = —Upm,j+1/2, 0 < j < N, (4.61)

Didiv12,j + Dy vijpip = pij, 1 =i =M, 1<j <N, (4.62)

and there exists a vector q;,‘,j, 0<i<M+1, —N < j <1 satisfying
D;d1j=Dyom+1,; =0, —N+1<j<0, (463)
Dy i -ny1 =0.—kD; i1 =Tiip. 1 <i <M, (464
kDD i j—«kDD i j=¢ij,1<i <M, —-N+1<j<0. (465
Moreover, we have
IDgill* + 1Dy al* + |1 Dy ol + || Dy 51>

M1, - 3 5
7 0 ~é -é div1/2,1 + it1/2,0
+||M||2—|- ||U||2—|— ||DX¢||2+ ||Dy¢”2+ Z < i+1/ ! i+1/ ) Ax

i=1

<Ca(lpI*+ 1017, (4.66)

where C'd =+ LT’ +(1+ K%)(L% + Li))Cd is a constant independent of the mesh widths
Ax and Ay and Cy is a constant defined in Lemma 4.7.

To prove Lemma 4.6, we need the following lemma related to the finite difference scheme
for the Stokes problem on the whole region € with homogenous Dirichlet boundary condi-
tions:

Lemma 4.7 Forany given p; j, 1 <i <M,1 < j<Nand¢;j, 1 <i <M,—-N+1=<
Jj < 0 satisfying (3.15), there exist a positive constant C; independent of the mesh widths
Ax and Ay and two vectors Uiy12,j, 0 <i < M,—N < j <N+ 1and V; jt1/2, 0 <
i<M+1,—N+1<j < N satisfying

Uip2,j =Um+12,j =0, =N < j < N +1, (4.67)
Uiv12,8+1 = =Uit12,8, Uit12,-N = —Uit12,-n+1,0 <0 < M, (4.68)
Vint12=Vi-N412=0,0<i < M+1, (4.69)
Vo,j+12 = =V1,j+1/2, VMs1,j+12 = —Vu,j+12, —N+1 < j <N, (470)
DiUivip,j+ Dy Vijyip=pij, 1 <i <M,1<j<N, 4.71)
D Uivip2,j+ Dy Vijrip=¢ij, 1 <i=<M,-N+1=<j=<0, (4.72)

IDL UG + 1D UIG + 1Dy VIig + 1Dy VI < Calllpl? + 91, (4.73)
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where || - ||q is the corresponding discrete L* norm in the region 2 and Cy depends on the
size of the domain 2.

The proof of Lemma 4.7 can be obtained by following the same processes in [29]. Thus,
the proof is omitted.
Now the proof of Lemma 4.6 is presented as follows:

Proof of Lemma 4.6 Assume that two vectors U;y1/2,;, 0 <i < M,—N < j < N +1
and V; j+12,0 <i < M+ 1,—N +1 < j < N are defined in Lemma 4.7 satisfying
4.67)-(4.73).

For the Stokes region, the velocity field (i, v) is defined as follows:

wit172,j = Uiy12,j, 0<i <M, 0<j <N +1,
Vij+12 = Vij+12, 0<i <M +1,0<j < N.
It is easy to check that (4.58)—(4.62) are obtained from the definition of (i, v) and Lemma
4.7.
For the Darcy region, thanks to (4.22), the existence of a vector ¢~> satisfying (4.63)—(4.65)
is equivalent to show that the vector ¢ satisfies
D;g1j =D dur1j=0 —N+1<j<0, (4.74)
Dy i N1 =0.—kDy i1 =012, 1 <i <M, (4.75)
Uiy1j2.,j = =k Dy $it1j» Vijs12 = —KDy_q;i,jH,
1<i<M,-N+1<j<0. 4.76)
From (4.74) and (4.76), ¢ is determined by the choice of ¢1 ;, j = —N + 1, ..., 0. From
4.75) zznd 4.76), d; is determined by the choice of (5,;0,1‘ = 1,..., M. Therefore, this
vector ¢ exists up to a constant. Note that, the velocity field in Darcy region are defined by

Wit1/2,j, Vi,j+172) = (=k Dy $iy1,j, =k Dy i, j11).
To show (4.66), we use the fact

M-1

Z (ﬁi+1/2,1 +ﬁi+1/2,o>2Ax
2

i=1

M-1 , N+l 0 2 2
- - (Ay)"Ax
= E <— E Dyutiyip,j+ E Dy Ui+l/2,j> —
i=1

j=2 j:—N-‘r]

< 2Dy U 4.77)
=7 y Q- .
By applying (4.77)and discrete Poincare inequality, we have

D@l + 1Dy ill* + 1Dy l1* + | Dy 012

_ _ P
Wit1/2,1 + Mi+1/2,0> Ax

M—1
Hlal* + 1517 + 107 $I* + 1Dy oI + ( 5
i=1

< DI U3 1 Ly DU D-V|% + |ID V|3

< IDLUNG + 1+ 5 ) IDTUIG + IDL VIG + 103 Vil
1

+<1+K—2)(||U||é+||vné)
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Ly 1 2 2 — 2
< (1 + (1 + K—z) (Lx +Ly) IDZUI3,

+IDF UG + D5 VIR + 105 VIR). (4.78)

Then, (4.66) is derived by using Lemma 4.7 and (4.78). ]

Now, we are ready to state and show the boundedness of the pressure p and ¢ as follows:
Theorem 4.2 Let the mesh widths satisfy (4.35) and Ay = Ax, we have
> + g1

2v]) - 2v vos
< Cp = max {ZU,K, 1, 7} Cd<16Cf + =K+ 2K+ 1P+ ||fv||2)~
[\ %) o) Ly
PrOOf By multiplying (3.17), (3.18), (4.65), (4.19) and (4.20) by ﬁ,‘+1/2,ijAy s f)'i,j+1/2

AxAy, ¢; jAxAy, iiy12,jAx Ay and U; j 11,2 Ax Ay respectively, summing for all i and j
and adding the resulting equations, we obtain

M N
111>+ 11pI> =20 )" > " Diiiiqi2,j Dy i1, jAxAy
i=1 j=1
M—1N-1
+v (D;ﬁi+l/2,j+1+Dx_77i+l,j+l/2> (D;Mi+1/2,j+1+D; Ui+1,j+1/2> AxAy
i=1 j=1

M—1
v . - . -
+3 (D)' Uit1/2,N+1Dyuiv12,8+1 + Dyitiv12,1Dy Mi+1/2,1) AxAy

- - M-1
Uit1/2,1 + Uit1/2,0 - _
+v l 5 sl Dyujtip1Ax +v Z ui+172,1D vit1,12Ax
i=1 i=1
, N
+§ (Dx_5M+1,j+1/2DX_UM+1,j+1/2 + Dx_ﬁl,j+1/2Dx_v1,j+1/2) AxAy
j=1

M N M
+2v Z Z D0 j+1/2Dy i jy12Ax Ay + Z Vi,1/2 (¢i,0 —pil+ 2vDy_vi,3/2> Ax
=1 i=1
0 M0
Z x_¢,',jD;q5,-,ijAy+KZ Z D;(bi'jD;qu'ijAy
i=2 j=—N i=1 j=—N+2
1N M N-1
- Z D12 [l AXAY = Y3 b2 S p AxAY. 4.79)
i=1 j=1 i=1 j=1

By using the fact

M-1 -~ ~ M—1
Uig1/2,1 +Uit1/2,0 ~ -
v Z i > il Dy uivi21Ax +v Z Ui+1/2,1 Dy vig1,128x
i=1 i=1
pMol B
t5 Y Dyitivi/21 D5 uig101 AxAy
i=1
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M—1
_ < 12,1 Fliy1)2, o) <Mi+1/2,1 +ui+1/2,o> Ax
2 2

i=1

S

+ Dy itiv1)2,1 (D;vz+1,1/2 + D;ui+1/2,1) AxAy,

v
2

i

and applying Cauchy—Schwarz inequality, Theorem 4.1, Lemmas 4.1 and 4.5, it is inferred
from (4.79) that

€1 —~ o~ o~ o~
Ipl? + Il < 5(2v(||Dx 12 + 1Dyl + |1 D551 + 1 D5 911
HI@ll* + 191 + | Dy @1I* + « [ D} 11>

L M
(”l+1/21+u1+1/20) Ax 16C +2 % +—2K
21 f ! L, !

i=1
+I£ + ||f"||2), (4.80)

where ¢ is a positive parameter which will be determined later.
Then, by applying Lemma 4.6, we can deduce from (4.80) that

2v
IplI* + ol < *max {2\) i1, }Cd(“l’” + 1%

1 2v vas
+5— = EKL ISP ). (4.81)

2e1 o Ly

By choosing €7 to satisfy
1
&1 = 5 JUE)
v
max {Zv, K, 1, 072} Cy

the proof of Theorem 4.2 is complete. O

5 Error Analysis

In this section, the error estimates for the scheme (3.1)—(3.14) will be derived. We begin with
introducing the following notations for the errors:
eiv1,; = UXit1/2,¥j) = Uit1/2,),
e jr10 = V(Xi, Yj41/2) = Vij+1/2,
e, = p(xi, ) = pij ef?j =¢(xi, yj) = ¢ij-
Thus, we can derive the following equations for the errors:

_VD D et+1/2 j VD Dv el+l/2] + D et+1 j Rl+l/2]’

l<l<M—l,l<]<N 5.1
—vDID e} 41y —vDIDy ey n+ Dyl =R
15:5M,1515N—1, (5.2)
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Del+l/21+D ez,+1/2— l],1<l<M1<J<N (5.3)
_KD+Dxez/_KD+Dyelj_R:'{)jvlfifM,—N-i-lfjfo, (5.4)

where the terms R1L+1/2 i Rl /+1/2’ and R¢ are defined as

Ry = —VDfD;M(xi+1/2, yj) — VD;D;u(xi+l/2, yj) + Dy p(xit1, yj)

—i’il/lj,lfifM—l,lfjsN, (5.5)
R i1y = —vDi D v(xi, yjr12) — vDY Dy v(xi, yjv12) + Dy p(xis yj+1)
[l 1 Si<M, 1<j<N-1, (5.6)
R{; = Diuxis12,y)) + Dyv(xi, yj12), 1 i <M, 1< j <N, (5.7)
R?; = kDI D¢ (xi, yj) — kDY Dy ¢(xi. y)) — (f2)i
l<i<M,-N+1<j<0. (5.8)

For boundary conditions, we have
ei‘/zﬁj :euM+1/2,j =0,1<j<N; e}fNH/z =0,1<i<M. (5.9)
As for the extrapolation of the ghost points on the boundary I' f U T",, we define

u(Xi+1/2, YN+1) = —u(xi+1/2, yn), 0 <i < M,
V(X0, Yj+172) = —V(X1, Yj+1/2)s VXM+15 Yj+172) = —v(xm, yj+1/2), 0 < j < N,
¢ (x0, yj) = ¢(x1,y), d(Xpr+1, yj) = d(xp, yj), —N +1 =<7 <0,

d
¢ (xis y-N) = ¢(xi, y-N+1), ¢ (xi, y1) = ¢ (xi, yo) + A)’£(xi, y1/2),

l<i<M,
which imply

N = —€hipn 050 <M, (5.10)

€0 j412 = —€l j11/2s €hr1jip = —€h jy12 0= j <N, 5.11)

eg,j = ellp,j’ ef/1+l,j = ef/[,j’ -N+1=<j=0, (5.12)

ef—N = e?—N+l’ l<i<M. (5.13)

Regarding the interface conditions on I', we have

ey =—«Dyel | 1<i<M, (5.14)
651_6??0:2VD ¢; 3/2+(R itz L <i <M, (5.15)
e + et \//f
+1/2,1 +1/2,0
% = <Dv eivipn + Dieiyy, 1/2) + (RP)it1/2,1/2s
l<i<M-1. (5.16)

where (Rp), 172 and (RE r)i+1/2,1/2 are defined as

(RP)i12 = p(xiy y1) — ¢ (xiu yo) — 2vDyv(xi, y32), 1 =i =M, (5.17)

u(xi+1/2, y1) + uxitr1/2, y0)
2

(RMiv1/2,1/2 =
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Vi

T (D;u(xiﬂ/z, 1) + Dy v(xit1, yl/z)),
1<i<M-1, (5.18)
and due to that e}’ 1/2,0 is evaluated at the ghost point, it is defined as follows
ei'y12,0 = U(Xit1/2, Y0) — Uit1/2,05 (5.19)
—(Ay —a2)
—————u(Xit1/2, y1) +
Ayt (Xit+1/2, Y1)

About the condition of the uniqueness, we have

ZZel JAXAy + Z Z AxAy = R?, (5.21)

u(xiy1/2, ¥o) = D v(xit1, y172).  (5.20)

o
Ay +as

i=1j=1 i=1 j=—N+1
where
M N M 0
RP =33 "pli.yDAxAy+ Y > ¢(xi.y))AxAy. (5.22)
i=1 j=1 i=1 j=—N+1

Notice that the definitions of the discrete norms of the errors e, e?, e” and e® are the same

asu, v, p and ¢ respectively. Before establishing the error estimates, the following lemmas
are needed in the sequel.

Lemma 5.1

le“* < L3IDy "I, (5.23)
Ay _
le||? < <Ly + 7) Ly|IDye"|%. (5.24)

The proof of Lemma 5.1 is similar to the proof in Lemma 4.1. Thus, the proof is omitted.

Lemma 5.2
_ d
—vDI D¢}y j = VDI Dy} i p = —vDI R,
I<i<M-1,1<j<N, (5.25)
— nd
—VD D e,+1/zj VD D ez 12 = _UD,V Ri»/+l’
1515M,1515N—1. (5.26)

The proof of Lemma 5.2 is established by directly applying (5.3).

Lemma 5.3
M—-1 N N-1

e; /+1/ZDy ”_HAxAy

Ma

u
el1y,; Dy ey jAXAY +
i=1 j=1 i

M
= —Ze;’]/zelple —ZZR” ”AxAy, (5.27)

i= i=1 j=1

1
M
Z Z (D*Dx ?J+D+Dyel¢/> ;{’_,.AxAy,

—N+1

1 j=1
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M—1 0 2 M 0 5
-9 - ¢
=c> 2 (Dxei+l,j) AxAy+e) Y (Dyei,j) AxAy
i=1 j=—N+1 i=1 j=—N+2
M ¢ ¢
€17 %0 ¢
—K ; Tyewm. (5.28)
Lemma 5.4
M-1 N
—v Y el DE Dy el AxAY = v Dy eI, (529)
i=1 j=1
M-1 N

+ —_
—v Y > ey Dy Dyl jAxAy
i1 j—l
M-1 _u u
_ Civiprteivipo,
= V”Dy eu”2 +v Z %D’v e;!+1/2,1Ax’ (5.30)

i=1

M
_”Z e ir12Di Dyl iy pAxAy

<|Dx_e})l/1+l,j+1/2|2 + |D;elf,j+1/2|2> AxAy, (5.31)

M

M
v +n— v _ — 2 v — v
Y Y el Dy Dyel iy pAxAy = vIDTe P +v ) el p Dy el pAx,
i=1 j=1 i=1

(5.32)
M—-1 N
+ —_
-V Z Zef'+1/2,ij Dyepi1pAxAy
i=1 j=I
M—1N-1 M—1
=V Dl 1Dy ely 1 pAxAY +v ) el p Dyl 1 pir,
i=1 j=1 P
(5.33)
M N-1
+ —
-V Z Z € jr12Dy D€y p jAXAy
i=1 j=1
M—1N-1
=V Z Z Dyl 1 1 Dx €y jr1pAxAy. (5.34)

i=1 j=1
The proofs of Lemma 5.3 and 5.4 are similar to the proofs in Lemma 4.3 and 4.4. Thus,
the proofs are omitted, too.
For the convenience of the notation, we denote the maximum norm of the r-th derivatives

. r .
of any function u as |D"u|s = Ia,},axia"nylOo where r = m + n and m and n are nonnegative
integers.
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To perform the error estimates of the finite difference scheme, we need the following
leI;lma for the estimates of the terms R;‘l+1/2,j’ R;},j+1/2’ Rfj, (Rff)i,l/z, (R{)i+1/2,1/2 and
R?:

Lemma 5.5

Ry 10 = O((A))(D o + 1D’ ploo) + O(A0)H)I D ulo + O(AxAy), j # 1, N
Ry jny = O((AX)))(ID*uloo + |D? ploo) + O(AY)|Dulso + O(AxAy),
Ry = Euyy(xiﬂ/z, IN) + O((A))) (D%t + 1D ploc)
+0(AY)|Duloe + O(AxAY),
RY ;110 = O(AX)) D oo + O((AY))(ID*uloo + |D ploo) + O(AxAY), i # 1, M
RY 12 = 306 (i, 3j172) + O(ADIDolos + 0N (1D ule + 1D plic)
+O0(AxAY),i=1,M
R, = 0((Ax)")|D’ulos + O((AY)H)|D*]os,
DR, = 0((A0))|D*uloo + O((AX)” + (A))*)|D*v] o,
DR = 0((Ax)* + (AY))| D ulos + O((AY)*)|D*]os,
R?; = (0((AX)Y) + O(AYD)(ID*Ploo + |D? faloo) i # 1, M and j #0,—N +1,
R, = (0(Ax) + O((AY)(D*bloc + 1D faloo) i = 1. M and j # 0, —N + 1,
R = (0((A)%) + O(AY) (D Blos + ID* foloo), i # 1, M and j =0, N + 1,
R, = (0(Ax) + O(AY)(ID*Bloc + |D? faloo),i = 1, M and j =0, =N + 1,
(RD)i1/2 = O(AY)(IDPlos + 1 D$loo + [ D*]o0),
(Rit1/2.172 = O((Ax)*) [ D*v]oo + O(AY)?)| Dt oo,
RP = (0((Ax)*) + 0 (A (I D*¢loc + D plo).

The proof of Lemma 5.5 is based on Taylor’s expansion and the assumption on the regu-
larity of the solutions and the forcing. The proof of Lemma 5.5 is skipped. Remark that in the
fluid region, the truncation errors inside the domain are of second order but the one near the
boundary is some O (1) term plus first-order terms; in the porous region, the truncation errors
inside the domain are of second order but the one near the boundary is of the first order. Near
the interface, the truncation errors are both of the first order. The following lemma is also
needed to control the boundedness of the error estimates of the pressure and related boundary
terms:

Lemma 5.6 Let the mesh widths satisfy (4.35) and Ay = Ax, we have

M—

C(ehpa teiipo)
A

i=1

le? 1> + 1e? 1> < K3 = 2(Cp + Ly Lylp|2 + Ly Lyl$|%)

where K;,i = 2,3 are constants depending only on the size of the domain, the forcing and
the solutions.
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The proof of Lemma 5.6 can be proven by using the triangle inequality, Lemma 4.5 and
Theorem 4.2.

Now, we state and prove our main theorem of the error estimates for the scheme (3.1)—
(3.14) as follows:

Theorem 5.1 Let the mesh widths satisfy (4.35) and Ay = Ax, we have

Voug2 v vi2 L Yyp—upn2 Y - vy2
— S — ~|ID —||D;
2L)%Ile Il +8L2+2w<”e I +2|| et + 16|| yell

M—-1N—-1 2
+v (D;e?+1/2,j+1+Dx_ezy+1,j+1/2> AxAy
i=1 j=1
M—1
v 5, AxAy
) > IDy e o nl —
i=1
N—1
v _ 2 _ 2\ AxAy
+5 (|Dx el jr1l” +1D; 6714+1,j+1/2|) 5
j=1

+ilIDy e? > + x| Dy e |I?

= 0 ((Ax)* + (Ay)?). (5.35)

Proof By multiplying (5.1), (5.2), (5.4), (5.25) and (5.26) by e:l+1/2 AxAy, }’J+1/2AxAy,

Ax Ay,ef 2. -AxAyand el 12 Ax Ay respectively, summing for all i and j and adding
all the resulting equations, we obtain

M—1N-1 5
2Dy e + v ( €is1/2, 41+ D;e;)+l,j+l/2> AxAy
i=1 j=l1
M-1
AxAy
- 2 - 2
+v (|Dy i1 ntl” T IDy el ol )72
i=1
N-1
—i—E |D ef . >+ |DCeY . - I>) AxAy
2 x Y1, j+1/2 x “M+1,j+1/2

—_

J
+2v|| vell? + k| Dy e + k|| Dy |

M-1
+1/21+e+1/2oD_ A W et A
D e el Ax —v Z €it172,1x Civ1,120%

i=1

_ v p v ¢ v - v
= Z <ei,1/2ei,1 — € 12¢i 0~ 2ve 5D, ei,3/2> Ax
—v Z
i=1

M
_ AxAy
+i Y Dy el | 5
i=1

M—-1 N-1

N M
+ 20 D e Rl AXAY + 30 €1 p R i p AxAY

i=1 j=1 i=1 j=1
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+1 i=1 j=1
M N-1
+pd
DY R jef 1 jAxAy —v ) Y DURY el pAxAy
j=1 i=1 j=1

=1+ 17+ Is+ Io+ 1o+ I11.- (5.36)

M 0
2. X
i=1 j=—N
M—-1 N
_VX;Z
i

.

Now, we estimate the terms I;,i = 6, ..., 11. For the term /¢, by applying the interface
conditions (5.14) and (5.15), we obtain

p ¢ -
Is = (ezl/z (eiﬁl — ei,0> — Zve,'»)_l/sz ely’3/2> Ax
M

M=

Zeﬁl/z(Rf:)i,]/zAx

1

M

1/2 1/2
1Dy e,mpmy)) (D(R’;)i,lm"‘) Ax
i=1

IA
N
=
N
M-

IA

M
_ L,
ev|| Dy e ||2+—48;v > 1(RD 2 Ax, (5.37)
i=1

where ¢ is a positive parameter which is determined later. To estimate the term /7, we have

+ e

+1 2,1 i+1/2,0

17 \)Z ’ / i+1/ '(Dvel+l/21+D €l+1 1/2)Ax
= ei+1/2,1_e;'4+1/20 _

v Z fD e, 1/2Ax

M—1 u u 2
v (ei+1/2,1 + ei+1/2,0> Ax
i=1

oy 4 2
M—-1 _u u
2v €ir121 et
+— P ol e Nl i At Ru . Ax
. Z (RP)i+1/2,172

. 2
i=1

-1
_ Z ef'l+1/2,1 - e?+1/20D o Ax (5.38)
- 2 x Yi+1,1/2 ’ .

where the interface conditions (5.16) are applied. To estimate the second term on the right-
hand side of (5.38), by applying Cauchy—Schwarz inequality and Lemma 5.6, we have

M—1 _u u
2v €it121 T €it1/20
- 3o AL SR 00 A

2

i=1
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M=1 , u “ 2 12, M—1 12
2v €121 T t120 u 9
< 072< 21 (—2 Ax E [((RpP)i+1/2,1/217 Ax
o=
K

i=1
12 ,M—1 1/2
2v u 2
= E [(RP)i+1/2,1/21"Ax . (5.39)

[0%
2 i=1

To estimate the third term on the right-hand side of (5.38), we observe
—(Ay —a2) , ar Ay 2Ay

eir12,0 = ET eivipn t Ay tan Dielry 1+ A tan (RP)i+1/2,1/2-

(5.40)
This leads to
€i't12,1 ~ €120 Ay o @Ay DoV
5 Ay +on V2T 2Ay fa) ¥ L2
Ay u
_m(Rr)iJrl/Z,l/z- (5.41)
Plugging (5.41) into the third term on the right-hand side of (5.38), we obtain
e 12,1 ~ €1/2,0
i+ s i+
-V Z fDx ejy1,12%
N S T T
2\ Ayt /21T 208y + o) Dyeii11)
A v
W(Rr)t+l/2 12 | Dy €1 120X
M—1
AY — v
=-v Z €it1/2,10x €ip1,120%
o Ayt
~1
ar Ay _
+v IXI: 2By + o) Dyelty oDy ey 1 0%
M—1
+v Z (Rr):+1/2 12Dy ey 1 pAx
=J3 + .14 + Js. (5.42)

To estimate the terms J3 and J4, we apply the similar procedure in estimating J; and J;
respectively in Theorem 4.1 and have

I3 < v22X Dy e P + viDy el (5.43)
4oy ;
M—1 2
2A 2 +ef
Ji<v y < > Z z+1/21 i+120 )\
(Ay +a2) oz P
M—1
0% ( ) AxAy
— (1 D , 5.44
P da U - D5 el (5.44)
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where ¢3 is a positive parameter which will be determined later. As for the term Js, by
applying Cauchy—Schwarz inequality and Lemma 5.6, we have

M—1

Ay
v ; W(Rr)zﬂﬂ 12Dy ez+1 128

M—1

=a(X

)

M—1

1/2 1/2
(D ei'y1, 1/2) Ax(Ay)2> (Z |(R1L5)i+1/2,1/2|2Ax>
i=1

1/2 M—1 1/2
2vLy B
< 1Dy el Z [(RE)i41/2, 1/2| Ax
i=1
M—1
v _ 128L v
= 161Dy eI+ == D IRz 2P Ax, (5.45)

2 i=1
where the following inequality which is obtained by applying the same idea in (4.53) is used

M-1

Z (D ey, 1/2) Ax(Ay)* < 4Ly||D;||2~
im1

Combining (5.38), (5.39), (5.43), (5.44) and (5.45), we obtain

M—1 / u u 2
2 A 2 el + e
I < —l<1—7y(1+f)) O (EES AR TEN I
o (Ay + a2) &3 2

i=1

an &3 M-l AxAy
3 — u 2
e (1 + 3) Z 1Dy et P =5

L,A
22 Do +—||D‘ V)2
4a2
1/2 ,M~—1 12
2 128L %
(Z I(R?)Hl/z.l/zlex) + Z [(R)i 417212 Ax.
i—1 o) i=1
(5.46)
Now, by taking &3 = zo%y’ we can infer from (5.46) that

M-l AxAy LyAy 17v
I <v )y IDyel P +v ; = IDy e > + E||D;ev||2

i=1 o)

kL2 M 12 128L,v

( Z I(RF)i+1/2,1/2|2Ax> + Z [(R)i41/2.1/21> Ax.
i1 o3 i—1
(5.47)
To estimate the terms /g, Ig, I1o and /11, we have

LyAy

Iy < = —=IDye"I, (5.48)
Ly (Ly+45)
_ &V L% . y( y 2 -

I < e2v| D7 eI + =1 D7 e"|1? + gzﬁuR“nz L v IRV
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M—1
Z |D o |2 AxAy
i+12,N+11 5

+

N <

=

; B 5 3 2\ AxAy
+3 (|Dxe'f,j+1/zl +|Dx87u+1,j+1/2|) 2

\
Il

M-1
v (Ay)? ) AxAy
+ 0 Z Uyy xl+1/2 yN)) )
i=1
N—1
v (Ax)? ’ 2\ AxAy
+ % Z ((vxx (x1, vj+172))" 4 (vex (xp41, Yj4172)) ) T (5.49)
j=1
Io < KY* (IR?|| + || RY 5.50
10 < K37 (IIR®II+ IIRCI) (5.50)
2 Ly(Ly+ 5
— v — 2 Lx + pu 2 y( Y 2) — pv 2
I < ev|| D" ||> + —=—|| D7 e" X DR — " 7D RY|?,
11 < &v||Dyet||I” + > Dy e’ +82vll RIS+ 200 1Dy Rl
(5.51)
where R* and RV are defined as
o [Rans i) £,
/2 R;ﬁr]/zj uyy(xi-i-l/Zv YN)s ifj=N
and
0 RV ifi # 1, M,
BIRZ T RY L = o (xy, yj ifti=1,M
i,j+1/2 — & Vxx l,y1+1/2), mr=1,M.
Combining the estimates of /;,i = 6, ..., 11 and taking &, = %, we can infer from (5.36)
that
M-1N-1
3 LyAy a2 - - 2
<§ - W)‘)HDxe = +v (Dy eiv1/2,j+1 1 Dx eiv+1,j+1/2) AxAy
i=1 j=1
M—1
v 5, AxAy
+5 Z 1Dy e p Nl —5—
2 P 2
N—1
v B 2 _ 2\ AxAy
+5 Z (|Dx el jr1l” 1Dy ey i1l ) )
j=l1
Tv  LyAy _ _ _
+<B o )nDye“nz+K||Dx¢||2+x||Dy¢u2

I M 2])1(1/2 M—1 1/2
<= Z [(RD)i 1721 Ax + ” (Z |(R1M*)i+1/2,1/2|2Ax>
i=1
L M= 2Ly (Ly+ 5
128 412 y( )
Z O R e Ll

) IRV
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v(Ay)2 xAy

Z (yy (xi 4172, YN))

AxAy
Z((vmm Y1)+ (Ve Conrr, yj412))) =5

j=1

\)(Ax)2

2L, (L, + &2
1 2 4L2 y( y 2 ) _
PR+ IR + —EIDTRY|F+ IDy R§IZ.  (5.52)

By taking Ay to satisfy the condition (4.35) and applying Lemma 5.5, the proof of Theo-
rem 5.1 is complete. O

To show the error estimates of the pressure p and ¢, we need the following lemmas:

Lemma 5.7 Let the mesh widths satisfy (4.35) and Ay = Ax, we have

M-l 1721 T €110 ?
Z(/ZH) Ax = O((Ax)? + (Ay)?).
i=1

The proof of Lemma 5.7 follows Lemma 4.7 and Theorem 5.1.

Like Lemmas 4.7 and 4.6, we also need the following lemma related to the finite difference
method for the divergence problem in the whole domain 2:

Lemma 5.8 Foranyglvenel],1<z <M, 1<]<Nande ,1<i<M,-N+1<

Jj < 0 satisfying (5.21), there exist two vectors (e , ”) satisfies thefollowmg properties:
eblz/l.i = eﬁMJrl/Z,j =0,0<j=<N+1,

i _ -
€it1oaN+1 = —Ciq1aN 0= =M,
§ _ b 7 _ B ,
€0,j+1/2 = ~€1j+1/20 €M41,j+1/2 = —€pm,j412: 0= =N,
P
» R

D €l+1/2]+D el/+1/2:ei,j_m’ISiSM’lstN’

and there exists a vectare ,0<i<M+1, —N < j <1 satisfying

Dyet =D;ef,l+17j =0, -N+1<j<0,

X

-9 - ¢
D3 eifNJrl:O’_KDyei,l: ,1/2,1<1<M

-9 — 9
Dyl — Dyl Dy =Dy i _ s R

Ax Ay T 2L Ly
1<i<M,-N+1<j<0.

Moreover, we have

1Dy e |I* + 1Dy e"|I* + | D e”|* + || Dy €” ||

M-1 / i i 2
- - ~ ~ e; + e
Hle 17+ 11e’IP + D5 1> + 1Dy e? 17 + ) <’“/2’1 5 ’*”“) Ax
i=1

< Co(lle?I? + 11?112 + (RP)?),

where C, is a constant independent of the mesh widths Ax and Ay.
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The proof of Lemma 5.8 can be proven similarly by following the process of showing
Lemma 4.6, which needs the following lemma:

Lemma 5.9 Foranyglvene i l=i=M, 1<j<Nandej l<i<M,-N+1<
Jj < 0 satisfying (5.21), there exist a positive constant C, independent of the mesh widths

AxandAyandtwovectorsef{i_l/z], 0<i<M,-N<j< N+1andelj+1/2, 0<i<
M+ 1, —N + 1 <[ < N satisfying
e?/z,z = ezlx]/1+1/2,z =0, -N=I=N+1, (5.53)
U U U U .
€12 N+1 = ~CiH1/2N> Ch1/2,—N = ~€iq1j2,—N1» 0 =1 =M, (5.54)
e/vip=e Nip=00<i<N+1, (5.55)
1% 1% 1% v .
€0, j+1/2 = ~C1j+1/20 €M1, j+1/2 = €y jy1/2 ~N +1=j =N, (5.56)
R?
Dieliyp i+ Dyel = {’j—ﬁ,15i5M,15j5N, (5.57)
X
R?

o . .
Dieliyp+Dyel = oy |SISM.-N+1<j=0, (559

1Dy eV l1g + 11Dy eV 1g + 1D " 1§ + 1Dy e 1 < Ce(lle” 1> + lle? > + (RP)).
(5.59)

The proof of Lemma 5.9 can be proven similarly in [29]. Thus, the proofs of Lemma 5.8
and 5.9 are omitted.
Now, we are ready to state the error estimates of the pressure p and ¢ as follows:

Theorem 5.2 Let the mesh widths satisfy (4.35) and Ay = Ax, we have
le? 17+ [1e?]* = 0(Ax)* + (Ay)?).

The proof of Theorem 5.2 can be shown by following the similar procedure in Theorem 4.2
with the aid of Lemmas 5.5, 5.7, 5.9, 5.8 and triangle inequality.

6 Numerical Results

In this section, we carry out some numerical tests for the present MAC scheme of the
Stokes/Darcy coupling problem. The computational domain Qr = [0, 1] x [1, 2], 2, =
[0, 1] x [0, 1] and the interface is located at y = 1 in the domain. For simplicity, all physical
constants v, k, Ig, o are all equal to 1. Throughout the paper, we choose the mesh widths
Ax = Ay so the grid size M = N. The discrete L? error norms for all variables u, v, p, ¢
are computed based on the formulas (4.1)—(4.4).

Example 1 The first analytic solution is taken from the initial condition of the test example
constructed in [11] written by

u

.
——e’ sin(mx),
T

v= (e’ —e)cos (mx),
p = 2¢” cos(mx),

¢ = (¥ — ye) cos(mx).
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Table 1 Grid refinement

analysis of L2 errors for the M 2N Nexact — ul Rate lvexact — vl Rate

solutions # and v in Example 1 16 x 32 2.698 x 10—3 _ 3.549 x 10~3 _
32 x 64 6.884 x 1074 1.97 9.068 x 1074 1.97
64 x 128 1.734 x 1074 1.99 2287 x 1074 1.99

128 x 256 4.349 x 107 2.00 5.734 x 1073 2.00

Table 2 Grid refinement

M x 2N - Rat - Rat
analysis of 1.2 errors for the X [l pexact — Pl ate | pexact — @l ate
solutions p and ¢ in Example 1 16 x 32 7310 x 10~2 _ 2.083 x 103 _

32 x 64 2373 x 1072 1.62 5.248 x 1074 1.99

64 x 128 7.233 x 1073 1.71 1.315x107%  2.00

128 x 256 2112 x 1073 1.78 3.291 x 1075 2.00

One can easily check that this solution satisfies all three interface conditions (2.10)—(2.12).
In addition, the solution satisfies zero normal velocity (v = 0) across the interface y = 1.
Tables 1 and 2 show the grid refinement analysis of L? errors for the velocity u, v and the
pressure p, ¢, respectively. One can see both velocity components u, v in Stokes region and
the pressure ¢ in Darcy’s region behave like second-order convergent. However, the pressure
p in Stokes region is better than first-order but not exactly second-order convergent. The
numerical results show better convergence rates than the ones obtained from the present
theoretical analysis.

Example 2 The second test example is given by

u=(y—1D>+x(y—1)+3x —1,
v=x(x—1)—05(y—1)>=3y+1,
p=2x+y—1,

-1
3
Again, the solution satisfies all three interface conditions (2.10)—(2.12) but unlike Example 1,
here, the normal velocity v across the interface y = 1 is nonzero. Tables 3 and 4 show the grid
refinement analysis of L? errors for the velocity u, v and the pressure p, ¢, respectively. As
in Example 1, both velocity components u, v in Stokes region and the pressure ¢ in Darcy’s
region behave like second-order convergent. However, the pressure p in Stokes region behaves
exactly first-order convergent. Again, the numerical results show better convergence rates

than the ones obtained from the present theoretical analysis.

p=x(1-x)y—1+ +2x + 2y + 4.

7 Concluding Remarks
The stability and error estimates for both velocity and pressure have been established for the

MAC scheme of stationary Stokes/Darcy coupling problem based on finite difference meth-
ods. The stability of the velocity in both Stokes and Darcy regions is derived by performing
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Table 3 Grid refinement

analysis of L2 errors for the M 2N lexact — ul Rate llvexact — vl Rate

solutions u and v in Example 2 16 x 32 2308 x 10—4 _ 3748 x 10—4 _
32 x 64 6.069 x 107> 1.93 9.343 x 107> 2.00
64 x 128 1.618 x 1075 1.91 2242 x 107 2.06

128 x 256 4.759 x 106 1.77 5.606 x 107° 2.00

Table 4 Grid refinement

M x2 - R - R

analysis of 1.2 errors for the x 2N [l Pexact — Pl ate |pexact — @I ate

solutions p and ¢ in Example 2 16 x 32 1.686 x 10-1 _ 1815 x 10—4 B
32 x 64 8.277 x 1072 1.03 4.637 x 1075 1.97
64 x 128 4.098 x 1072 1.01 1.171 x 1075 1.99

128 x 256 2.039 x 1072 1.01 2.951 x 100 1.99

careful estimates and the stability of the pressure in both regions is established by considering
an analogue of discrete divergence problem . We remark that the mesh width Ay needs to be
below a threshold to make sure the stability. However, there is no limitation on the mesh size
Ax. This is due to the control of the related estimates on the interface. Following the similar
analysis on stability, the error estimates for the velocity and the pressure in both regions are
performed. The theoretical results show first-order convergence of the scheme in discrete L>
norm for both velocity and the pressure. The main problematic term comes form the estimate
of the first order discrete approximation (3.13) of the interface condition (2.11). Moreover,
in fluid region, the first-order convergence for the x-derivative of velocity component u and
the y-derivative of velocity component v is also obtained in discrete L? norms. However,
numerical tests presented in Sect. 5 show one order better for the velocity in Stokes region
and the pressure in Darcy region. This is a gap between theoretical results and numerical
evidences which will be studied elsewhere.
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