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ADAPTIVE MESH REFINEMENT FOR ELLIPTIC INTERFACE

PROBLEMS USING THE NON-CONFORMING IMMERSED

FINITE ELEMENT METHOD

CHIN-TIEN WU, ZHILIN LI, AND MING-CHIH LAI

Abstract. In this paper, an adaptive mesh refinement technique is developed

and analyzed for the non-conforming immersed finite element (IFE) method

proposed in [27]. The IFE method was developed for solving the second order

elliptic boundary value problem with interfaces across which the coefficient

may be discontinuous. The IFE method was based on a triangulation that

does not need to fit the interface. One of the key ideas of IFE method is to

modify the basis functions so that the natural jump conditions are satisfied

across the interface. The IFE method has shown to be order of O(h2) and

O(h) in L2 norm and H1 norm, respectively. In order to develop the adaptive

mesh refinement technique, additional priori and posterior error estimations are

derived in this paper. Our new a-priori error estimation shows that the generic

constant is only linearly proportional to ratio of the diffusion coefficient β−

and β+, which improves the corresponding result in [27]. We also show that a-

posteriori error estimate similar to the one obtained by Bernardi and Verfürth

[4] holds for the IFE solutions. Numerical examples support our theoretical

results and show that the adaptive mesh refinement strategy is effective for the

IFE approximation.
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1. Introduction

The main purpose of this paper is to develop adaptive mesh refinement tech-
niques for the immersed finite element (IFE) method proposed in [27]. Along this
line, we also discuss a-priori and a-posteriori error estimates for the immersed fi-
nite element method. The IFE method was developed for the following interface
problem:

−∇ · (β∇u) = f, (x, y) ∈ Ω

u |∂Ω = g,
(1)

together with the natural jump conditions across the interface Γ̃:

[u] |Γ̃= 0,(2)

[βun] |Γ̃= 0.(3)
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Here, Ω ⊂ R
2 is a convex polygonal domain, the interface Γ̃ is a curve separating

Ω into two sub-domains Ω−,Ω+ such that Ω = Ω− ∪ Ω+ ∪ Γ̃, and the coefficient
β(x, y) is a piecewise continuous function

β(x, y) =

{
β−(x, y), (x, y) ∈ Ω−,
β+(x, y), (x, y) ∈ Ω+,

see the diagram in Fig. 1 for an illustration.
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Figure 1. A rectangular domain Ω = Ω+∪Ω− with an immersed
interface Γ̃. The coefficients β(x) may have a jump across the
interface.

The interface problem considered here appears in many engineering and science
applications. The immersed finite element (IFE) space was first introduced in
[27], in which some preliminary analysis and numerical results are reported. The
new IFE method has been developed for non-homogeneous jump conditions (with
nonzero right hands of (2) and (3) ) in [25]. Some related work can be found
in [19, 20, 24, 28].

The basic idea of the immersed finite elements is to form a partition ℑh in-
dependent of interface Γ̃ so that partitions with simple regular structures can be
used to solve an interface problem with a rather complicated or varying interface.
Obviously, triangles in a partition can be separated into two classes:

• Non-interface triangles: The interface Γ̃ either does not intersect with this
triangle, or it intersects with this triangle but does not separate its interior into
two nontrivial subsets.

• Interface triangles: The interface Γ̃ cuts through its interior.
In a non-interface triangle, the standard linear polynomials is employed as local
basis functions. However, in an interface triangle, a piecewise linear polynomial is
defined in the two subsets formed by the interface in a way that the functions sat-
isfy the natural jump conditions (either exactly or approximately) on the interface
and retain specified values at the vertices of the interface triangle. The immersed
finite element space defined over the whole domain Ω can then be constructed
through the standard finite element assembling procedure. We refer the readers
to [9–12,15,18,23,26] for more background materials about immersed interface and
immersed finite element methods as well as their applications.

Without loss of generality, we assume that the triangles in the partition have the
following features:
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(H1): If Γ̃ meets one edge of a triangle at more than two points, then the edge

is part of Γ̃.
(H2): If Γ̃ meets a triangle at two points, then these two points must be on

different edges for this triangle.
In order to obtain error estimates, we assume that the underlying mesh is fine

enough such that the interface can be approximated by a line segment with a small
perturbation in a magnitude of O(h2). Furthermore, the source function f and the

interface Γ̃ are assumed to be smooth enough such that the weak solution of the
problem (1) can be approximated by a piecewise C2 function. These requirements
lead to our third hypothesis:

(H3): The segment of the interface Γ̃ in a triangle T ∈ ℑh is defined by a piece-
wise C2 function and the function space C2(T ) is dense in H2(T ).

It is well known that the standard finite element method (FE) with linear finite
elements can be used to solve such elliptic interface problems, see [3, 5, 6] and the
references therein. However, in order to achieve the optimal O(h2) accuracy in the
numerical solutions, an interface fitted grid is needed. In applications with nontriv-
ial interfaces or the time-varying interfaces, this restriction prevents the Galerkin
method with linear finite elements from working efficiently since mesh moving or re-
meshing is required. On the other hand, although the mesh moving and re-meshing
may produce extra technical difficulties and computation overhead for the standard
FE method, the standard FE method has a great advantage on increasing the ac-
curacy of the numerical solutions at low cost through the adaptive mesh refinement
process. In the adaptive mesh refinement process, first an error indicator ηT used
to pin point the locations with large error is computed on each element in a given
triangulation. Second, the elements in which the error indicator has large value are
marked for refinement according to a given marking strategy. A heuristic marking
strategy is the maximum marking strategy where an element T ∗ will be marked for
refinement if ηT∗ > θmaxT∈ℑh

ηT , with a prescribed threshold 0 ≤ θ ≤ 1. Some
other marking strategies can also be seen in [14]. Finally, the marked triangles are
divided into sub-triangles by rules such as the regular refinement algorithm or the
longest side bisection algorithm [16,17]. An approximate solution is then computed
on the refined mesh. The above procedure can be repeatedly applied until the ac-
curacy of the approximated solution is satisfied. The theoretical foundation of the
mesh refinement strategy is based on the a-posteriori error estimation proposed
by Babuška and Rheinboldt [1] and further developed by many researchers such
as Zienkiewicz [29], Bank and Weiser [2], and Verfürth [21, 22]. The convergence
of the adaptive mesh refinement process has been shown by Morin, Nochetto and
Siebert [13].

It has been shown that the IFE interpolation errors on a uniform fixed (such
as Cartesian) partition is of the order of O(h) in the H1 norm and of the order
of O(h2) in the L∞ and L2 norms under the hypothesis (H1), (H2) and (H3) [28].
In this work, we obtain the same order of the error estimations and further show
that the generic constants in these estimations are linearly proportional to the ra-
tio max {ρ, 1/ρ} of the diffusion coefficients, here ρ = β−/β+. The a-posteriori
estimations of the finite element solutions mentioned above are obtained mostly
on fitted grids. Recently, A. Hansbo and P. Hansbo propose an unfitted finite el-
ement method for the elliptic interface problem. The same order of a-priori error
estimations is obtained and an a-posteriori estimator is proposed [8]. Here, we also
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derive an a-posteriori error estimation for the IFE method based on the method-
ology developed by Verfürth [4]. Our numerical results support the effectiveness of
the proposed a-posteriori error estimation.

This paper is organized as follows. In section 2, we show the existence and
uniqueness of the element IFE basis function and derive some auxiliary inequali-
ties that are needed for the error estimation in section 3. We derive the a-priori
error estimations and the a-posteriori error estimation in section 3 and present our
numerical results in section 4. Finally, we draw our conclusions in section 5.

2. Review of the immersed finite element space

First we present a brief review of the immersed finite element space and the
construction of the basis functions.

Given a regular mesh ℑh on the domain Ω, let T be an interface triangle in
ℑh with vertices A, B and C where the interface passes through the interior of
T and intersect with the edges of T at points D and E. Let Γ̃T = Γ̃ ∩ T . In
the immersed finite element method, the interface Γ̃T is commonly approximated
by the line segment DE, denoted by ΓT . The formulation of the immersed finite
element method follows the idea that similar to the Hsieh-Clough-Tocher macro
element [7] in which the piecewise polynomial in each element is required to satisfy
certain constrains to ensure the C1-continuity on the whole domain. The immersed
finite element space on a triangle T, denoted by SI

h(T ), is the linear space of all
piecewise linear functions that satisfy the continuity condition [φ]ΓT

= 0 and the
homogeneous flux jump condition [β∂nφ]ΓT

= 0 on the approximate interface ΓT .
Assume the element basis functions on the reference triangle have the following
form:

φ+ = a0 + a1x+ a2y for (x, y) ∈ T+

φ− = b0 + b1x+ b2y for (x, y) ∈ T−.

It has been shown that the coefficients ai and bi, i = 1 · · · 3, can be determined
uniquely. In [27], the continuity condition [φ]ΓT

= 0 is satisfied by enforcing the
continuity on the intersection points D and E, i.e., φ+(D) = φ−(D) and φ+(E) =

φ−(E). In this work, we replace the condition φ+(E) = φ−(E) by ~t · ▽φ+ =
~t ·▽φ−, here ~t is the unit tangent of the approximated interface ΓT . The existence
and uniqueness of the immersed finite element basis functions are reassured in the
following theorem. The interpolation errors in the L∞, L2 and H1 norms will be
estimated in the next section.

Theorem 2.1. Let T denote a triangle with vertices (xi, yi), i = 1 · · · 3 in a
given uniform mesh, the associated IFE basis functions φ ∈ SI

h(T ) consisting of
φ+ and φ− on the reference triangle are uniquely determined by the nodal values
φ(xi, yi), i = 1 · · · 3.

Proof: Let Φ be the affine transformation that maps the reference triangle to
the triangle T via Φ(0, 0) = (x1, y1), Φ(1, 0) = (x2, y2) and Φ(0, 1) = (x3, y3). Let
φ(xi, yi) = φi, i = 1 · · · 3. From the nodal values and the continuity at node D, we
have

φ3 = φ+(0, 1) = a0 + a2 ⇒ a0 = φ3 − a2(4)

φ1 = φ−(0, 0) = b0(5)

φ2 = φ−(1, 0) = b0 + b1 ⇒ b1 = φ2 − φ1(6)

a0 + a2ŷ1 = b0 + b2ŷ1.(7)
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Figure 2. A typical triangle element with an interface cutting
through. The arc DME is part of the interface curve Γ̃ which is
approximated by the line segment DE. In this picture, T is the
triangle △ABC, T+ = △ADE, T− = T−T+, and T ∗ is the region
enclosed by the DE and Γ̃.

Plugging equations (4) and (5) into equation (7) implies

(−1 + ŷ1)a2 − ŷ1b2 = φ1 − φ3.(8)

Moreover, from the flux continuity condition and the continuity of the solution
along the tangential direction of the interface, we have

(9)

{

~n(Φ−1)T▽φ+ = ρ~n(Φ−1)T∇φ−

~t(Φ−1)T▽φ+ = ~t(Φ−1)T▽φ−,

where n = (n1, n2) and t = (−n2, n1) are the normal and tangent vectors of the
interface respectively, and ρ = β−/β+. Let (m1,m2) = ~n(Φ−1)T and (m3,m4) =
~t(Φ−1)T . The two equations in (9) can be rewritten as following:

m1a1 +m2a2 − ρm2b2 = −ρm1φ1 + ρm1φ2(10)

m3a1 +m4a2 = m3(φ2 − φ1) +m4b2.(11)

Plugging (8) into (10) and (11) and writing the resulted equations in the matrix
form, we have

[
m1ŷ1 m2(ŷ1 + ρ(1− ŷ1))
m3ŷ1 m4

] [
a1
a2

]

=

[
(−ρm2 − ρm1ŷ1) ρm1ŷ1 ρm2

−m4 −m3ŷ1 m3ŷ1 m4

]




φ1
φ2
φ3





=

[
ρm1ŷ1 ρm2

m3ŷ1 m4

] [
φ2 − φ1
φ3 − φ1

]

.

(12)

To prove the theorem, we only need to show the metric

A =

[
m1ŷ1 m2(ŷ1 + ρ(1− ŷ1))
m3ŷ1 m4

]

is non-singular. Let ρ∗ = ŷ1+ρ(1− ŷ1). We can see clearly that ρ∗ ≥ 1 when ρ ≥ 1
and 0 ≤ ρ∗ ≤ 1 when ρ ≤ 1. Since m1m4 −m2m3 = det(Φ) > 0, m2m3 < 0 and
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m1m4 > 0, we have

det(A) = ŷ1((m1m4 −m2m3)− (ρ∗ − 1)m2m3) > 0, if ρ ≥ 1(13)

and

det(A) = m1m4(1 − ρ∗)ŷ1 + ρ∗ŷ1(m1m4 −m2m3) > 0, if 0 < ρ < 1.(14)

Now from (13) and (14), we can conclude the matrix A is nonsingular and the
theorem holds. �

Remark 2.2. We can further estimate

det(A) = ŷ1(h
−2 + (ρ∗ − 1)n2

y) = h−2(ŷ1ρ
∗)

= h−2(ŷ1(ŷ1 + ρ(1 − ŷ1))) > min{1, ρ} ŷ1h
−2, for ρ > 1, and

det(A) = h−2ŷ1 > min{1, ρ} ŷ1h
−2, for 0 ≤ ρ ≤ 1,

from the equations (13) and (14), respectively. Therefore, the following estimation
of det(A) holds

(15) det(A) ≥ ŷ1h
−2 min{1, ρ}.

Moreover, Let ∆φ1 = φ2 − φ1, ∆φ2 = φ3 − φ1, and B =

[
ρm1ŷ1 ρm2

m3ŷ1 m4

]

.

The equation (12) implies
[
a1 −∆φ1
a2 −∆φ2

]

= A−1 (B −A)

[
∆φ1
∆φ2

]

(16)

=
ŷ1(ρ− 1)

det (A)

[
m2m4 m2m4

−ŷ1m2m3 −ŷ1m2m3

] [
∆φ1
∆φ2

]

.

Also, from the equations (6), (8), and (16), we have
[
b1 −∆φ1
b2 −∆φ2

]

=

[
0

ŷ1−1
ŷ1

(a2 −∆φ2)

]

(17)

=
ŷ1(ŷ1 − 1)(ρ− 1)

det (A)

[
0 0

−m2m3 −m2m3

] [
∆φ1
∆φ2

]

By applying the estimation (15) to the equations (16) and (17), we can easily show
that the following inequalities hold:

∥
∥
∥
∥

(
a2 −∆φ1
a3 −∆φ2

)∥
∥
∥
∥
∞

≤ c+ max{ρ,
1

ρ
}

∥
∥
∥
∥

(
∆φ1
∆φ2

)∥
∥
∥
∥
∞

,

∥
∥
∥
∥

(
b2 −∆φ1
b3 −∆φ2

)∥
∥
∥
∥
∞

≤ c− max{ρ,
1

ρ
}

∥
∥
∥
∥

(
∆φ1
∆φ2

)∥
∥
∥
∥
∞

,

(18)

where c+ and c− are constants independent with ρ.

3. The priori and posteriori error estimations

In this section, we define the IFE solution of the interface problem (1) and derive
the priori and posteriori error estimations of the IFE solution. We first introduce
some notations in the following:

• Let ℑh denote the regular mesh that satisfies the usual admissibility and the

shape regularity. Let ℑ̆h be the set of elements intersect with the interface,

and
◦

ℑh= ℑh \ ℑ̆h. For τ ∈ ℑh, let ∂τ denote the set of boundary segments

of the element τ and Eh = ∪τ∈ℑh
∂τ . Let Ĕh be the set of edges intersect



472 C. T. WU, Z. LI, AND M. C. LAI

with the interface and
◦

Eh = Eh \ Ĕh. Moreover, Nh = the set of all vertices
in ℑh, Nτ = vertices of an element τ and Ne = vertices of an edge e ∈ Eh.
Also, for any element τ ∈ ℑh, edge e ∈ E and node z ∈ Nh, let

ωτ =
⋃

τ ′∩τ∈∂τ

τ ′, ω̃τ =
⋃

τ ′∩τ 6=ø

τ ′, ωe =
⋃

Nτ∩Ne 6=ø′

τ ′, ωz =
⋃

z∈τ ′

τ ′

• We denote by H0 and Hk, the usual Lebesgue L2-integrable space and
the Sobolev spaces equipped with the standard norms ‖f‖k for f ∈ Hk,
k = 0 · · · 2. The notations ‖f‖k,Ω0

, k = 0 · · · 2, and ‖f‖β,Ω0
denote the

usual Sobolev norms and the energy norm of f on a sub-domain Ω0 ⊂ Ω.
The piecewise linear polynomial space on a sub-domain Ω0 is denoted by
Sh(Ω0). The immersed finite element space on the domain Ω, is denoted
by SI

h(Ω), is defined by SI
h(Ω) =

{
φ | φ|τ ∈ SI

h(τ), for all τ ∈ ℑh , and

φ|τ (z) = φ|τ ′(z), for z ∈ Nτ ∩Nτ ′}. The notation SI
h,0(Ω) denote the sub-

space in SI
h(Ω) with homogeneous boundary condition, {φ ∈ SI

h(Ω) | φ|∂Ω =
0}.

• For each vertex z ∈ Nh, let ϕz denote the linear nodal basis function. With
every element τ and every edge e, we associate the bubble functions ψτ =
27
∏

z∈Nτ
ϕz and ψe = 4

∏

z∈Ne
ϕz . Let In denote the nodal interpolant,

πz denote the L2 orthogonal projection onto the piecewise linear function
space in ωz, and Iπ denote the quasi-interpolant of a function u defined as
Iπu =

∑

z∈ℑh
(πzu)ϕz .

For any function φ ∈ H2(Ω), the IFE interpolant of φ is denoted by φI ∈ SI
h that

satisfies ϕz(φI) = φ(z) for all z ∈ Nh. The IFE solution of problem (1) denoted by
uIh satisfies the standard variation formulation of (1) as following:

(β▽ν , ▽uIh) = (ν , f), for all ν ∈ SI
h,0(Ω),

where (· , ·) is the usual inner product in the H0(Ω). To derive the a-priori error
estimations of

∥
∥u− uIh

∥
∥
0
and

∥
∥u− uIh

∥
∥
1
, we need to estimate the interpolation

errors of φ − φI for any φ ∈ H1(Ω) ∩ C(Ω), here φI ∈ SI
h(T ) denote the IFE

interpolant of φ. In the following theorem, we first estimate the errors of φ − φI
and ▽φ− ▽φI in the L∞ norm.

Theorem 3.1. Let T be a triangle in a uniform mesh ℑh and the interface Γ̃
satisfies the hypothesis (H1), (H2) and (H3). Let ΓT denote the line segment that

approximates Γ̃T . Let φ be an arbitrary function in C2(T ) and φI ∈ SI
h(T ) be the

IFE interpolant of φ. The following error estimates hold.

‖▽φ(x, y)− ▽φI(x, y)‖∞,T ≤

{

ch
∥
∥D2φ

∥
∥
∞,T

when (x, y) ∈ Ω\T ∗

c
∥
∥D2φ

∥
∥
∞,T

when (x, y) ∈ T ∗(19)

‖φ(x, y) − φI(x, y)‖∞,T ≤ ch2
∥
∥D2φ

∥
∥
∞,T

,(20)

where c = O(max{
1

ρ
, ρ}) and T ∗ is the region enclosed by Γ̃T and ΓT .

Proof: First, we estimate the error of ▽φ−▽φI at element nodal points of the
reference triangle in the following: From the Taylor expansion of φ, we have

φ+(x̂, ŷ) = φ+(0, 1) + ▽φ+(0, 1)

[
x̂

ŷ − 1

]

+ e1(21)

φ−(x̂, ŷ) = φ−(0, 0) + ▽φ−(0, 0)

[
x̂
ŷ

]

+ e2,(22)
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where e1 ≤ (ŷ1−1)(
∥
∥D2φ

∥
∥
∞

(ŷ1−1)h2) and e2 ≤ ŷ1
∥
∥D2φ

∥
∥
∞
ŷ1h

2, and |e2 − e1| ≤

2maxv∈{|ŷ1|,|ŷ1−1|}{v
T
∥
∥D2φ

∥
∥
∞
v}h2. By imposing the continuity at node D, from

(21) and (22), we have

φ(0, ŷ1) = φ+(0, 1) + φ+ŷ (0, 1)(ŷ1 − 1) + e1

= φ−(0, 0) + φ−ŷ (0, 0)(ŷ1) + e2.

The above equation implies

(−1 + ŷ1)φ
+
ŷ (0, 1)− ŷ1φ

−
ŷ (0, 0) = φ1 − φ3 + e2 − e1.(23)

Next, from the flux continuity and tangential continuity on the interface, we
have

m1φ
+
x̂ +m2φ

+
ŷ = ρ(m1φ

−
x̂ +m2φ

−
ŷ )

m3φ
+
x̂ +m4φ

+
ŷ = m3φ

−
x̂ +m4φ

−
ŷ .

(24)

By differentiating (21) and (22), and evaluating (22) at (1,0), we have







φ+x̂ (x̂, ŷ) = φ+x̂ (0, 1) + e3
φ+ŷ (x̂, ŷ) = φ+ŷ (0, 1) + e4
φ−ŷ (x̂, ŷ) = φ−ŷ (0, 0) + e5
φ−x̂ (x̂, ŷ) = φ−x̂ (0, 0) + e6,

(25)

here ei = o(h), i = 3 · · · 6, and

φ−x̂ (0, 0) = φ−(1, 0)− φ−(0, 0) + e2.(26)

Now plugging (23), (25) and (26) into (24), the equation (24) can now be rewrit-
ten in a matrix form as following:

[
m1ŷ1 m2(ŷ1 + ρ(1 − ŷ1))
m3ŷ1 m4

] [
φ+x̂ (0, 1)
φ+x̂ (0, 1)

]

=

[
−ρm2 − ρm1ŷ1 ρm1ŷ1 ρm2

−m4 −m3ŷ1 m3ŷ1 m4

]




φ1
φ2
φ3



+ ŷ1

[
ẽ1
ẽ2,

](27)

where ẽi = o(1), for i = 1, 2. Let δ+x = (φ+I )x̂ − φ+x̂ , δ
+
y = (φ+I )ŷ − φ+ŷ , δ

−
x =

(φ−I )x̂−φ
−
x̂ and δ−y = (φ−I )ŷ−φ

−
ŷ . Recall that a1 = (φ+I )x̂, a2 = (φ+I )ŷ, b1 = (φ−I )x̂,

b2 = (φ−I )ŷ, and

A =

[
m1ŷ1 m2(ŷ1 + ρ(1− ŷ1))
m3ŷ1 m4

]

Subtracting (12) from (27) leads to the following equation

A

[
δ+x (0, 1)
δ+y (0, 1)

]

= ŷ1

[
ẽ1
ẽ2.

]

(28)

By applying the lower bound of det(A) in Remark 2.2 on the solution of the
equation (28), we have
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|δ+x (0, 1)| = |
ŷ1(m4ẽ1 − (ŷ1 + ρ(1− ŷ1))m2ẽ2)

det(A)
|

< (|m4ẽ1|+ (ŷ1 + ρ(1− ŷ1))|m2ẽ2|)
h2

min{1, ρ}

< c
max{1, ρ}

min{1, ρ}
h < c ·max{ρ,

1

ρ
}h(29)

|δ+y (0, 1)| = |
ŷ1(m3ŷ1ẽ1 +m1ŷ1ẽ2)

det(A)
|

< ŷ1(|m3ẽ1|+ |m1ẽ2|)
h2

min{1, ρ}

< cŷ1 ·max{ρ,
1

ρ
}h(30)

Similarly, by subtracting (6) from (26) and subtracting (8) from (23), we have
the following inequalities

|δ−x (0, 0)| < ch2(31)

|δ−y (0, 0)| < |
(−1 + ŷ1)

ŷ1
δ+y (0, 1)|+ |

e1 − e2
ŷ1

|

< cmax{ρ,
1

ρ
}h+ o(h2).(32)

As a result of (25), (29), (30)-(32), the following error estimates hold

|(φ+x̂ − (φ+I )x̂)(x̂, ŷ))| < |φ+x̂ (x̂, ŷ)− φ+x̂ (0, 1)|+ |(φ+x̂ − (φ+I )x̂)(0, 1)| < c1h

|(φ+ŷ − (φ+I )ŷ)(x̂, ŷ))| < |φ+ŷ (x̂, ŷ)− φ+ŷ (0, 1)|+ |(φ+ŷ − (φ+I )ŷ)(0, 1)| < c2h,
(33)

for (x̂, ŷ) ∈ T+ \ T ∗, and

|(φ−x̂ − (φ−I )x̂)(x̂, ŷ)| ≤ |φ−x̂ (x̂, ŷ)− φ−x̂ (0, 0)|+ |(φ−x̂ − (φ−I )x̂)(0, 0)| < c3h

|(φ−ŷ − (φ−I )ŷ)(x̂, ŷ)| ≤ |φ−ŷ (x̂, ŷ)− φ−ŷ (0, 0)|+ |(φ−ŷ − (φ−I )ŷ)(0, 0)| < c4h
(34)

for (x̂, ŷ) ∈ T− \ T ∗, where ci = o
(
max{ρ, 1/ρ}

∥
∥D2u

∥
∥
∞

)
, for i = · · · 4.

Finally, for (x̂, ŷ) ∈ T ∗, we have

▽φ(x̂, ŷ)− ▽φI(x̂, ŷ) = ▽φ(x̄, ȳ)− ▽φI(x̄, ȳ) + δ1 + δ2,

for some (x̄, ȳ) ∈ T−, where δ1 = ▽(φ(x̂, ŷ) − φ(x̄, ȳ)) and δ2 = ▽(φ+I − φ−I )(x̂, ŷ).
Since ‖▽(φ− φI)(x̄, ȳ)‖ < c4h and ‖δ1‖ < c5h, from (34) and Taylor formula,
where c5 depends on

∥
∥D2φ

∥
∥
∞
, we only need to estimate δ2 to control the error

|▽φ(x̂, ŷ)− ▽φI(x̂, ŷ)|.
Recall that from the flux continuity and tangential continuity, we have

[
m1 m2

m3 m4

] [
a1
a2

]

=

[
ρm1 ρm2

m3 m4

] [
b1
b2

]

.

We can clearly see that,

‖δ2‖ = ‖▽(φ−I − φ+I )(x̂, ŷ)‖ =

∥
∥
∥
∥

[
a1 − b1
a2 − b2

]∥
∥
∥
∥

≤

∥
∥
∥
∥
∥
(

[
ρm1 ρm2

m3 m4

]−1 [
m1 m2

m3 m4

]

− I)

∥
∥
∥
∥
∥

∥
∥
∥
∥

[
a1
a2

]∥
∥
∥
∥
.(35)
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From (33) and the assumption φ ∈ C2(T ), we have
∥
∥
∥
∥

[
a1
a2

]∥
∥
∥
∥
≤

∥
∥
∥
∥

[
a1
a2

]

−

[
φx̂

+

φŷ
+

]∥
∥
∥
∥
+

∥
∥
∥
∥

[
φx̂

+

φŷ
+

]∥
∥
∥
∥
< c6,(36)

for some constant c6 depends on
∥
∥D2φ

∥
∥
∞
. Moreover, since

∥
∥
∥
∥
∥

[
ρm1 ρm2

m3 m4

]−1([
m1 m2

m3 m4

]

− I

)
∥
∥
∥
∥
∥

≤ c7

∣
∣
∣
∣

1− ρ

ρh−2

∣
∣
∣
∣

∥
∥
∥
∥

[
m1m4 m2m4

−m1m3 −m2m3

]∥
∥
∥
∥

≤ c7

∣
∣
∣
∣

1− ρ

ρ

∣
∣
∣
∣
≤ c7 max {

1

ρ
, ρ},(37)

for some constant c7, because m1,m2,m3 and m4 are O(h−1). From (35), (36) and
(37), we can conclude that

‖▽φ(x̂, ŷ)− ▽φI(x̂, ŷ)‖∞ < c8 max {
1

ρ
, ρ} for (x̂, ŷ) ∈ T ∗,(38)

where the constant c8 depends on
∥
∥D2φ

∥
∥
∞
. Finally, from (33), (34) and (38), we

can conclude the inequality (19) holds. The inequality (20) can then be proved by
following the same argument as shown in the Theorem 2.3 [27]. �

With the help of the above theorem, we can easily obtain the traditional inter-
polation error estimation in the L2-norm and H1-norm.

Theorem 3.2. The following interpolation error estimates hold. For function φ ∈

H2(Ω), if φ is a piecewise C2 function on any interface element τ , for all τ ∈
◦

ℑh,
then there exist constants c0 and c1 such that

‖φ− φI‖0 < c0h
2 ‖φ‖2(39)

‖φ− φI‖1 < c1h ‖φ‖2 ,(40)

where c0 and c1 are O(max{1/ρ, ρ}).

Proof: We first prove inequality (39). It is clear that

‖φ− φI‖0
2 = (

∫

Ω

|φ− φI |
2dx) = (

∑

τ∈ℑh

∫

τ

|φ− φI |
2dx)

≤
∑

τ∈ℑh

|φ− φI |∞,τ

∫

τ

|φ− φI |dx

≤ max
τ∈ℑh

‖φ− φI‖∞,τ

∑

τ∈ℑh

‖φ− φI‖0,τ (

∫

τ

1dx)
1
2 , by the Hölder inequality,

≤ max
τ∈ℑh

‖φ− φI‖∞,τ ‖φ− φI‖0 |Ω|, by the Schwartz inequality.

By theorem 3.1, this implies ‖φ− φI‖0 ≤ ch2 ‖φ‖2, where c depends on |Ω|
and max{1/ρ, ρ}. Next, we show the estimation (40). It is well known that the
inequality

‖φ− φI‖1,τ ≤ h‖φ‖2,τ(41)

holds, for elements τ ∈
◦

ℑh that do not intersect with interface. For an element

T ∈ ℑ̆h that intersects with the interface, we have
∫

T

▽(φ− φI)▽(φ− φI)dx =

∫

T\T∗

▽(φ − φI)▽(φ − φI)dx

︸ ︷︷ ︸

I

+

∫

T∗

▽(φ − φI)▽(φ − φI)dx

︸ ︷︷ ︸

II

.
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By Theorem 3.1, we can clearly see that,

(I) ≤ ‖▽(φ − φI)‖∞,T

∫

T\T∗

1 ·
√

▽(φ− φI)▽(φ − φI)dx

≤ c8h|T |‖▽(φ− φI)‖0,T\T∗

∥
∥D2φ

∥
∥
∞,T

,(42)

and

(II) ≤ ‖▽(φ− φI)‖∞,T∗

∫

T∗

1 ·
√

▽(φ − φI)▽(φ − φI)dx

≤ ‖▽(φ− φI)‖∞,T ‖▽(φ− φI)‖0,T∗ |T ∗|.(43)

Recall that Γ denotes the approximate line segment of the interface Γ̃ in an
element. Let M be an arbitrary point in Γ̃T and M⊥ be the orthogonal projection
ofM onto the line segment Γ. Based on the assumption (H3), Γ̃ can be represented
by a C2 function in each element. It has been shown in [28] that there exists a
constant c̃ such that ‖M −M⊥‖ < c̃h2. We can see clearly that,

|T ∗| =

∫

0

|Γ|

|Γ̃(s)− Γ(s)|ds ≤ c̃h3.(44)

Plugging (44) into (43), and using Theorem 3.1, we can get

(II) ≤ c̃h|T |
∥
∥D2φ

∥
∥
∞,T

‖▽(φ− φI)‖0,T∗ .(45)

Combining (42) and (45), we have

‖▽(φ− φI)‖0,T ≤ c̄h|T.|
∥
∥D2φ

∥
∥
∞,T

(46)

Finally, from (41) and (46), we have

‖φ− φI‖
2
1 ≤

(
∑

τ∈ℑh

‖▽(φ− φI)‖0,τ
2

)1/2

≤ c̄h

(
∑

τ∈ℑh

|τ |2

)1/2

‖φ− φI‖1
∥
∥D2φ

∥
∥
∞
.

here c̄ depends on max{ρ, c1/ρ} and |Ω|. As a result, the inequality (40) holds. �

Remark 3.3. Let u and uIh denote the weak solution and the IFE solution of the
interface problem (1) on the mesh ℑh. The a-priori error estimate

∥
∥u− uIh

∥
∥
0
≤ ch2 ‖u‖2 and

∥
∥u− uIh

∥
∥
β
≤ ch ‖u‖2

follows directly from the interpolation error estimates in theorem 3.2 and the Galerkin
orthogonal property.

To obtain posteriori error estimations, we follow Verfürth’s work in [4]. By using
the seminal inequalities, we know that







‖v‖0,τ ≤ γ1

∥
∥
∥ψ

1
2
τ v
∥
∥
∥
0,τ

,

‖ψτv‖1,τ ≤ γ2h
−1
τ ‖v‖0,τ ,

‖σ‖0,e ≤ γ3

∥
∥
∥ψ

1
2
e σ
∥
∥
∥
0,e
,

‖ψeσ‖1,τ ≤ γ4h
− 1

2
e ‖σ‖0,e ,

‖ψeσ‖0,τ ≤ γ5h
1
2
e ‖σ‖0,e .

(47)

where v and σ are arbitrary polynomials of degree k, Verfürth has proposed an
residual-based a-posteriori error indicator and shown that, for the finite element
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solutions on an interface fitting grid, the effective constant between the local lower
bound and the global upper bound is independent with the ratio ρ = β−/β+ of
the flux jump across the interface. The analysis can be extended to higher order
finite elements approximation as mentioned in [4]. In the following, we would like
to show that with minor modification on the Verfürth’s error indicator, the same
estimates hold for the IFE solution.

Let ς = u − uIh and ςπ = Iπς be the quasi-interpolant of ς in Sh(Ω). By the
theorem 2.1, there exist ςIπ ∈ SI

h(Ω) such that ςIπ(z) = ςπ(z) for all z ∈ ∪τ∈ℑ̆h
Nτ .

By the orthogonality of the IFE solutions, we have

‖u− uIh‖
2
β =

∫

Ω

β▽(u − uIh)▽(u − uIh)(48)

=

∫

Ω

β▽(u − uIh)
[
▽(ς − ςπ) + ▽ςIπ + ▽(ςπ − ςIπ)

]
dx

=

∫

Ω

β▽(u − uIh)▽(ς − ςπ)dx

︸ ︷︷ ︸

(III)

+

∫

Ω

β▽(u − uIh)▽(ςπ − ςIπ)dx

︸ ︷︷ ︸

(IV )

.

First, we estimate (III) by the following Verfürth argument:

(III) =
∑

τ∈ℑh

∫

τ

(−div(β▽u) + divβ▽uh)(ς − ςπ)dx

−
∑

e∈Eh

∫

e

[β∂huh]e (ς − ςπ)ds(49)

≤
∑

τ∈ℑh

µτ

∥
∥f + divβ▽uIh

∥
∥
0,τ
µ−1
τ ‖ς − ςπ‖0,τ

+
∑

e∈Eh

µ
1
2
e

∥
∥
[
β∂nu

I
h

]

e

∥
∥
0,e
µ
− 1

2
e ‖ς − ςπ‖0,e

≤ {
∑

τ∈ℑh

µ2
τ

∥
∥f + divβ▽uIh

∥
∥
2

0,τ
+
∑

e∈Eh

µe

∥
∥
[
β∂nu

I
h

]∥
∥
2

0,e
}

1
2

{
∑

τ∈ℑh

µ−2
τ ‖ς − ςπ‖

2
0,τ +

∑

e∈Eh

µ−1
e ‖ς − ςπ‖

2
0,e}

1
2 ,

here, µτ and µe are parameters to be determined. It has been shown in [4] that the
following inequalities

‖ς − ςπ‖0,τ ≤ c1hτβ
− 1

2
τ ‖ς‖β,ω̃τ

(50)

‖ς − ςπ‖0,e ≤ c2h
1
2
e β

− 1
2

e ‖ς‖β,ωe
,(51)

hold, where βe = max∂τ1∩∂τ2=e{βτ1, βτ2}. Combining the estimates (49)-(51), an
estimation of (III) independent with the diffusive coefficients can be derived for the

interface fitted grids by choosing µτ = hτβ
− 1

2
τ and µe = heβ

−1
e in (49). Therefore,

by partition the mesh ℑ̆h into a regular interface fitted mesh and applying the zero
flux jump condition on the interface Γ, we can easily show that the inequality (49)
implies

(III) ≤ cIII{
∑

τ∈ℑh

µ2
τ

∥
∥f + divβ▽uIh

∥
∥
2

0,τ
+
∑

e∈Eh

µe

∥
∥
[
β∂nu

I
h

]

e

∥
∥
2

0,e
}

1
2 ‖ς‖β ,(52)
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where, for the element τ ∈ ℑ̆h with τ = τ+ ∪ τ−,

µ2
τ

∥
∥f + divβ▽uIh

∥
∥
2

0,τ
= h2τ (β

+)−1
∥
∥f + divβ+

▽uIh
∥
∥
2

0,τ++h
2
τ (β

−)−1
∥
∥f + divβ−

▽uIh
∥
∥
2

0,τ−
,

for the edge e ∈ Ĕ with e = e+ ∪ e−, here e+ ⊂ ∂τ+ \ Γ and e− ⊂ ∂τ− \ Γ,

µe

∥
∥
[
β∂nu

I
h

]

e

∥
∥
2

0,e
= he(β

+)−1
∥
∥
[
β+∂nu

I
h

]

e+

∥
∥
2

0,e+
+ (heβ

−)−1
∥
∥
[
β−∂nu

I
h

]

e−

∥
∥
2

0,e−
.

Next, we estimate (IV ). By employing the usual homogenization arguments and
the inequalities (18) in the remark 2.2, we have

∥
∥ςπ − ςIπ

∥
∥
0,τ

≤ hτ
∥
∥ςπ − ςIπ

∥
∥
1,τ

≤ cI1hτ ‖▽ςπ‖0,τ

≤ cI1hτ

(

‖▽(ςπ − ς)‖0,τ + ‖▽ς‖0,τ

)

(53)

≤ cI1

(

‖ςπ − ς‖0,τ + β− 1
2hτ ‖ς‖β,τ

)

, by the inverse estimation,

≤ cI1hτβ
− 1

2 ‖ς‖β,ω̃τ
, by (50),

where the constant cI1 = O(max{ρ, 1/ρ}). Similarly, by invoking the trace inequal-
ity, it can be shown that the following inequality holds

(54)
∥
∥ςπ − ςIπ

∥
∥
0,e

≤ cI2h
1
2
e β

− 1
2

e ‖ς‖β,ωe
,

where cI2 = O(max{ρ, 1ρ}).

By following the same arguments in (49) and (52) with (50) and (51) replaced
by (53) and (54), we can conclude that the following estimate holds:

(55) (IV ) ≤ cIV {
∑

τ∈ℑh

µ2
τ

∥
∥f + divβ▽uIh

∥
∥
2

0,τ
+
∑

e∈Eh

µe

∥
∥
[
β∂nu

I
h

]

e

∥
∥
2

0,e
}

1
2 ‖ς‖β ,

where CIV = O(max{ρ, 1ρ}). The global a-posteriori error bound then follows from

the estimates (48), (52) and (55), and is stated in the following theorem.

Theorem 3.4. Let u and uIh be the solutions of the interface problem (1) in H1(Ω)
and SI

h(Ω), respectively, and fτ denote the piecewise constant of the L2-projection

of the function f on element τ . Let τ = τ+∪ τ−, for any element τ ∈ ℑ̆h, and ∂
+τ

and ∂−τ denote the sets of boundary line segments of the element τ that belong to
the sets ∂τ+ \Γ and ∂τ− \Γ, respectively. Assume that u has H2 regularity on each
element. There exist a constant cp independent with the diffusive coefficients such
that the following a-posteriori error bound holds.

(56)
∥
∥u− uIh

∥
∥
β
≤ cp{

∑

τ∈ℑh

[η2τ + h2τβ
−1
τ ‖f − fτ‖0,τ ]}

1
2 ,
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where

ητ =

{

h2τβ
−1
τ

∥
∥fh + divβτ▽u

I
h

∥
∥
2

0,τ
+

1

2

∑

e∈∂τ

heβ
−1
τ

∥
∥βτ

[
∂ne

uIh
]∥
∥
2

0,e

} 1
2

,

for τ ∈
◦

ℑh, and

ητ =






max{ρ,

1

ρ
}




∑

τ ′∈{τ+,τ−}

h2τ ′β−1
τ ′

∥
∥fh + divβτ ′▽uIh

∥
∥
2

0,τ ′
+

1

2

∑

e′∈{∂+τ,∂−τ}

he′β
−1
e′

∥
∥βe′

[
∂n

e′
uIh
]∥
∥
2

0,e′











1
2

,

for τ ∈ ℑ̆h, here βe′=

{
β+ if e′ ∈ ∂+τ
β− if e′ ∈ ∂−τ

.

4. Numerical examples

We now present some numerical results that support our theoretical results.
Errors in the L2 and H1 norms of the IFE solutions to an interface problem will
be given both on uniform triangular meshes and adaptively refined meshes. For
simplicity, we solve the problem (1) in the rectangular domain Ω = (−1, 1)×(−1, 1).

The interface curve Γ̃ is a circle with radius r0 = 0.5, which separates Ω into two
sub-domains Ω− and Ω+ with

Ω− = {(x, y) : x2 + y2 ≤ r0
2}.

The exact solution considered here is as following,

u(x, y) =







rα

β−
, if r ≤ r0,

rα

β−
+ (

1

β−
−

1

β+
)r0

α otherwise,
(57)

where r =
√

x2 + y2, α = 3 and β(x, y) =

{
β−, (x, y) ∈ Ω−

β+, (x, y) ∈ Ω+ .

The interface problems demonstrated here have diffusive coefficients:

βk(x, y) =

{
1, (x, y) ∈ Ω−

10k, (x, y) ∈ Ω+ , k = 1 · · · 3.

A sample uniform mesh and adaptive mesh over the domain Ω with the interface
curve Γ̃, together with a typical IFE solution on the adaptive mesh for the case

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) uniform mesh
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1

(b) adaptive mesh after

3 refinement
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0
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(c) Solution u on the

adaptive mesh

Figure 3
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h
β−

1

β+

1

= 10−1 β−

2

β+

2

= 10−2 β−

3

β+

3

= 10−3

1
8 3.689e-03 3.676e-03 4.164e-03
1
16 9.897e-04 9.998e-04 1.110e-03
1
32 2.700e-04 2.673e-04 3.370e-04
1
64 6.766e-05 6.318e-05 7.567e-05

Table 1. Errors for problems with various diffusive coefficients in
the L2 norm.

h
β−

1

β+

1

= 10−1 β−

2

β+

2

= 10−2 β−

3

β+

3

= 10−3

1
8 1.922e-01 4.677e-01 1.471e-00
1
16 8.314e-02 1.439e-01 4.390e-01
1
32 4.526e-02 8.726e-02 2.686e-01
1
64 2.222e-02 2.942e-02 8.394e-02

Table 2. Errors for problems with various diffusive coefficients in
the energy norm.

β+ = 1000 and β− = 1, are shown in figure 3. Tables 1 and 2 contains the errors
of the IFE solutions in the L2 norm and the energy norm, respectively, on uniform
meshes with grid size varies from 1

8 to 1
64 . Using linear regression, we can see that

the data in the table 1 obey

∥
∥u− uIh

∥
∥
0
≈ 0.25h1.97,

∥
∥u− uIh

∥
∥
0
≈ 0.27h2.00 and,

∥
∥u− uIh

∥
∥
0
≈ 0.28h1.96,

and the data in the table 2 obey

∥
∥u− uIh

∥
∥
β1

≈ 1.71h1.05,
∥
∥u− uIh

∥
∥
β2

≈ 6.89h1.30, and
∥
∥u− uIh

∥
∥
β3

≈ 6.75h1.00.

These results clearly indicate that the IFE solutions uIh converge to the exact so-
lution u with convergence rates O(h2) and O(h) in the L2 norm and the energy
norm, respectively, as mentioned in the remark 3.3.

|Nh|
∥
∥u− uIh

∥
∥
β

(
∑

τ∈ℑh
η2τ )

1/2

324 1.922e-01 4.117e-00
557 1.338e-01 2.316e-00
899 1.217e-01 1.756e-00
2516 6.281e-02 1.054e-00
3527 6.116e-02 7.515e-01
10482 3.097e-02 3.842e-01

0 0.5 1 1.5 2

x 10
4

0.02
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||
 u

−
u

hI
 |
| β

β+=10 and β−=1

o: error on uniform meshes
x: error on adaptive meshes

Figure 4. The errors in the energy norm and the a-posteriori
error bounds on adaptive meshes for the case β+ = 10 and β− = 1.
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|Nh|
∥
∥u− uIh

∥
∥
β

(
∑

τ∈ℑh
η2τ )

1/2

324 4.677e-01 1.136e+01
466 1.958e-01 1.538e+01
682 1.341e-01 2.280e-00
1507 5.495e-02 1.088e-00
4171 3.139e-02 5.201e-01
10243 2.188e-02 3.134e-01

0 0.5 1 1.5 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

number of points

||
 u

−
u

hI
 |
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Figure 5. The errors in the energy norm and the a-posteriori
error bounds on adaptive meshes for the case β+ = 100 and β− =
1.

|Nh|
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(
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τ∈ℑh
η2τ )

1/2

324 1.471e-00 1.592e+02
410 6.378e-01 1.659e+02
626 5.332e-01 8.339e-00
1066 2.057e-01 3.673e-00
1923 1.251e-01 1.572e-00
4021 4.105e-02 6.986e-01
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Figure 6. The errors in the energy norm and the a-posteriori
error bounds on adaptive meshes for the case β+ = 1000 and β− =
1.

Next, we compute the IFE solutions for the cases βk, k = 1 · · · 3 on adaptively
refined meshes. To generate the adaptive meshes, the heuristic maximum marking
strategy with threshold value 0.25 is employed. An element τ ∈ ℑh will be marked
for refinement if the associated error indicator value ητ > 0.25maxτ ′∈ℑh

ητ ′ . A
regular mesh refinement scheme divides each marked triangle into 4 child triangles.
Here, six levels of regular mesh refinement are performed on an initial 9× 9 mesh.
The tables on the left of the Figures 4, 5 and 6 contains the errors of the IFE
solutions in the energy norms and the a-posteriori error bounds defined in the
theorem 3.4 on the adaptive meshes. Comparisons of the errors on uniform meshes
and adaptive meshes are shown on the right in each figure. From these figures, we
can see that, on adaptive meshes, the accuracy of the IFE solutions is significantly
increased and much less grid points are needed for the IFE solutions to reach a
given error tolerance, when β+ ≫ β−. In addition, the ratios of (

∑

τ∈ℑh
η2τ )

1/2

to
∥
∥u− uIh

∥
∥
β
tends to an order of 10 for all three cases when the number of mesh

refinement is increased. This result suggests that the proposed a-posteriori error
bound in theorem 3.4 is indeed independent with the diffusive coefficients.
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5. Conclusions

In this paper, we have developed an adaptive mesh refinement technique for the
non-conforming immersed finite element (IFE) method. The underlying triangula-
tion and local mesh refinement does not need to fit the interface. The accuracy of
the solution and its gradient is significant improved with the local adaptive mesh
refinement. Some improved a-prior error estimate is also derived for the original
non-conforming IFE method along with an a-posteriori error estimation needed for
the adaptive mesh refinement technique.
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[1] I. Babuška and W. C. Rheinboldt. Error estimates for adaptive finite element computations.
SIAM J. Numer. Anal., 15:736–754, 1978.

[2] R. E. Bank and A. Weiser. Some a posteriori error estimators for elliptic partial differential
equations. Math. Comp., 44:283–301, 1985.

[3] J. W. Barrett and C. M. Elliott. Fitted and unfitted finite element methods for elliptic
equations with smooth interfaces. IMA J. Numer. Anal., 7:283–300, 1987.

[4] C. Bernardi and R. Verfürth. Adaptive finite element methods for elliptic equations with
non-smooth coefficients. Numer. Math., 85:579–608, 2000.

[5] J. H. Bramble and J. T. King. A finite element method for interface problems in domains
with smooth boundary and interfaces. Advances in Comp. Math., 6:109–138, 1996.

[6] Z. Chen and J. Zou. Finite element methods and their convergence for elliptic and parabolic
interface problems. Numer. Math., 79:175–202, 1998.

[7] RW Clough and JL Toucher. Finite element stiffness matrices for analysis of plate bending.
Proceeding of Conference on Matrix Methods in Structural Mechanics, WPAFB, Ohio, pages
515–545, 1965.

[8] A. Hansbo and P. Hansbo. An unfitted finite element method, based on nitsche’s method, for
elliptic interface problems. Comp. Methods Appl. Mech. Engrg., 191:5537–5552, 2002.

[9] R. J. Leveque and Z. Li. The immersed interface method for elliptic equations with discon-
tinuous coefficients and singular sources. SIAM J Numer Anal, 31:1019–1044, 1994.

[10] R. J. Leveque and Z. Li. Immersed interface method for stokes flow with elastic boundaries
for source tension. SIAM J Sci Comput, 18:709–735, 1997.

[11] Z. Li and K. Ito. The Immersed Interface Method-Numerical Solutions of PDEs Involving
Interface and Irregular Domains. SIAM Frontier Series in Applied Mathematics, FR33, 2006.

[12] Z. Li and J. Zou. Theoretical and numerical analysis on a thermo-elastic system with discon-
tinuities. J Comput Appl Math 91 (1998), 1-22., 91:1–22, 1998.

[13] R. H. Nochetto P. Morin and K. Siebert. Data oscillation and convergence of adaptive fem.
SIAM J. Numer. Anal., 38:466–488, 2000.

[14] A. Papastavrou and R. Verfürth. A posteriori error estimators for stationary convection-
diffusion problems: a computational comparison. Comput. Methods Appl. Mech. Engrg.,
189:449–462, 2000.

[15] T. Lin R. Ewing, Z. Li and Y. Lin. The immersed finite volume element methods for the
elliptic interface problems. Math Comput Simul, 50:63–76, 1999.

[16] M. C. Rivara. Algorithms for refining triangular grids suitable for adaptive and multigrid

techniques. Int. J. Numer. Methods Eng., 20:745–756, 1984.
[17] M. C. Rivara. Using longest-side bisection techniques for the automatic refinement of Delau-

nay triangulation. Int. J. Numer. Methods Eng., 40:581–597, 1997.
[18] S. Osher T. Hou, Z. Li and H. Zhao. A hybrid method for moving interface problems with

application to the hele-shaw flow. J Comput Phys, 134:234–252, 1997.
[19] T.Lin and J. Wang. An immersed finite element electric field solver for ion optics modeling.

Proceeding of AIAA Joint Propulsion Conference, Indianapolis, IN, AIAA:2002–4263, 2002.



ADAPTIVE MESH REFINEMENT FOR ELLIPTIC INTERFACE PROBLEMS 483

[20] T.Lin and J. Wang. An immersed finite element method for plasma particle simulation.
Proceeding of AIAA Aerospace Science Meeting, Reno, NV, AIAA:2003–0842, 2003.

[21] R. Verfürth. A review of posteriori error estimation and adaptive mesh-refinement techniques.
Wiley and Teubner, 1996.

[22] R. Verfürth. A posteriori error estimators for convection-diffusion equations. Numer. Math.,
80:641–663, 1998.

[23] A. Wiegmann and K. Bube. The immersed interface method for nonlinear differential equa-
tions with discontinuous coefficients and singular sources. SIAM J Numer Anal 35 (1998),
177-200., 35:177–200, 1998.

[24] B. Li X. Yang and Z. Li. The immersed interface method for elasticity problems with interface.
Dynamics of Continuous, Discrete and Implusive Systems, 10:783–808, 2003.

[25] Bo Li Yan Gong and Z. Li. Immersed interface finite element methods for elliptic interface
problems with nonhomogeneous jump conditions. SIAM J. Numer. Anal., 46:472–495, 2008.

[26] D. McTigue Z. Li and J. Heine. A numerical method for diffysive transport with moving
boundaries and discontinuities material properties. Int J Numer Anal Method Geomesh,
21:653–672, 1997.

[27] T. Lin Z. Li and X.Wu. New cartesian grid methods for interface problems using finite element
formulation. Numer. Math., 96:61–98, 2003.

[28] Y. Lin Z. Li, T. Lin and R. C. Roger. An immersed finite element space and its approximation
capability. Numerical Methods of PDEs, 20:338–367, 2004.

[29] O. C. Zienkiewicz and J. Z. Zhu. Adaptivity and mesh generation. Int. J. Numer. Methods.
Engrg., 32:783–810, 1991.

Department of Applied Mathematics, National Chiao-Tung University, 1001, Ta Hsueh Road,
Hsinchu 300, Taiwan

E-mail : ctw@math.nctu.edu.tw

Department of Mathematics, North Carolina State University, Raleigh, NC. 27695-8205, USA,
and and School of Mathematical Sciences, Nanjing Normal University, Nanjing, China

E-mail : zhilin@math.ncsu.edu

Center of mathematical modeling and Scientific computing, National Chiao-Tung University,
1001, Ta Hsueh Road, Hsinchu 300, Taiwan

E-mail : mclai@math.nctu.edu.tw


