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In this paper, a two-dimensional immersed boundary method is developed to simulate 
the dynamics of Newtonian vesicle in viscoelastic Oldroyd-B fluid under shear flow. The 
viscoelasticity effect of extra stress is well incorporated into the immersed boundary 
formulation using the indicator function. Our numerical methodology is first validated 
in comparison with theoretical results in purely Newtonian fluid, and then a series 
of numerical experiments is conducted to study the effects of different dimensionless 
parameters on the vesicle motions. Although the tank-treading (TT) motion of Newtonian 
vesicle in Oldroyd-B fluid under shear flow can be observed just like in Newtonian fluid, 
it is surprising to find that the stationary inclination angle can be negative without 
the transition to tumbling (TB) motion. Moreover, the inertia effect plays a significant 
role that is able to turn the vesicle back to positive inclination angle through TT-TB-TT 
transition as the Reynolds number increases. To the best of our knowledge, this is the first 
numerical work for the detailed investigations of Newtonian vesicle dynamics suspended in 
viscoelastic Oldroyd-B fluid. We believe that our numerical results can be used to motivate 
further studies in theory and experiments for such coupling vesicle problems.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

A vesicle is a closed phospholipid membrane, separating the inner fluid from the outer medium. Its typical size is an 
order of 10 μm, so the dimensionless Reynolds number with typical shear rate less than 10 Hz is about 10−3 in water. So 
far, the experiments of vesicle have been conducted in purely Newtonian fluid, where Newtonian vesicles are suspended in 
surrounding Newtonian fluids. In general, vesicles mimic the red blood cells (RBCs), and the blood containing RBCs exhibits 
non-Newtonian properties such as viscoelasticity, shear-thinning, thixotropy, and yield stress [9,39,40]. Motivated from this, 
we here study the viscoelastic fluid effect on two-dimensional vesicle dynamics under shear flow. An Oldroyd-B fluid model 
is adopted to account the viscoelasticity, and an immersed boundary (IB) method is developed to simulate primarily the 
viscoelastic effect on a Newtonian vesicle interacting with surrounding Oldroyd-B fluid in two-phase flows, although our 
method is not only restricted to this type of fluid.

For the past two decades, three types of vesicle motions under shear flow have been widely studied, namely tank-
treading, tumbling, and vacillating-breathing (or trembling, swinging). Those motions can be characterized by the so-called 
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Fig. 1. Simulation setup of a Newtonian vesicle in Oldryod-B fluid under shear flow denoted by N/O fluid. The vesicle is filled with a Newtonian fluid 
(viscosity μn) while the Oldryod-B fluid is a mixture of polymer (viscosity μp ) and Newtonian solvent (viscosity μs). The angle θ in radians denotes the 
inclination angle of the vesicle.

reduced area of vesicle configuration, the viscosity contrast between inner and outer fluids, and the capillary number asso-
ciated with membrane bending rigidity. So, by carefully controlling these dimensionless parameters, extensive studies were 
presented in theories [21,29,25], experiments [18,20,10], and simulations [24,47,4,11,5], just to name a few. Refer [1] and 
references therein for a review of vesicle rheology. Recently, the inertia effect in finite Reynolds number flow becomes a 
popular research subject as well [23,36,27].

Among many numerical methods, the IB (or front-tracking) method is quite useful for biological problems to simulate a 
flexible structure interacting with surrounding bulk fluid. There are various extensions of IB method to model vesicles or 
RBCs dynamics in purely Newtonian fluid [22,26,14,45,15,37,35]. Another extension incorporates a richer fluid such as the 
Oldroyd-B fluid to study the viscoelastic effect on droplet dynamics [38,8,30,17]. There exists some numerical methods to 
study droplet dynamics in multiphase viscoelastic flow. In [7], the volume-of-fluid (VOF) method is employed to investigate 
a droplet deformation under shear flow. The level-set method in [33] and the front-tracking method in [17] are employed to 
study a droplet in buoyancy- and pressure-driven flows. In these studies, the multiphase viscoelastic flow is accomplished 
by varying the parameter of polymer relaxation time (or the dimensionless Weissenberg number) in the polymer stress 
evolution equation. In this framework, a smoothed indicator function multiplied to the parameter is close to zero in the 
region of Newtonian phase, which is problematic when solving the equation. To circumvent this difficulty, the diffuse inter-
face (or phase-field) method proposed in [46] to study Newtonian droplet suspended in an Oldroyd-B fluid under creeping 
shear flow adopts a different approach; that is, the time evolution of polymer stress equation is solved on the entire domain 
first and then the extra polymer stress is added back to the viscoelastic region via the phase field function. Here, following 
the similar idea of handling the extra stress part in [46], we develop an immersed boundary method for simulating the 
dynamics of Newtonian vesicle in an Oldroyd-B fluid which also takes the viscosity contrast and inertia effect into account. 
To the best of our knowledge, it seems to be the first numerical work on this coupling flow problem. Two major interesting 
findings are briefed here. Firstly, the tank-treading motion of Newtonian vesicle in Oldroyd-B fluid under shear flow can be 
observed just like in Newtonian fluid. However, as we increase the Weissenberg number, the stationary inclination angle can 
be negative without the transition to tumbling motion. Secondly, by increasing the inertia effect on the unmatched viscosity 
contrast case, the tank-treading motion with negative inclination angle can turn into the same motion but with positive 
inclination angle. The interplay between the viscoelasticity and the inertia is interesting and worths further investigations.

The rest of this paper is organized as follows. In next section, we present the governing equations based on the im-
mersed boundary framework which describe the two-phase flow consisting of a Newtonian vesicle in an Oldroyd-B fluid. 
In Section 3, we transform the equations into dimensionless form and outline the time-stepping algorithm for solving the 
whole fluid system. To verify our code implementation, numerical accuracy test for an Oldroyd-B fluid solver is conducted 
as well. In Section 5, a series of numerical experiments is conducted to study the effects of different dimensionless param-
eters on the Newtonian vesicle dynamics under shear flow in an Oldroyd-B fluid. Conclusions and future work are given in 
Section 6.

2. Mathematical model

In this paper, we consider an immiscible two-phase flow consisting of a Newtonian vesicle in an Oldroyd-B fluid under 
shear flow in a two-dimensional domain � as depicted in Fig. 1. The vesicle boundary � separating those two fluids is 
assumed to be a closed smooth curve immersed in �. The model is formulated by the immersed boundary method in 
which the fluid parts in different regions use different models (Newtonian or Oldroyd-B) and the vesicle effect is termed 
as the elastic tension and bending force along the vesicle boundary. Certainly, those forces are derived by the energy law 
defined on the vesicle boundary described in literature. Meanwhile, there are related energy laws to describe the viscoelastic 
effect of fluids such as phase-field method developed in [46]. Based on the phase-field variable and its gradient, the mixing 
energy can be represented by Ginzburg–Landau form which produces the interfacial tension force between two phases. 
The extra stress for polymer contribution in an Oldroyd-B fluid can be derived from the dumbbell elastic energy through 
a variational procedure. By adding the viscous stress of surrounding fluid, the total stress tensor is the sum of those three 
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terms. The fluid velocity u(x, t) and pressure p(x, t) are described in Eulerian manner while the vesicle boundary X(α, t) is 
described in Lagrangian manner, so the governing equations of this two-phase flow can be written in a single fluid system 
as follows.

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p + ∇ · [((1 − H)μn + Hμs)D(u) + Hσ ] + f in �, (1)

∇ · u = 0 in �, (2)

f(x, t) =
∫
�

(Fγ + Fb)(α, t) δ(x − X(α, t))|Xα |dα in �, (3)

∂X

∂t
(α, t) = U(α, t) =

∫
�

u(x, t) δ(x − X(α, t))dx on �, (4)

γ (α, t) = γ0

( |Xα(α, t)|
|Xα(α,0)| − 1

)
on �, (5)

Fγ (α, t) = 1

|Xα |
∂(γ τ)
∂α

, Fb(α, t) = cb

(
κss + κ3

2

)
n on �, (6)

ξ
�
σ + σ = μp D(u) in �, (7)

where

�
σ = ∂σ

∂t
+ u · ∇σ −

(
∇uσ + σ(∇u)T

)
, (8)

D(u) = ∇u + (∇u)T , ∇u =
[

ux u y

vx v y

]
. (9)

Eqs. (1) and (2) are the Navier–Stokes equations in which H is the indicator (or Heaviside) function defined by

H(x, t) =
{

1 if x is in Oldroyd-B fluid,
0 if x is in Newtonian vesicle.

(10)

Here we assume both fluids have the same constant density denoted by ρ , whereas the Newtonian fluid viscosity μn and 
the Oldroyd-B fluid viscosity may be different. The Newtonian solvent viscosity μs and the polymer viscosity μp determine 
the total viscosity of Oldroyd-B fluid, see Fig. 1. The extra stress σ contributes the viscoelasticity to the Navier–Stokes 
equations only in the Oldroyd-B fluid part where H(x, t) = 1. In Eq. (3), the Eulerian force f arises from the spreading of 
interfacial force F via the Dirac delta function δ(x) = δ(x)δ(y). Similarly, as shown in Eq. (4), the interfacial velocity U is 
interpolated from the local Eulerian fluid velocity via the delta function. Here the inextensible vesicle boundary is relaxed 
by the nearly inextensible approach in which a spring-like tension given in Eq. (5) is introduced. This approach is motivated 
from the equality ∂|Xα |/∂t = |Xα |∇s ·U and has been validated to be effective for applications under various flows in 2D [3], 
axisymmetric case [15], and 3D [35]. The interfacial force in Eq. (6) consists of two components; namely, the tension force 
Fγ and the bending force Fb . In the bending force in Eq. (6), cb is the bending rigidity constant, κ is the local curvature, 
and the surface Laplacian of κ is represented by

κss = 1

|Xα |
∂

∂α

(
1

|Xα |
∂κ

∂α

)
= −Xα · Xαα

|Xα |4
∂κ

∂α
+ 1

|Xα |2
∂2κ

∂α2
. (11)

The latter expansion formula will be used to enhance the numerical accuracy, refer to Appendix D in [44]. The vesicle 
boundary �(t) between two fluids is a one-dimensional curve represented by �(t) = {X(α, t) = (X(α, t), Y (α, t))|0 ≤ α <

2π}, where α is the Lagrangian coordinate. The subscript α of a function denotes its partial derivative of the function 
with respect to α. We then define the unit tangent vector as τ = (τ1, τ2) = Xα/|Xα | and the outward unit normal vector 
as n = (τ2, −τ1), where | · | stands for the usual Euclidean norm. So the signed curvature of the curve can be written 
as κ = (XαYαα − Yα Xαα)/ 

(
X2

α + Y 2
α

)3/2
. The extra stress σ(x, t) in Eq. (1) represents the viscoelastic contribution of the 

Oldroyd-B fluid and is governed by Eq. (7), where the parameter ξ is the polymer relaxation time, 
�
σ is the upper convected 

time derivative of σ defined in Eq. (8), and D(u) is the rate of deformation tensor as in Eq. (9). Of course, the above 
governing equations (1)–(7) should accompany with some suitable initial and boundary conditions which will be described 
later.



1012 Y. Seol et al. / Journal of Computational Physics 376 (2019) 1009–1027
3. Numerical method and accuracy

3.1. Dimensionless governing equations

The governing equations (1)–(7) can be written in the dimensionless form as follows. For a vesicle boundary enclosing 
an area A with its perimeter L, we define the effective radius of the vesicle R = √

A/π as the characteristic length scale. 
The characteristic time scale is defined by tc = 1/γ̇ , where γ̇ is the shear rate of flow. Then all physical variables are scaled 
by the associated characteristic quantities as

x∗ = x

R
, t∗ = t

tc
, u∗ = u

R/tc
, p∗ = tc

μs
p, σ ∗ = tc

μs
σ . (12)

After performing substitutions and a few calculations, the dimensionless governing equations for Newtonian vesicle in 
Oldroyd-B fluid system (N/O fluid) can be written as (dropping the asterisk)

Re

(
∂u

∂t
+ (u · ∇)u

)
= −∇p + ∇ · [((1 − H)λ + H)D(u) + Hσ ] + f in �, (13)

∇ · u = 0 in �, (14)

f(x, t) =
∫
�

(
Fγ + Fb

)
(α, t) δ(x − X(α, t))|Xα |dα in �, (15)

∂X

∂t
(α, t) = U(α, t) =

∫
�

u(x, t) δ(x − X(α, t))dx on �, (16)

γ (α, t) = γ0

( |Xα(α, t)|
|Xα(α,0)| − 1

)
on �, (17)

Fγ (α, t) = 1

|Xα |
∂(γ τ)
∂α

, Fb(α, t) = 1

Ca

(
�sκ + κ3

2

)
n on �, (18)

W i
�
σ + σ = βD(u) in �, (19)

where

Re = ρR2

μstc
, Ca = μs R3

cbtc
, W i = ξ

tc
, λ = μn

μs
, β = μp

μs
. (20)

Here, Re is the fluid Reynolds number, the capillary number Ca measures the ratio of viscous force and bending force, and 
the Weissenberg number W i measures the ratio of elastic force and viscous force in Oldroyd-B fluid. We also denote λ by 
the viscosity contrast between the interior Newtonian fluid and the Newtonian solvent of Oldroyd-B fluid, and β by the 
viscosity contrast between the polymer and the Newtonian solvent. For instance, in a single-phase Newtonian fluid, we set 
the parameters by β = W i = 0 and λ = 1. Notice that, there is no dimensionless parameter in the righthand side of Fγ term 
since it can be absorbed into the stiffness parameter γ0 which will be chosen later.

3.2. Numerical scheme

We next present the numerical scheme and some related implementation details for solving the dimensionless governing 
equations (13)–(19). Throughout this paper, the periodic boundary condition is imposed for all physical variables in the x
direction, while the Dirichlet and zero Neumann boundary conditions are imposed for the velocity and the extra stress, 
respectively, in the y direction. To solve the Navier–Stokes equations (13)–(14) in a computational domain � ⊆ R

2, we 
layout a uniform Cartesian grid with mesh width h = �x = �y, and allocate the fluid velocity u = (u, v) and the pressure 
p in a staggered marker-and-cell (MAC) grid manner [16]. Expressing the extra polymer stress by

σ =
[

σ a σ b

σ b σ c

]
,

we allocate the diagonal components, σ a and σ c , to the cell center and the off-diagonal component σ b to the cell corner, 
so that the divergence form ∇ · (Hσ) is compatible with the staggered grid associated with fluid velocities as shown in 
Fig. 2. Those stress grid allocations can be found in the reference [8]. Besides, the indicator function H is defined at the cell 
center, so when a variable is necessarily shifted by a half-mesh width for relevant computations, the linear interpolation is 
simply employed. For example, we define
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Fig. 2. Grid allocations for fluid variables u, v, p, the extra stress σ , and the indicator function H .

σ b
i+ 1

2 , j
=

σ b
i+ 1

2 , j− 1
2

+ σ b
i+ 1

2 , j+ 1
2

2
and σ b

i, j =
σ b

i− 1
2 , j− 1

2
+ σ b

i− 1
2 , j+ 1

2
+ σ b

i+ 1
2 , j− 1

2
+ σ b

i+ 1
2 , j+ 1

2

4
.

Note that we define a variable at the cell center by σ b
i, j = σ b(xi, yi) = σ b(x0 + (i − 1/2)h, y0 + ( j − 1/2)h) due to the use 

of staggered grid. In the similar fashion, other variables can be linearly interpolated from the values of neighboring points.
For the closed vesicle boundary X, we use Fourier representation to discretize it as

X(α, t) =
N/2−1∑

k=−N/2

X̂(k, t)eikα. (21)

So the vesicle boundary is represented by a set of Lagrangian markers X� = X(α�), where α� = ��α and �α = 2π/N . The 
associated geometric quantities used in the above formulations such as interface tangent and normal vector, the curvature, 
and their derivatives are all computed at the Lagrangian markers X� using the Fourier spectral differentiations [42]. These 
spectral derivatives with respect to α can be computed efficiently using Fast Fourier Transform (FFT) in a spectral accuracy. 
To remove the aliasing error in computations, we adopt the de-aliasing 2/3-rule filter. Due to the inextensibility of vesicle 
boundary, the Lagrangian markers clustering during the simulations is not that severe comparing with the droplet case. 
Therefore, we do not employ the markers redistribution technique in present simulations.

We now present how to march the Lagrangian markers Xn = X(n�t) from time level n to Xn+1 = X(n�t + �t) at time 
level n + 1 with the time step size �t . In the following, the polymer stress σ n , the fluid velocity un , the pressure pn , and 
the Lagrangian markers Xn are all given in advance, and from these variables we aim to update σ n+1, un+1, pn+1, and Xn+1. 
The step-by-step numerical procedure can be done as follows.

Step 1. At the Lagrangian markers Xn
� , we first compute all the geometric quantities using the spectral differentiations and 

the spring-like tension by

γ n
� = γ (Xn

�) = γ0

(
|(Xα)n

�|
|(Xα)0

� |
− 1

)
,

and then incorporate those to compute the interfacial forces

Fγ (Xn
�) = 1

|(Xα)n
�|

(
∂γ τ
∂α

)n

�

,

Fb(Xn
�) = 1

Ca

(
− (Xα)n

� · (Xαα)n
� (κα)n

�

|(Xα)n
�|4

+ (καα)n
�

|(Xα)n
�|2

+ (κn
� )3

2

)
nn

�.

Step 2. Distribute the tension and bending forces acting on Lagrangian markers into the Eulerian grid by using the smoothed 
Dirac delta function δh as

fn(x) =
N−1∑
�=0

(Fγ (Xn
�) + Fb(Xn

�))δh(x − Xn
�)ds(Xn

�),

where x = (x, y) is the Eulerian grid point and the arc-length element is obtained by ds(Xn
�) = |(Xα)n

� |�α. For the 
discrete delta function δh(x) = 1

h2 φ
( x

h

)
φ

( y
h

)
, we employ the 6-point supported C3 function φ newly developed 

in [2].
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Step 3. Solve the Navier–Stokes equations by the second-order incremental pressure-correction projection method in [12]
as follows.

Re

(
3u� − 4un + un−1

2�t
+ 2

(
un · ∇h

)
un − (

un−1 · ∇h
)

un−1
)

= − ∇h pn + λ�hu� + ∇h ·
[
(1 − λ)Hn

(
∇hun + (∇hun)T

)]
+ ∇h · (Hnσ n) + fn,

�h p� = 3Re

2�t
∇h · u�,

∂ p�

∂n
= 0 on ∂�D , u� = un+1 on ∂�D ,

un+1 = u� − 2�t

3Re
∇h p�, ∇h pn+1 = ∇h p� + ∇h pn − 2λ�t

3Re
�h(∇h p�),

where the discrete operators ∇h and ∇h· approximate the gradient and divergence operators, respectively, using the 
second-order finite difference in staggered grid. For the nonlinear terms, the skew-symmetric form is employed as 
(u · ∇h)u = 1

2 (u · ∇h)u + 1
2 ∇h (uu). The Dirichlet boundary is denoted by ∂�D . The smoothed indicator function Hn

can be obtained by solving the discretized Poisson equation, as described in [43],

�h Hn(x) = ∇h ·
N−1∑
�=0

nn
� δ(x − Xn

�)ds(Xn
�).

The numerical scheme for viscous term written above is suggested when λ ≥ 1, so that the more viscous part is 
treated implicitly with the constant coefficient λ while the less viscous part is treated explicitly. Therefore, a fast 
solver using FFT can be implemented directly. Notice that, as the traditional IB method, the interfacial force fn

is computed explicitly in Step 2 so here the extra stress term is also computed explicitly for the simplicity and 
compatibility.

Step 4. Once un+1 is determined in the Eulerian grid points, we interpolate the fluid interfacial velocity Un+1
� =∑

x un+1(x)δh(x − Xn
�)h

2. Therefore, the Lagrangian markers can be updated by Xn+1
� = Xn

� + �tUn+1
� .

Step 5. As the last step, we solve the extra stress equation

∂σ

∂t
= F(σ ,u),

where

F(σ ,u) = −∇h · (uσ) +
(
∇huσ + σ(∇hu)T

)
− σ

W i
+ β

W i

(
∇hu + (∇hu)T

)
.

Following in [8], we use the second-order Runge–Kutta (RK2) method with zero-Neumann boundary condition at 
Dirichlet boundary of fluid velocity to update σ n+1. Introducing two intermediate variables σ1 and σ2 by

σ1 = σ n + �t F(σ n,un), σ2 = σ1 + �t F(σ1,un+1),

the updated extra stress is obtained by σ n+1 = (σ n + σ2)/2. In this computation using RK2 method, we note that 
all the components of σ are located at cell centers by linear interpolation, and the convection term is written in 
divergence form due to the identity u · ∇hσ = ∇h · (uσ).

4. Code verification and validation

We test the convergence rates of single-phase Oldroyd-B fluid solver and immersed boundary method for vesicle dynam-
ics in two-phase N/O fluid. The code validation is also performed by comparison of droplet deformation in N/O fluid.

4.1. Convergence study for single-phase Oldroyd-B fluid

Here, we test the single-phase Oldroyd-B fluid solver presented in the previous section by checking the numerical accu-
racy of the following analytical solution in a computational domain � = [0, 2π ] × [π/2, 5π/2]. The single-phase Oldroyd-B 
fluid equations are written as

Re

(
∂u

∂t
+ (u · ∇)u

)
= −∇p + �u + ∇ · σ in �, (22)

∇ · u = 0 in �, (23)

W i
�
σ + σ = βD(u) + φ in �, (24)

where an auxiliary function φ is added in Eq. (24) and defined by
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Table 1
Temporal convergence analysis in L∞ norm for the fluid velocity u = (u, v), pressure p, and the polymer stress σ at two different times t = 0.6 and t = 1.2.

M ‖uM − ue‖∞ Rate ‖v M − ve‖∞ Rate ‖pM − pe‖∞ Rate

(t = 0.6)

64 1.287E-02 – 1.173E-02 – 4.270E-02 –
128 6.291E-03 1.03 5.735E-03 1.03 2.181E-02 0.96
256 3.108E-03 1.01 2.833E-03 1.01 1.100E-02 0.98
512 1.544E-03 1.00 1.408E-03 1.00 5.522E-03 0.99

(t = 1.2)

64 9.512E-03 – 8.290E-03 – 3.775E-02 –
128 4.697E-03 1.01 4.091E-03 1.01 1.935E-02 0.96
256 2.334E-03 1.00 2.033E-03 1.00 9.780E-03 0.98
512 1.163E-03 1.00 1.013E-03 1.00 4.914E-03 0.99

M ‖σ a
M − σ a

e ‖∞ Rate ‖σ b
M − σ b

e ‖∞ Rate ‖σ c
M − σ c

e ‖∞ Rate

(t = 0.6)

64 8.391E-02 – 1.035E-02 – 8.508E-02 –
128 4.697E-02 0.99 5.286E-03 0.96 4.234E-02 1.00
256 2.099E-02 1.00 2.661E-03 0.99 2.108E-02 1.00
512 1.049E-02 1.00 1.334E-03 0.99 1.052E-02 1.00

(t = 1.2)

64 4.583E-02 – 1.765E-02 – 4.660E-02 –
128 2.329E-02 0.97 8.937E-03 0.98 2.351E-02 0.98
256 1.173E-02 0.98 4.486E-03 0.99 1.179E-02 0.99
512 5.887E-03 0.99 2.247E-03 0.99 5.903E-03 0.99

φ = W i β

[
φa φb

φb φc

]
, G(t) = e−2(1+β)t/Re,

φa = −2G ′ sin x sin y − 2G2 cos2 x sin2 y + 2G2 sin2 x cos2 y − 4G2 sin2 x sin2 y,

φb = −4G2 sin x cos x sin y cos y,

φc = 2G ′ sin x sin y + 2G2 cos2 x sin2 y − 2G2 sin2 x cos2 y − 4G2 sin2 x sin2 y.

The prime symbol of G denotes the derivative with respect to time t . After some careful calculations referring to Taylor–
Green vortex, one can easily check that the following analytical solution satisfies the above equations (22)–(24).

ue = (G cos x sin y,−G sin x cos y), pe = − Re

4
(cos 2x + cos 2y)G2, (25)

σe = βD(u) = β

[ −2G sin x sin y 0
0 2G sin x sin y

]
.

Table 1 shows the convergence analysis for all solution variables at two different times t = 0.6 and t = 1.2. We set the 
parameters by Re = W i = β = 1 and �t = h/8, where h is the Eulerian mesh width defined by h = 2π/M with grid size M . 
The convergence rate of the fluid velocity u is obtained by

Rate = log2(‖uM − ue‖∞/‖u2M − ue‖∞),

and so are the other variables. The numerical results for all variables in Table 1 show clean first-order accuracy due to 
the explicit treatment of the polymer stress term ∇ · σ of Eq. (22) which is described in Step 3. In general, the immersed 
boundary method is first-order accurate, unless special algorithm is employed for higher-order such as in immersed interface 
method. Thus, this accuracy behavior is acceptable and consistent with the present IB method. One might want to further 
extend our method to achieve the second-order accuracy in solving the Oldroyd-B fluid flow by treating the extra stress 
term in the same way as the nonlinear advection term in projection method of Step 3 in Subsection 3.2. However, we do 
not adopt this treatment here due to the present immersed boundary method is only first-order accurate when the vesicle 
boundary force is taken into account. We further verify the spatial convergence of our fluid solver. To do this, smaller time 
step size is chosen by �t = h/128 so that the dominant error mainly arises from the space, while other parameters remain 
the same. Table 2 confirms that our solver has the second order accuracy in L2 norm. The solution variables are all defined 
on staggered grid so when the mesh is refined, the solution locations at coarse and fine grids do not coincide with each 
other. Hence, the usage of L2 error instead of L∞ is a natural choice.

4.2. Convergence study for Newtonian vesicle dynamics in Oldroyd-B fluid

In this subsection, we perform the convergence study to verify the present numerical algorithm for vesicle dynamics in 
two-phase flow. We put a Newtonian vesicle into Oldroyd-B fluid under shear flow. We choose the vesicle with ν = 0.8



1016 Y. Seol et al. / Journal of Computational Physics 376 (2019) 1009–1027
Table 2
Spatial convergence analysis in L2 norm for the fluid velocity u = (u, v), pressure p, and the polymer stress σ at two different times t = 0.6 and t = 1.2.

M ‖uM − ue‖2 Rate ‖v M − ve‖2 Rate ‖pM − pe‖2 Rate

(t = 0.6)

64 2.958E-04 – 2.749E-04 – 5.352E-04 –
128 6.366E-05 2.22 5.981E-05 2.20 1.253E-04 2.09
256 1.466E-05 2.12 1.384E-05 2.11 3.042E-05 2.04
512 3.510E-06 2.06 3.324E-06 2.06 7.501E-06 2.02

(t = 1.2)

64 1.628E-04 – 1.483E-04 – 4.084E-04 –
128 3.982E-05 2.03 3.680E-05 2.01 1.028E-04 1.99
256 9.854E-06 2.01 9.175E-06 2.00 2.587E-05 1.99
512 2.451E-06 2.01 2.291E-06 2.00 6.490E-06 2.00

M ‖σ a
M − σ a

e ‖2 Rate ‖σ b
M − σ b

e ‖2 Rate ‖σ c
M − σ c

e ‖2 Rate

(t = 0.6)

64 9.637E-04 – 1.625E-04 – 9.563E-04 –
128 2.295E-04 2.07 3.554E-05 2.19 2.283E-04 2.07
256 5.597E-05 2.04 8.275E-06 2.10 5.575E-05 2.03
512 1.381E-05 2.02 1.994E-06 2.05 1.377E-05 2.02

(t = 1.2)

64 4.004E-04 – 1.621E-04 – 3.898E-04 –
128 1.012E-04 1.98 3.778E-05 2.10 9.920E-05 1.97
256 2.545E-05 1.99 9.097E-06 2.05 2.504E-05 1.99
512 6.383E-06 2.00 2.230E-06 2.03 6.291E-06 1.99

Fig. 3. The convergence rates for the fluid velocity (u, v) and the vesicle configuration X. Left: M = 64; Right: M = 128.

and the dimensionless parameters are fixed by Ca = 1 and W i = 1. We shall choose four different Cartesian grid sizes 
M = 64, 128, 256, 512 to examine convergence rates. Under shear flow (u, v) = (y, 0) in the computational domain [−8, 8]2, 
we set the parameters by Re = 10−3, λ = 2, β = 1, h = 16/M , and �t = h/128. For the vesicle interface discretization, as 
we double the grid size M , we need to halve the local arclength so that the number of Lagrangian markers used must be 
increased by a factor of two accordingly. To be consistent, one should also be careful to adjust the stiffness parameter γ0
used in Eq. (17) for interfacial inextensibility. For this, we choose γ0 = 5 × 103M/512, so it becomes γ0 = 5 × 103 when 
M = 512 which is used throughout Section 5.

Fig. 3 shows the convergence rates for the velocity components u = (u, v) and the vesicle configuration X at different 
times up to t = 50. Unlike in the previous subsection, the analytic solution in this test is not available, so we compute the 
convergence rate by estimating the two successive maximum errors as

Rate = log2(‖uM − u2M‖∞/‖u2M − u4M‖∞).

The rates for v and X are defined in a similar manner. We can see from the figure that the rates are larger than one when 
M = 64, 128, 256 and close to one when M = 128, 256, 512, so the average rate is around one for all variables indicating 
that our numerical scheme is roughly first-order accurate. This result is consistent with the IB method being first-order 
accurate generally.
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Fig. 4. Deformation parameter D of droplet in N/O fluid as a function of the Weissenberg number W i for two Capillary numbers: (a) Ca = 0.1, (b) Ca = 0.2. 
Our result is compared with numerical result of Yue et al. (2005), and also with experimental data of Guido et al. (2003) and of Maffettone and Greco 
(2004).

4.3. Comparison of droplet deformation in N/O fluid

In the previous subsection, we have shown the convergence rates of fluid variables for a Newtonian vesicle in Oldroyd-B 
fluid under shear flow. In order to verify that the present numerical scheme is physically plausible, we here perform a 
comparison with experimental and numerical studies in literature for droplet deformation in N/O fluid under shear flow. 
In this test, we denote N/O fluid by a Newtonian droplet suspended in an Oldroyd-B fluid. To do this, in Eq. (3), we omit 
the bending force and replace the tension force by Fγ (α, t) = − 2

Cad
κn, where Cad is the capillary number associated with 

droplet interfacial tension and the factor 2 comes from our non-dimensionalization process. The deformation parameter is 
defined by D = (L − B)/(L + B), where L and B are the longest and shortest lengths of the droplet measured from its center 
to the interface, respectively. In this test, we initially configure a circular droplet with unity radius which is centered in 
the computational domain [−8, 8] × [−4, 4] with the grid size 2048 × 1024, as shown in Fig. 1. The number of Lagrangian 
markers is chosen as N = 4096, the uniform Eulerian mesh width is h = 1/128, and the time step size is �t = h/32. We 
also fix the Reynolds number by Re = 10−4 and the viscosity ratio between polymer and Newtonian solvent by β = 1, thus 
λ = 2.

Fig. 4 shows our numerical results on the droplet deformation as a function of the Weissenberg number W i for two 
different capillary numbers Ca = 0.1 and 0.2. It is also compared with experimental results [13,28] and the numerical 
results based on phase-field method [46]. Notice that, the experimental results are available only for small Weissenberg 
number. In the figure, our numerical result is quite comparable to the experiment by Guido et al. [13] for small W i and 
Ca = 0.1, while the result of Yue et al. [46] is comparable to the one of Maffettone and Greco [28]. For small W i and 
Ca = 0.2, our result becomes quite comparable to both experiments, while the result of Yue et al. is still comparable to 
the one of Maffettone and Greco. In comparison with numerical results of Yue et al., our results show slight difference but 
both plots of deformation parameter versus Weissenberg number show concave upward behavior as Weissenberg number 
increases. So we can conclude that our present numerical method is validated by simulating the Newtonian droplet in 
Oldroyd-B fluid. In the next section, we study on the vesicle dynamics mainly in two-phase N/O fluid under steady shear 
flow.

5. Numerical results and discussion

In this section, we perform numerical tests for two-dimensional vesicle dynamics under viscoelastic shear flow. To ex-
plore the effects of viscoelasticity on vesicle motions, the inner fluid is always set to be Newtonian, while the outer fluid is 
given by either Newtonian or non-Newtonian (Oldroyd-B). We denote these two-phase fluids by N/N and N/O, respectively. 
In the following subsections, we first validate our IB method by comparing with the Keller–Skalak (KS) theory in N/N fluid 
[21]. We then intensively investigate the viscoelastic effect on vesicle motions in N/O setting by varying the parameters 
such as W i (the Weissenberg number), β (the viscosity ratio between polymer and Newtonian solvent), Re (the Reynolds 
number), and λ (the viscosity contrast between inner and outer fluids).

Throughout this paper, we initially configure an elliptical vesicle with the desired reduced area ν = 4π A/L2 by fixing the 
enclosed area A = π and changing the total vesicle perimeter L. We put the vesicle under shear flow (u, v) = (y, 0) in the 
computational domain [−8, 8]2 with the grid size 5122, see Fig. 1. The uniform Eulerian mesh width is h = 16/512 and the 
time step size is �t = h2/4. The number of Lagrangian markers representing the vesicle boundary is chosen as N = 1024. 
In most cases, the numerical results are obtained up to time t = 50 which takes about 30 hours to finish a run using a 
single-core computer equipped with a CPU 3.7 GHz. Unless otherwise stated, we fix the Reynolds number by Re = 10−3
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Fig. 5. Comparison of N/N (left column, (a, c)) and N/O (right column, (b, d)) cases. (a)–(b): the time evolutionary plots of inclination angle θ/π for 
various ν . (c)–(d) the time evolutionary plots of tank-treading frequency ω for various ν . Here ν denotes the reduced area.

to be in Stokes regime, the capillary number by Ca = 1, and the viscosity ratio between polymer and Newtonian solvent 
by β = 1. Although mostly omitted here, we tested for different Ca ranged from 1 to 100 and initial tilt-angles 0 and 
π/4. Since the quantitative results associated with shear-induced vesicle TT motions are almost identical for different initial 
configuration of vesicle, we tilt the vesicle initially only by an angle θ = π/4. In order to support this statement, in the next 
subsection, we show the time-dependent variation of inclination angle and angular frequency of tank-treading vesicle for 
different configurations initially tilted by 0, π/8, and π/4. The stiffness parameter used for the nearly inextensible vesicle 
boundary is chosen as γ0 = 5 × 103 with which the relative changes in vesicle area A and its total length L are less than 
0.5% during all simulations we have performed.

For shear-induced vesicle motions in N/N fluid, two major types of motion have been well investigated; namely (1) 
tank-treading (TT) motion, and (2) tumbling (TB) motion. A vesicle with TT motion takes a stationary shape and constant 
inclination angle θ independent of time, while a vesicle with TB motion periodically rotates like a rigid body. These be-
haviors have been found in asymptotic theory [21] and also numerical simulations such as in [24]. Another motion called 
a vacillating-breathing (or trembling, swinging) is found between TT and TB states in the theory [29], the experiment [19], 
and numerical simulation [31]. However, here only TT and TB motions are observed since the vacillating-breathing is mainly 
attributed to the presence of vorticity axis in three dimensions.

5.1. Comparison of matched viscosity N/N and N/O fluids

As a first test, we examine the effect of viscoelasticity by comparing the vesicle tank-treading (TT) motion under shear 
flow for N/N and N/O fluids. Throughout this paper, we call the matched viscosity N/N fluid if the parameters λ = 1 and 
β = 0 are used in N/N fluid setup; while we call the matched viscosity N/O fluid if λ = 1 + β and β > 0 in N/O fluid. In 
the latter case, the viscosity of Newtonian fluid matches with the total viscosity of Oldroyd-B fluid by μn = μs + μp . Here 
we choose β = 1 and the Weissenberg number W i = 1 for convenience in this study. Note that, the usage of β = 1 is quite 
common in other numerical studies [7,46,8]. Meanwhile, as reported in [41], the value of W i can be measured close to 1
or even higher close to 10 in blood flow for hardened cells and through microtubes.
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Fig. 6. Contour plot of the first normal stress difference of the polymer obtained by H(σa − σc) for different Weissenberg numbers W i = 0.25 and 1. 
(a, c) ν = 0.5; (b, d) ν = 0.95, where ν is the reduced area of the vesicle drawn in a thick red line. The data is chosen at t = 50. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

It is known that, in the case of matched viscosity N/N fluid, a vesicle under shear flow undergoes TT motion, and the 
inclination angle θ/π (measured by the angle between the x-axis and the longest axis of the vesicle and scaled by π ) 
decreases as the reduced area ν decreases as shown in Fig. 5(a). One can see from Fig. 5(b) that, in the matched viscosity 
N/O fluid, the vesicle still undergoes TT motion and as the reduced area decreases, the angle decreases too. However, it 
is interesting to see that all the inclination angles in N/O fluid are significantly smaller than the ones in the case of N/N 
fluid due to the viscoelastic effect of Oldroyd-B fluid outside of the vesicle. A similar behavior was reported in the study of 
droplet deformation such as in [7]. In Table 1 of [7], for a Newtonian droplet immersed in an Oldroyd-B fluid under shear 
flow, it is shown that the inclination angle decreases as the Weissenberg number (or Deborah number) increases. To explain 
why, the authors plotted the first normal stress difference of the polymer defined by N1 = H(σa − σc) in Fig. 11 of [7] and 
found that the maximal regions of N1 move away from the tip of the droplet to above the front tip and below the back tip 
with increasing Weissenberg number. This indicates that the polymer stress contributes to decrease the inclination angle of 
the droplet with increasing W i. We believe that such explanation is also applicable to our present study on vesicle problem. 
Fig. 6 shows the contour plots of the first normal stress difference of the polymer N1 for different Weissenberg numbers 
W i = 0.25 and 1. As we can see from this figure, when W i increases, the maximal regions of N1 move away from the tip 
of the vesicle and the overall values get higher, so the polymer stress tends to align the vesicle along the x-direction more. 
As a result, the inclination angle of the tank-treading vesicle decreases with increasing W i.

For the vesicle TT motion, it is also interesting to measure the TT angular frequency as in [24]

ω(t) = 2π

/ ∫
�(t)

|Xα|
|U · τ| dα,

where U · τ is the tangential component of velocity of the Lagrangian marker. Fig. 5(c) and Fig. 5(d) show the time evolu-
tionary plots of ω for the cases of N/N and N/O fluids, respectively. One can also see that, as the reduced area ν decreases, 
the TT angular frequency decreases for both N/N and N/O fluids. The frequencies in N/O fluid are comparably smaller than 
the ones in N/N fluid although the differences become smaller as ν decreases.

Although the viscoelasticity resists vesicle motion as shown in Fig. 5, one might wonder whether the vesicle dynamics is 
significantly influenced by different initial configurations of vesicle. To see this, we put a vesicle with reduced area ν = 0.8
initially tilted by θ0 = 0, π/8, and π/4 under shear flow. We also vary the Weissenberg number W i = 0.5, 1, 2, but fix 
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Fig. 7. The comparisons of (a) the inclination angle θ/π and (b) the average TT frequency ω both in terms of time, for different configuration of vesicle 
with fixed ν = 0.8 initially tilted by 0, π/8, and π/4. Three different Weissenberg numbers are also chosen by W i = 0.5 (black dotted lines), W i = 1 (blue 
solid lines), and W i = 2 (red dashed lines).

Fig. 8. For various W i and fixed Ca = 1, (a) the inclination angle θ/π and (b) the average TT frequency ω both in terms of the reduced area ν . Here W i
and Ca denote the Weissenberg number and the capillary number, respectively. The data is chosen at t = 50.

the capillary number Ca = 1. In Fig. 7, we compare the time-dependent variation of inclination angle θ/π and angular 
frequency ω for these configurations. Before the onset of stationary TT regime, the suspended vesicle with θ0 = 0 rotates in 
the counter-clockwise direction toward stationary state, whereas that with θ0 = π/4 rotates in the clockwise direction. Then 
during stationary TT motion with constant inclination angle and tank-treading frequency, those three results with different 
initial configurations coincide with each other almost perfectly. So, it seems that the equilibrium TT inclination angle and 
the averaged angular frequency are independent of initial vesicle configurations.

5.2. Effect of Weissenberg number on TT motion

In this subsection, we investigate the effect of different Weissenberg numbers on the vesicle tank-treading motion. The 
computational setup is the same as in the previous subsection except we vary the Weissenberg number. As shown in 
Fig. 5, both inclination angle and angular frequency tend to be stationary after t ≈ 10 so here we just mark the equi-
librium values. Fig. 8(a) shows the stationary inclination angle θ/π versus the reduced area ν for different Weissenberg 
numbers W i = 0, 0.25, 0.5, 0.75, 1. Here, W i = 0 represents the case of N/N fluid. One can see that as the Weissenberg 
number increases, the angle θ/π decreases for all different cases of ν . It appears that the slopes are almost identical be-
tween two different ν for all values of W i which indicates relatively constant contribution of the viscoelasticity to vesicle 
dynamics in TT regime. Fig. 8(b) shows a qualitatively similar trend for TT angular frequency, that is, ω decreases with 
increasing W i. However, unlike the inclination angle, the discrepancy of ω at fixed ν is quite small, and it appears that the 
stronger viscoelasticity of outer fluid slows down the average TT frequency more for the swollen vesicle than the flattened 
one.
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Fig. 9. For various β and fixed Ca = 1, (a) the inclination angle θ/π and (b) the average TT frequency ω both in terms of the reduced area ν . Here β
denotes the viscosity contrast between the polymer and the Newtonian solvent. The data is chosen at t = 50.

5.3. Effect of viscosity ratio between polymer and Newtonian solvent

In this subsection, we vary the viscosity ratio between polymer and Newtonian solvent which is defined by β in Eq. (20). 
Since we consider the matched viscosity N/O fluid here, once β is chosen, the viscosity contrast is determined by λ = 1 +β . 
This numerical experiment is closely related to the previous results tested for different Weissenberg numbers W i. As we 
can see in the previous subsection, the viscoelasticity of the outer fluid tends to decrease the TT inclination angle. When 
β = 0, the fluid is purely Newtonian. As β increases, the viscoelastic effect of the polymer becomes larger, so the TT 
inclination angle decreases as we can see from Fig. 9(a). The decrement at fixed ν gets smaller as β increases linearly from 
0 to 1. As shown in Fig. 9(b), the TT frequency for the swollen vesicle is affected more than for the flattened one. Such 
trend of the variation in TT inclination angle and frequency at equilibrium is similar to the results shown in Fig. 8 for the 
effect of different Weissenberg numbers, in which, instead of β , W i increases linearly to take into account the different 
viscoelasticities. Thus, changing β or W i seems to have similar effect. For the rest of this paper, we fix β = 1 but vary W i
to examine the polymer viscoelastic effect on the vesicle motion under shear flow.

5.4. Effect of Reynolds number

In most available literature, the simulations of vesicle motions under shear flow are restricted to Stokes flow by neglect-
ing the fluid inertia. However, it was shown in [23,36] that the inertia effect can inhibit vesicle TB motion under shear flow 
in N/N fluid. In this subsection, we investigate the inertia effect by varying the Reynolds number Re in N/O fluid. For com-
parison purpose, we also show the results in N/N fluid. Fig. 10(a) and Fig. 10(b) show the inclination angle versus reduced 
area for the cases of N/N and N/O fluids, respectively. Here, we vary the Reynolds number from Stokes regime Re = 10−3

to the Navier–Stokes regime Re = 1. One can immediately see from these two sub-figures that by increasing the Reynolds 
number, the inclination angle increases accordingly. Meanwhile, the inclination angles obtained from Re = 1 in both N/N 
and N/O fluids are significantly larger than the ones obtained from Re = 10−3 − 10−1, which shows that the inertia does 
affect the vesicle dynamics under shear flow. Furthermore, since the inclination angle becomes larger when Re = 1, this 
confirms again that the inertia effect might inhibit tumbling motion as in the literature [23,36]. Fig. 10(c) and Fig. 10(d) 
show the average TT angular frequency ω versus reduced area for the cases of N/N and N/O fluids, respectively. In both 
fluids, the frequency at Re = 1 are significantly smaller than the results obtained from Re = 10−3 − 10−1, which once again 
confirms the inertia effect. It is also interesting to see that the frequency is more strongly affected by Re in N/N fluid than 
in N/O fluid.

5.5. Effect of viscosity contrast between inner and outer fluids

So far, we have considered the matched viscosity in N/N fluid and N/O fluid. In this subsection, we examine the effect of 
unmatched viscosity in both fluids. As mentioned before, we call the unmatched viscosity N/N fluid if λ > 1 and β = 0, and 
the unmatched viscosity N/O fluid if λ > 2 and β = 1, respectively. In the case of unmatched viscosity N/N fluid, a vesicle 
can undergo TB motion when the viscosity contrast reaches a critical threshold and triggers the transition from TT to TB. As 
discussed in Keller and Skalak (KS) theory [21], the critical viscosity contrast for the TT to TB transition can be computed 
by setting the stationary inclination angle to be zero. So before the transition, the stationary inclination angle decreases 
and remains positive as the viscosity contrast increases (but smaller than the threshold). Fig. 11(a) shows the behaviors of 
the inclination angle versus the viscosity contrast for different reduced area in N/N fluid. Here, the theoretical prediction of 
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Fig. 10. For various Re and fixed Ca = 1, the inclination angle θ/π in (a, b); The average TT frequency ω in (c, d). The fluid types are N/N in (a, c) and N/O 
with W i = 1 in (b, d), respectively. The theoretical result in [24] modified for 2D case is compared with our numerical results. Here Re and Ca denote the 
Reynolds number and the capillary number, respectively. The data is chosen at t = 50.

KS theory is also plotted in this figure. One can see that although our numerical results are a little bit overestimated than 
the theoretical predictions which was also observed in other studies [6,22], the qualitative trend is in a good agreement. 
We attribute such deviations to the assumption of stationary elliptic shape used in KS theory while in our simulations, the 
stationary vesicle shape can be a dumbbell one especially for the cases of smaller reduced area with Ca = 1.

Figs. 11(b)–(d) show the stationary inclination angle θ/π versus the viscosity contrast λ before the transition from TT 
to TB in the case of N/O fluid for different Weissenberg numbers (W i = 0.5, 0.75, 1). Here, various reduced areas are also 
considered. As in N/N fluid, the stationary inclination angle decreases as the viscosity contrast increases for all reduced areas. 
However, it is surprising to see that the stationary inclination angle becomes negative as the viscosity contrast increases 
but remains in TT motion. To the best of our knowledge, this is the first numerical result showing that negative stationary 
inclination angle exists in vesicle TT motion, which certainly is attributed to the viscoelastic effect of the surrounding fluid. 
Some time evolutional snapshots of vesicle TT motion with negative inclination angle shall be given later. It is also clear 
to see that a vesicle can sustain TT motion even for a large λ, which is more profound at increasing Weissenberg number. 
Another remarkable result is that, as W i increases, TT regime sustains with much higher λ for the flattened vesicle. In 
Figs. 11(b)–(d), a vesicle with large reduced area ν = 0.95 tends to tumble at λ = 16, 18 and 20 for the corresponding 
W i = 0.5, 0.75 and 1, whereas a vesicle with ν = 0.5 does at λ = 8, 12, and 21 in comparison. So, in order to trigger the 
TT to TB transition in N/O fluid, our simulation indicates that the flattened vesicle requires even higher viscosity contrast λ
than the swollen does at high Weissenberg number.

To quantify the transition from TT to TB, one can estimate the numerical critical viscosity contrast by running successive 
simulations. Fig. 12 plots the numerical critical viscosity contrast λc as a function of ν with various W i. The critical contrast 
in N/N fluid obtained from KS theoretical result is also included for comparison. One can immediately see that, for fixing 
reduced area ν , the critical viscosity contrast λc increases as Weissenberg number W i increases as shown in Figs. 11(b)–(d). 
Meanwhile, λc increases with the reduced area ν for all Weissenberg numbers W i = 0, 0.25, 0.5, 0.75 except for the case 
of W i = 1 in which λc behaves non-monotonically. Such non-monotonic behavior at moderate W i is also found in droplet 
deformation under shear flow [46]. However, it is not clear what physical mechanisms cause such behavior or whether it is 
simply from the numerical limitation since we run the vesicle motions only up to time t = 50.
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Fig. 11. The inclination angle θ/π in terms of the viscosity contrast λ for various Weissenberg number W i. The data is chosen at t = 50.

Fig. 12. The critical viscosity contrast λc versus the reduced area ν for various W i and fixed Ca. Here W i and Ca denote the Weissenberg number and the 
capillary number, respectively. The data is chosen at t = 50.

For illustration purpose, some time evolutional snapshots of vesicle TT motion in N/O fluid are plotted in Fig. 13. In 
this figure, two different vesicles are considered; one is a flattened vesicle with ν = 0.5 and λ = 20, and the other is a 
swollen vesicle with ν = 0.95 and λ = 19. Shortly after the relaxation of bending, the vesicles start to rotate in a clockwise 
direction toward stationary state. At t = 5, the vesicles are almost aligned with the x-axis as shown in Fig. 13(b), and rotate 
more shown in Fig. 13(c) at t = 10. Unlike the tumbling motion in N/N fluid, these vesicles suddenly reach the stationary 
TT motion at negative inclination angles as shown in Figs. 13(d)–(f) and last until the end of simulation time t = 50, see 
Fig. 14. These steady values of the inclination angle are marked in Fig. 11(d).
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Fig. 13. Snapshots of TT vesicles with ν = 0.5, λ = 20 (red solid line) and ν = 0.95, λ = 19 (blue dashed line) suspended in N/O fluid with Re = 10−3, Ca = 1, 
and W i = 1. We denote the reduced area by ν , the viscosity contrast by λ, the Reynolds number by Re, the capillary number by Ca, and the Weissenberg 
number by W i.

Fig. 14. Streamlines and stress-ellipses at time t = 50 for vesicles with (a) ν = 0.5, λ = 20 and (b) ν = 0.95, λ = 19 both in N/O fluid with Re = 10−3, Ca = 1, 
and W i = 1. This corresponds to Fig. 13. We denote the reduced area by ν , the viscosity contrast by λ, the Reynolds number by Re, the capillary number 
by Ca, and the Weissenberg number by W i.

According to [34,46], viscoelastic effect on a suspended droplet dynamics comes not only from the polymer stress 
directly, but also from the flow modified by the stress. To understand the viscoelastic effect on vesicle tank-treading 
motion at negative inclination angle in N/O fluid, we plot flow streamlines and stress-ellipses for two vesicles at t = 50
shown in Fig. 14. The stress-ellipse visualizes the eigenvalues and eigenvectors of a dimensionless conformation tensor 
σ̄ = (W i/β)σ + I as shown in [8]. For a stress-ellipse, the semi-major axis is aligned with the eigenvector corresponding 
to the maximal eigenvalue of Hσ̄ and its length is scaled proportionally to the eigenvalue. Similarly, the semi-minor axis is 
defined with the eigenvector corresponding to the minimal eigenvalue. The Oldroyd-B model can be derived from a molec-
ular model of suspended Hookean dumbbells in a Newtonian solvent [32, Ch 2.6.1], so an ellipse physically indicates how 
an ensemble average of elastic dumbbells (bead-spring structures or coils) is immersed in fluid. These stress-ellipses nearby 
the vesicle boundary illustrated in the figure are quite elongated parallel to the streamline, so the dumbbells are aligned 
predominantly parallel to the streamline yielding an anisotropic contribution to flow field. Thus, the biased polymer stress 
and the fluid flow modified by the stress affect the vesicle TT inclination angle to be lower as seen in Subsection 5.2.

To see more about the polymer contribution in the presence of viscosity contrast, we plot the contour of the first normal 
stress difference of the polymer in Fig. 15. Unlike shown in Figs. 6(c, d), the maximal regions of the stress difference move 
away from the tip of vesicle in the opposite directions, that is, to below the front tip and above the back tip. Our perception 
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Fig. 15. Contour plot of the first normal stress difference of the polymer obtained by H(σa − σc) for fixed Weissenberg number W i = 1. Here ν is the 
reduced area of the vesicle. This figure corresponds to Fig. 14.

Fig. 16. The time evolution of inclination angle for vesicles with (a) ν = 0.5, λ = 20 and (b) ν = 0.95, λ = 19 in unmatched viscosity N/O fluid with Ca = 1
and W i = 1. We denote the reduced area by ν , the viscosity contrast by λ, the Reynolds number by Re, the capillary number by Ca, and the Weissenberg 
number by W i.

is that the polymer stress seems to align the vesicle along the x-direction, while the unmatched viscosity stress seems 
to make the vesicle tumble. So the counter effect between those two stresses makes the vesicle tank-tread at negative 
inclination angle. Certainly, some experimental and theoretical studies should be conducted to verify our findings in the 
near future.

5.6. Study on Reynolds number in unmatched viscosity N/O fluid

In unmatched viscosity N/N fluid, it is known that the TB motion is inhibited by inertia effect and the steady TT incli-
nation angle increases with increasing Re [23,36]. As the last numerical experiment, we study the inertia effect by putting 
a vesicle into unmatched viscosity N/O fluid. Fig. 16 shows the time evolutional plots of inclination angles for two differ-
ent vesicles; a flattened vesicle with ν = 0.5 and λ = 20 in Fig. 16(a) and a swollen vesicle with ν = 0.95 and λ = 19 in 
Fig. 16(b). For the flattened vesicle case in Fig. 16(a), the TT inclination angle is negative in Stokes regime when Re = 10−3

and 10−2 as mentioned before. However, as the Reynolds number increases to Re = 10−1 and 1, the flattened vesicle starts 
to tumble, and it tumbles faster as Re increases. As we increase the Reynolds number to Re = 4, it is striking to see that the 
vesicle abruptly tank-treads at a positive inclination angle. This interesting behavior has also been observed in the swollen 
vesicle in Fig. 16(b). For the swollen vesicle case, the TT inclination angle is negative in Stokes regime when Re = 10−3, 
10−2, and 5 · 10−2. As we increase the Reynolds number to Re = 5 · 10−1, the swollen vesicle tumbles. As we increase fur-
ther to Re = 1, the vesicle suddenly tank-treads at a positive inclination angle, and at the higher Re = 4, the larger positive 
TT inclination angle is found. From those simulation results, one can conclude that both viscoelasticity and inertia have 
significant effects on the vesicle dynamics in unmatched viscosity N/O fluid.

The above result can be considered as a combination of the results already observed in Fig. 10 and Fig. 11. When 
the viscoelasticity and the viscosity contrast dominate the vesicle dynamics as shown in Fig. 11, the vesicle undergoes 
tank-treading motion with negative inclination angle. As Re increases, the inertia triggers the vesicle to tumble due to the 
negative inclination angle. As Re further increases, the tumbling motion with higher angular frequency can occur. For the 
moderate Re as shown in Fig. 10, the vesicle in turn undergoes the tank-treading motion with positive inclination angle. 
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As Re even gets higher, the positive inclination angle gets larger to be aligned along the shear flow direction, so the angle 
increases to the limit π/4.

6. Conclusions

The Newtonian vesicle dynamics in viscoelastic Oldroyd-B fluid (denoted by N/O) under shear flow has been extensively 
investigated in this paper. We first formulate the problem in an immersed boundary framework and then present the 
step-by-step numerical algorithm. As a first validation to our Oldroyd-B fluid solver, we devise an analytical solution to the 
problem and check the numerical accuracy. We then perform a series of numerical experiments. For matched or unmatched 
viscosity in N/N or N/O fluid, the numerical results can be summarized as follows.

• The inclination angle and tank-treading frequency of the N/O fluid case are comparably smaller than the ones in N/N 
fluid.

• In matched viscosity N/O fluid, the vesicle inclination angle in TT regime decreases with increasing Weissenberg number.
• In unmatched viscosity N/O fluid, the inclination angle decreases even more as the viscosity contrast increases, and 

most surprisingly, the negative inclination angle is found in TT regime, indicating that the viscoelasticity of outer fluid 
tends to lag the tumbling motion.

• TT motion with negative inclination angle is clearly observed for the flattened vesicles in N/O fluid with moderate 
Weissenberg number.

• The vesicle tank-treads at negative inclination angle at small Reynolds number, then abruptly tumbles at slightly higher 
Reynolds number, and eventually returns to tank-tread at positive inclination angle at even higher Reynolds number.

In conclusion, this interplay between the viscoelasticity and the viscosity contrast is quite interesting and worths further 
investigations through theory and experiments. Meanwhile, the scheme should be able to extend to 3D based on our previ-
ous work on 3D immersed boundary simulations for vesicle dynamics in N/N fluid [35]. The remaining numerical challenges 
are still to improve the calculation of bending force and the handling of surface mesh distortion occurred in simulations. 
We will leave the 3D simulations for Newtonian vesicles in viscoelastic fluid to the future work.
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