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A level-set method is presented for solving two-phase flows with soluble surfactant. The 
Navier–Stokes equations are solved along with the bulk surfactant and the interfacial 
surfactant equations. In particular, the convection–diffusion equation for the bulk surfactant 
on the irregular moving domain is solved by using a level-set based diffusive-domain 
method. A conservation law for the total surfactant mass is derived, and a re-scaling 
procedure for the surfactant concentrations is proposed to compensate for the surfactant 
mass loss due to numerical diffusion. The whole numerical algorithm is easy for 
implementation. Several numerical simulations in 2D and 3D show the effects of surfactant 
solubility on drop dynamics under shear flow.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Surfactant molecules consist of a hydrophilic head and a hydrophobic tail thus typically like to stay at the fluid inter-
face. Surfactant can be adsorbed from the bulk fluid onto the interface and desorbed from the interface into the bulk fluid. 
Surfactant can have a significant effect on the fluid dynamics of two-phase flows by reducing the surface tension. The non-
uniform distribution of surfactant concentration also gives rise to the surface tension gradient, i.e., the so-called Marangoni 
effect. Surfactants are widely used in many important scientific and engineering applications. For example, they can be used 
to manipulate drops and bubbles in micro-channels [32], to synthesize micro or sub-micron size mono-dispersed drops and 
bubbles in micro-fluidic applications [3], to enhance oil recovery [20], and to help to cure pulmonary disease [11].

Many numerical methods were developed for simulations of two-phase flows with insoluble surfactant, including the 
front tracking method, the volume-of-fluid method, the level-set method, etc. Simulating the effect of soluble surfactant 
is more challenging due to the surfactant transport between the interface and the bulk fluid. Also the bulk surfactant 
concentration equation is defined on an evolving domain, which poses another numerical difficulty for the Cartesian grid 
method. If a body-fitted method is used, mesh generation may be difficult and time-consuming in 3D. In addition, an 
important issue is to resolve the problem of the surfactant mass loss due to the numerical diffusion. Small numerical error 
in each time step could be accumulated and could lead to large error in long time simulation. In the case of insoluble 
surfactant, total surfactant mass is conserved since surfactant does not move away from the interface. One can simply 
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re-scale the surfactant concentration to enforce the mass conservation. For soluble surfactant case, total surfactant mass in 
the computational domain may not be conserved due to the outflow boundary conditions.

Several numerical methods were developed for computing two-phase/interfacial flows with soluble surfactant, including 
the front-tracking method [19,42,21,4,7,12,22], and the phase-field method [18,34]. The front-tracking method is accurate 
but may be difficult to handle interfacial topological changes. The phase-field method, capable of capturing the topological 
change via an appropriate free energy functional, has become quite popular. In the phase-field method, however, it may 
be difficult to choose an appropriate interface thickness and the corresponding mesh width to resolve the interfacial re-
gion. Generally speaking, the mesh width needs to be chosen much smaller than the interface thickness in order to achieve 
numerical stability in evolving the reaction-diffusion equations for the phase-field function [6]. Very recently, a level-set ap-
proach was proposed in [5] for simulating two-phase flows driven by soluble surfactant. The level-set method [28] captures 
the interface by solving Hamilton–Jacobi equation, including the auxiliary re-initialization equation [33]. The advantages of 
the level-set method are relatively easy implementation and the capability of handling interfacial topological changes.

Previously we studied the level-set methods for computing two phase/interfacial flows with insoluble surfactant in [38,
40,41]. In this work, we present a level-set method for computing two-phase flows with soluble surfactant. The convection–
diffusion equation for bulk surfactant concentration with inner Robin type boundary condition needs to be solved in evolving 
irregular domains. Recently, several Cartesian grid methods were proposed for solving PDEs on irregular domains, in which 
a level-set function was used for representing the irregular boundary. The immersed interface method [16] may achieve 
second-order accuracy by embedding the elliptic equation into a larger regular domain, and introducing an augmented 
variable for jump condition across the physical boundary to account for the boundary condition. Standard finite-difference 
approximations for the derivatives at the irregular grid points adjacent to the physical boundary must be modified by adding 
some correction terms which involve the curvature of the physical boundary, and the values and derivatives of the jumps. In 
[10], a simple finite difference method was proposed for solving elliptic problems with the Dirichlet boundary condition on 
irregular domain. In the method, the standard finite difference scheme at the irregular grid points is modified by introduc-
ing a ghost value, which is determined by extrapolation utilizing a level-set function. For PDEs on irregular domains with 
Robin boundary conditions, a finite volume method was developed in [25,26]. In that method, special integration techniques 
utilizing a level-set function are used in the finite volume discretization of the PDE at the grid cells intersecting the bound-
ary. Numerical experiments demonstrated that the method achieves second-order accuracy for the diffusion equations, and 
first-order accuracy for the Stephan problem.

The diffusive-domain (DD) method for solving PDEs on irregular domains (see [15,14] and the references therein) has 
become popular in the community of phase-field method due to its simplicity. In this method, the irregular domain is em-
bedded into a larger regular domain and the original PDE is reformulated by including the original boundary condition via 
the indication function of the physical domain. First-order convergence of the DD method was proven in [9]. The phase-
field based DD method has been used in various applications, including cell biology [31], wave propagation in the heart 
[8], tissue engineering [13], micro-fluidics [2], and two-phase flows with soluble surfactant [34]. In this work we present a 
level-set based DD method for solving the bulk surfactant equation.

It appears that the issue of total surfactant mass conservation has not been well addressed in literature. The total surfac-
tant mass may not be conserved if surfactant is transported out of the computational domain. In this work, a conservation 
law for the total surfactant mass is derived. We simply re-scale the bulk and interfacial surfactant concentrations to com-
pensate for the surfactant mass loss caused by numerical diffusion.

The rest of paper is organized as follows. In Section 2, the complete governing equations of the interfacial flow with 
soluble surfactant are introduced and the non-dimensionalization of those equations are performed. We then derive a con-
servation law for the total surfactant mass and rewrite the bulk surfactant equation in level-set diffusive domain formulation. 
The numerical methods for solving the whole governing equations are described in Section 3 in details. Numerical results 
are shown in Section 4 while some concluding remarks are given in Section 5.

2. Mathematical formulation

We consider the dynamics of two immiscible incompressible fluids separated by the interface � and occupied by the 
drop �1 and the bulk fluid �2, respectively. In addition, there is a soluble surfactant existing along the interface � and in 
the bulk fluid �2 but not in the drop �1. The fluid interface � = ∂�1 is represented by the zero level set of a function 
φ as configured in Fig. 1. For simplicity, we assume that two fluids have the same density and viscosity, and the gravita-
tional force is neglected. (A more general two-phase flow with unmatched density/viscosity can be treated by the method 
described in [40].) The governing equations consist of the usual Navier–Stokes in � = �1 ∪ �2, the interfacial surfactant 
concentration equation on �, and the bulk surfactant equation in �2. The coupling between the fluid equations and surfac-
tant equations comes from the surface tension which depends on the interfacial surfactant concentration. The mathematical 
formulation is described as follows.

ρ

(
∂u

∂t
+ (u · ∇)u

)
+ ∇p = μ∇2u + F in �, (1)

∇ · u = 0, in �, (2)

u|∂� = ub, (3)
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Fig. 1. A configuration of the two-phase flow with soluble surfactant: φ is the level-set function, the outward normal vector n = ∇φ
|∇φ| points into the bulk 

fluid while n2 is the outward normal of the computational domain. The surfactant exists on the interface � and in the bulk fluid �2 but not in the drop �1.

where ρ is the fluid density, u the velocity field, p the pressure, μ the viscosity and F is the singular force term arising 
from the surface tension defined by

F = (∇sσ − σκn)δ(φ)|∇φ|. (4)

In above Eq. (4), σ is the surface tension, κ = ∇ ·n is the mean curvature, and δ is the Dirac delta function. Also, the surface 
gradient ∇s is defined as (I − n ⊗ n)∇ . As mentioned before, the surface tension σ is no longer a constant and depends on 
the interfacial surfactant concentration c via the Langmuir equation of state [27] as

σ(c) = σ0 + RT c∞ ln(1 − c

c∞
), (5)

where σ0 is the surface tension of a clean interface (no surfactant, c = 0), R and T are the constant of ideal gas and the 
absolute temperature, respectively, and c∞ is the interfacial surfactant concentration at the maximum packing.

The interfacial surfactant equation can be written as (e.g., [37,34])

∂c

∂t
+ u · ∇c − n · (∇u n)c = Ds∇2

s c + S, on �, (6)

where Ds is the surface diffusive coefficient and the surface Laplacian operator is defined by ∇2
s = ∇s · ∇s . The source term 

is S = raCs(c∞ − c) − rdc, where Cs is the bulk surfactant concentration just adjacent to the interface, ra and rd are the 
adsorption and desorption coefficients, respectively. The interfacial surfactant equation (6) is coupled with the following 
bulk surfactant equation due to the solubility,

∂C

∂t
+ u · ∇C = Db∇2C, in �2, (7)

Db
∂C

∂n
|� = S,

∂C

∂n2
|∂� = 0. (8)

The interface moves along with the fluid velocity leading to the convection equation of the level-set function

∂φ

∂t
+ u · ∇φ = 0. (9)

In order to keep the level-set function as a signed distance function, the re-initialization technique must be adopted by 
solving the following Hamilton–Jacobi (HJ) equation [33] as⎧⎨

⎩
∂φ

∂τ
+ S1(φ0)(|∇φ| − 1) = 0,

φ(x,0) = φ0(x),

(10)

where τ is a pseudo-time, φ0 is the level-set function obtained from solving Eq. (9), and S1(·) is the sign function. Readers 
who are interested in the level-set method and its numerical implementation and applications can refer to the book [23].
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2.1. Dimensionless equations

The density and the viscosity are made dimensionless by using ρ and μ as corresponding characteristics. The surface 
tension is re-scaled by σ0. The other physical quantities are made dimensionless by using the characteristic length L (drop 
radius), the characteristic speed U , the characteristic interfacial concentration c0, and the characteristic bulk surfactant 
concentration C0. Specifically, we define

σ := σ

σ0
, x := x

L
, c := c

c0
, C := C

C0
,

t := Ut

L
, u := u

U
, p := p

ρU 2
.

Therefore, the relevant dimensionless numbers are the Reynolds number Re, the capillary number Ca, the Biot number Bi, 
the adsorption number γ , the adsorption depth η, the surfactant coverage ζ , the surfactant elasticity E , the bulk Peclet 
number Pe, and the surface Peclet number Pes . These quantities are defined as follows.

Re = ρU L

μ
, Ca = μU

σ0
, Bi = rd L

U
,

γ = raC0

rd
, η = c0

LC0
, ζ = c0

c∞
,

E = RT c∞
σ0

, Pe = LU

Db
, Pes = LU

Ds
.

For simplicity, we still use the same notations for the same variables after the above non-dimensionalization. Similar non-
dimensionalization processes for the governing equations can be found in [34,7].

The dimensionless Navier–Stokes equations become

∂u

∂t
+ (u · ∇)u + ∇p = 1

Re
∇2u + 1

ReCa
F, in �, (11)

∇ · u = 0, in �, (12)

u|∂� = ub, (13)

where the singular force F has the same form as Eq. (4).
The dimensionless Langmuir equation of state becomes

σ(c) = 1 + E ln(1 − ζ c), (14)

while the dimensionless interfacial surfactant equation becomes

∂c

∂t
+ u · ∇c − n · (∇u n)c = 1

Pes
∇2

s c + S, on �, (15)

where the source term

S = Bi[γ Cs(
1

ζ
− c) − c]. (16)

Notice that, in practice, the interfacial surfactant concentration c is extended into a small neighborhood of the interface by 
solving the following HJ equation [43]

∂c

∂τ
+ S1(φ)n · ∇c = 0. (17)

The dimensionless bulk surfactant equation now becomes

∂C

∂t
+ u · ∇C = 1

Pe
∇2C, in �2, (18)

1

Pe

∂C

∂n
|� = ηS,

∂C

∂n2
|∂� = 0. (19)

In order to calculate the bulk surfactant adjacent to the interface Cs in the source term S , the following extension equation 
must be solved to extrapolate the bulk surfactant concentration C to the outside of the bulk fluid domain (or inside of the 
drop domain) [1]

∂C

∂τ
+ S1(φ − h)n · ∇C = 0, (20)

where h is the Eulerian mesh width used in numerical discretization.
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2.2. Conservation law for total surfactant mass

In this paper, the bulk fluid domain �2 evolves but with fixed outer boundary ∂�. Thus the Reynolds transport theorem 
[36] in �2 should be modified as in the following lemma.

Lemma 1. Let f (x, t) be any differentiable function on the evolving domain �2, then

d

dt

∫
�2

f (x, t)dx =
∫
�2

(
∂ f

∂t
+ ∇ · ( f u)

)
dx −

∫
∂�

f u · n2ds. (21)

Proof. Assume that f can be extended to the whole domain �, then

d

dt

∫
�2(t)

f (x, t)dx = d

dt

⎛
⎜⎝∫

�

f dx −
∫
�1

f dx

⎞
⎟⎠

=
∫
�

∂ f

∂t
dx −

∫
�1

(
∂ f

∂t
+ ∇ · ( f u)

)
dx

=
∫
�2

(
∂ f

∂t
+ ∇ · ( f u)

)
dx −

∫
�

∇ · ( f u)dx

=
∫
�2

(
∂ f

∂t
+ ∇ · ( f u)

)
dx −

∫
∂�

f u · n2dx.

In the above, the Reynolds transport theorem is applied to the integral in �1 since it is moving with the fluid. �
Theorem 1. Let the total surfactant mass in the bulk fluid �2 and on the interface � be

M(t) =
∫
�2

C dx + η

∫
�

c ds. (22)

Then the rate of change of M(t) is

dM(t)

dt
= −

∫
∂�

u · n2 C ds. (23)

Proof. For the bulk surfactant mass, we have

d

dt

∫
�2

C dx =
∫
�2

(
∂C

∂t
+ u · ∇C

)
dx −

∫
∂�

u · n2 C ds (using Lemma 1 and incompressibility condition)

=
∫
�2

1

Pe
∇2C dx −

∫
∂�

u · n2 C ds (by Eq. (18))

= 1

Pe

∫
∂�

∂C

∂n2
ds − 1

Pe

∫
�

∂C

∂n
ds −

∫
∂�

u · n2 C ds

= −η

∫
�

S ds −
∫
∂�

u · n2 C ds (by the boundary conditions in Eq. (19)). (24)

For the interfacial surfactant mass, we have

d

dt

∫
�

c ds =
∫
�

(
1

Pes
∇2

s c + S

)
ds =

∫
�

S ds (since � is closed). (25)

Combining equations of (24) and (25), we obtain Eq. (23). �
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2.3. Distributional bulk surfactant equation

A systematic derivation of the diffusive domain reformulation of PDEs on irregular domain was developed in [15]. For 
PDEs on an evolving domain, it is assumed that the whole domain is moving with the velocity; however, this is not the case 
for the present bulk surfactant equations (18)–(19) in which the domain �2 has a fixed outer boundary ∂�. To proceed, we 
introduce the indicator function of �2 denoted by H(φ), where H is the Heaviside function, so that

∇H · n = δ(φ)|∇φ|. (26)

Based on the diffusive domain idea in [15,34], the bulk surfactant equation (18) with the boundary condition (19) can be 
reformulated into a distributional equation defined in the whole computation domain � as

∂(HC)

∂t
+ u · ∇(HC) = 1

Pe
∇ · (H∇C) − ηS∇H · n, in �, (27)

with the Neumann boundary condition ∂C
∂n2

|∂� = 0. The reformulation for a more general convection–diffusion equation on 
an evolving domain will be given in Appendix.

3. Numerical algorithm

In practical calculations followed in [23], the Heaviside function H and the delta function δ are smoothed as the follow-
ing

Hε(x) =

⎧⎪⎨
⎪⎩

0, if x < −ε,

1
2 (1 + x

ε + 1
π sin(πx

ε )), if |x| ≤ ε,

1, if x > ε,

(28)

and

δε(x) =
{

1
2ε (1 + cos(πx

ε )), if |x| ≤ ε,

0, otherwise.
(29)

where we choose ε = 1.5h with h the mesh width. In the following, we shall present how to advance the solutions from 
time level n to n + 1.

3.1. Solving the Navier–Stokes equations

The projection method is used for Navier–Stokes equations (11) and (12). First we solve the intermediate velocity u∗ by 
the prediction step as

u∗ − un

�t
+ 3

2
((u · ∇)u)n − 1

2
((u · ∇)u)n−1 + ∇pn− 1

2 = 1

2Re
(∇2u∗ + ∇2un) + 1

ReCa
Fn+ 1

2 , (30)

with Dirichlet boundary condition u∗|∂� = ub . Now we project the intermediate velocity u∗ into the divergence free space 
by first solving Poisson equation for the auxiliary function ψ

�ψ = ∇ · u∗

�t
,

∂ψ

∂n2
|∂� = 0, (31)

and then update the velocity by

un+1 = u∗ − ∇ψ�t. (32)

Lastly, we update the pressure gradient by

∇pn+ 1
2 = ∇pn− 1

2 + ∇ψ. (33)

In the above, standard centered difference schemes are used for the spatial derivatives discretization, except that the third-
order WENO scheme is used for the nonlinear convection terms ((u · ∇)u)n and ((u · ∇)u)n−1.
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3.2. Solving the equations for the level-set convection, the re-initialization, the extensions and the local level-set technique

The level-set convection equation (9), the re-initialization equation (10), the extension equations (17) and (20) are all 
solved by the classical Eulerian method, i.e., third-order WENO scheme for the spatial discretization and third-order TVD RK 
scheme for the time marching (see, e.g., [40]).

Also the local level-set technique developed in [29] is used. More precisely, those equations (9), (10), (17) and (20) are 
solved in a small tube {|φ| ≤ w} containing the interface with different bandwidth w as 9h, 12h, 9h, respectively. Here h is 
the mesh width. The number of the pseudo-time iterations is chosen as 12. The interfacial concentration equation (15) is 
solved in a tube with bandwidth 8h.

3.3. Solving the convection–diffusion equation for bulk surfactant concentration

A modified Crank–Nicolson scheme is used to discretize Eq. (27) as

(HC)n+1 − (HC)n

�t
+ 3

2
(u · ∇(HC) + ηS (∇H · n))n

− 1

2
(u · ∇(HC) + ηS (∇H · n))n−1 = 1

2Pe
((∇ · (H∇C))n+1 + (∇ · (H∇C))n). (34)

Standard centered difference schemes are used for the spatial discretization, except that the third-order WENO scheme 
is used for the convection term u · ∇(HC). In practice, the coefficient H appearing in the diffusion term is made non-
degenerate by adding a small positive number 10−6 as in [15,7]. The resultant algebraic equation is solved by an algebraic 
multigrid solver.

3.4. Solving the convection–diffusion equation for interfacial surfactant concentration

We solve the interfacial surfactant equation (15) using the following Eulerian scheme developed earlier in [37]

cn+1 − cn

�t
= 1

2Pes

(
∇2cn+1 + ∇2cn

)
+ 3

2
An − 1

2
An−1, (35)

where

A = − 1

Pes
(n · (∇∇c)n + κn · ∇c) − u · ∇c + cn · (∇u)n + S. (36)

Again, the spatial derivatives are discretized using the standard central difference schemes, except the convection term u ·∇c
for which the third-order WENO scheme is used. Note that, Eq. (35) is solved only in a small neighborhood of the interface. 
An alternative for solving (15) is to use the semi-Lagrangian scheme in [30]. The semi-Lagrangian method can be more 
stable and more convenient for local mesh refinement.

3.5. Area/volume conservation and total surfactant mass conservation

Theoretically speaking, the drop area/volume must be conserved in an incompressible flow. However, it is known that 
using the level-set method to simulate two-phase flow problems might encounter non-neglected area/volume loss. There 
have been several procedures proposed for improving the area/volume conservation in level-set formulation, see e.g., [23,
38,35,17]. In this work, we implement the numerical technique used in [38] to improve the area/volume conservation if it 
is needed.

From Theorem 1 in Section 2.2, the total surfactant mass is not conserved mathematically during the time evolution 
unless 

∫
∂�

u ·n2Cds = 0. Typically numerical diffusion leads to artificial surfactant mass loss as can be seen in numerical test 
in Section 4.3. Although the error is small at each time step, it can be accumulated and leads to inaccurate computational 
result eventually. Here, we re-scale the bulk and interfacial surfactant concentrations to compensate for the numerical 
diffusion. More precisely speaking, at each time step we multiply both the interfacial and the bulk concentrations by a 
re-scaling parameter α which is determined by the surfactant conservation law Eq. (23). The re-scaling procedure is as 
follows. At each time step tn , after solving corresponding equations (15) and (18), we obtain both the interfacial surfactant 
concentration cn and the bulk surfactant concentration Cn , respectively. Then we compute the numerical total surfactant 
mass

M̃(tn) =
∫

Cndx + η

∫
cnds =

∫
H(φn)Cndx + η

∫
cnδ(φn)|∇φn|dx. (37)
�2 � � �
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Table 1
Errors and convergence rates at T = 0.5, �t = h/2.

h e∞ Rate e2 Rate

0.04 9.58E−2 1.68E−1
0.02 5.22E−2 0.88 7.60E−2 1.14
0.01 2.73E−2 0.94 3.62E−2 1.07
0.005 1.40E−2 0.96 1.77E−2 1.03

However, according to the conservation law of Theorem 1, the actual total mass should be

M(tn) = M(tn−1) −
tn∫

tn−1

∫
∂�

u · n2Cdsdt, (38)

where the time integral is calculated by the trapezoidal rule. Note that, we have M(t0) = M̃(t0). Therefore, we can compute 
the re-scaling number α by

α = M(tn)

M̃(tn)
, (39)

and then reset the surfactant concentrations Cn := αCn , and cn := αcn , so that the conservation law is numerically enforced.

4. Numerical results

In this section, we first check the accuracy of the level-set based diffusive domain (DD) method for the convection–
diffusion equation on irregular domains. We then check the accuracy of the whole numerical algorithm described in previous 
section for the two-phase flows with soluble surfactant problem, and show the efficiency of the re-scaling procedure for 
surfactant mass conservation. Through various numerical simulations, we show the effect of surfactant solubility on fluid 
dynamics, and the effects of different dimensionless parameters. Unless specified otherwise, we consider the problem of a 
drop in the bulk fluid under shear flow; i.e., the velocity boundary condition is set to be ub = (y, 0)T in 2D or ub = (z, 0, 0)T

in 3D.

4.1. Accuracy check for the DD method

We first present the numerical accuracy check for the level-set based diffusive-domain method for solving the 
convection–diffusion equation on irregular domains.

Example 1. Let us first consider a two-dimensional computational domain � = (−2, 2)2 in which an elliptical domain 
�1 = {φ < 0} represented by the level-set function φ(x) = √

x2 + (y/1.5)2 − 1 initially is moving with constant velocity 
u = (1, 0)T . The convection–diffusion equation is defined on the exterior domain �2 = � \ �1 as

∂C

∂t
+ u · ∇C = ∇2C + f , (40)

with Robin boundary condition ∂C
∂n = (C − g) on the interface � = ∂�1. Here we choose the analytic solution C(x, y, t) =

e−t sin x sin y so that the source terms f and g can be computed accordingly. Using the diffusive-domain formulation de-
veloped in the Appendix, Eq. (40) can be reformulated as

∂(HC)

∂t
+ u · ∇(HC) = ∇ · (H∇C) + H f − (C − g)∇H · n, in �. (41)

The outer boundary condition is given as the exact Neumann boundary condition.
Although the domain �1 is just shifting, we still solve the level-set equation and the re-initialization equation by using 

the third-order WENO scheme for spatial discretization and the third-order TVD RK scheme for time stepping. Table 1 shows 
the mesh refinement results in both L∞ and L2 norms at time T = 0.5. Here h is the spatial mesh width while the time 
step size is chosen as �t = h/2. One can immediately see that the present DD method has clean first-order accuracy in both 
norms.

Example 2. We now consider a three-dimensional domain � = (−2, 2)3 in which an irregular domain �1 = {φ < 0} moves 
with constant velocity u = (1, 0, 0)T . The initial interface is represented by the level-set function φ =
min(

√
(x − 0.7 − t)2 + y2 + z2 − 0.5,

√
(x + 0.7 − t)2 + y2 + z2 − 0.5). As in Example 1, we solve the same equation (40)

in the domain �2 = � \ �1. Here we choose the exact solution C(x, y, z, t) = e−t cos(πx) cos(π y) cos(π z). The inner and 
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Table 2
Errors and convergence rates at T = 0.4, �t = h/2.

h e∞ Rate e2 Rate

0.16 1.17E−1 1.45E0
0.08 7.47E−2 0.65 5.78E−1 1.33
0.04 3.43E−2 1.12 2.55E−1 1.18
0.02 1.77E−2 0.95 1.19E−1 1.01

Fig. 2. (a) the time evolutionary plots of the maximum distance from the interface to the drop center dh(t); (b) the time evolutionary plot of the estimated 
convergence rate r(t); (c) the time evolutionary plots of relative area loss of the drop; (d) the time evolutionary plots of the re-scaling parameter α − 1.

the outer boundary conditions are of the same Robin and Neumann type, respectively, as in Example 1. Table 2 shows the 
mesh refinement results computed up to time T = 0.4 with the time step �t = h/2. Again, the present DD method achieves 
first-order accuracy in both L∞ and L2 norms.

4.2. A convergence study for the global numerical algorithm

In this subsection, we perform a convergence study for the global numerical algorithm proposed in previous section. 
Let us put a drop with radius L = 1 at the center of the computational domain � = (−5, 5) × (−2, 2) under shear flow 
(ub = (y, 0)T ) initially. The initial bulk surfactant concentration and the interfacial surfactant concentration are both set to 
be uniformly as C(x, 0) ≡ 1 and c(s, 0) ≡ 1. The dimensionless parameters are chosen as Re = 1, Ca = 0.5, E = 0.2, ζ = 0.3, 
Bi = 0.1, Pe = Pes = 10, γ = 0.1, η = 0.1.

Under the shear flow, the drop is stretched along the flow direction. Due to the lack of exact solution, we choose the 
maximum distance from the interface to the drop center as our measuring quantity. The computations are run up to T = 1
with three different mesh widths. The time step is chosen as �t = h/8. Let us denote by dh(t) the maximum distance from 
the interface to the drop center at time t using the mesh width h, then the estimated rate of convergence r(t) can be 
computed by the following formula

r(t) = log2
|d4h(t) − d2h(t)|

. (42)
|d2h(t) − dh(t)|
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Fig. 3. Comparison of relative change of total surfactant mass with and without the re-scaling procedure.

Fig. 2(a) shows the time evolutionary plots of the maximum distance from the interface to the drop center dh(t) with 
three different mesh widths h = 0.01, 0.02, 0.04. As expected, the drop stretches so the maximum distance increases as time 
evolves. In addition, one can see the convergence behavior as we zoom in the plots locally. Fig. 2(b) shows the evolutionary 
plot of r(t). One can see the estimated convergence rate for the maximum distance oscillates around one so the overall 
method is roughly first-order accurate. Suppose that the error has the form |dh(t) − d(t)| = βhr , where d(t) is the exact 
maximum distance. The oscillation may indicate that coefficient β is not a constant but depends on h and/or t . We also 
show how the relative area of the drop A(t)−A(0)

A(0)
changes as time evolves in Fig. 2(c), here A(t) is the area of the drop region 

at time t . One can see that the relative area loss for the cases of h = 0.01, 0.02 are within 0.04% and certainly the finer 
mesh preserves the drop area better. Instead of plotting the re-scaling parameter α for the surfactant mass conservation, 
we plot the difference of α from one. Fig. 2(d) shows the time evolutionary plots of α − 1 for the cases of three different 
meshes. Although it is hard to distinguish in details, one can see that the magnitudes of α − 1 are all within 3 × 10−4

meaning that only very small correction for the bulk and interfacial surfactant concentrations are needed at each time step 
in order to preserve the total surfactant mass numerically. Therefore, our method preserves the drop area and the total 
surfactant mass pretty well.

4.3. Effect of re-scaling surfactant procedure

In this test, we investigate the effect of re-scaling bulk and interfacial surfactant as described in Subsection 3.5. Again, 
we put a drop with radius L = 1 at the center of the computational domain � = (−5, 5) × (−2, 2) under shear flow initially. 
The initial interfacial surfactant concentration is set to be c(s, 0) ≡ 1 while the bulk surfactant concentration is C(x, 0) ≡ 1
only in the region of 0 ≤ φ ≤ 0.5 and zero elsewhere. The other parameters are all the same as in previous subsection except 
the absorption depth η = 1. The mesh width is h = 0.04 and the time step size is �t = h/8. Fig. 3 shows the comparison of 
relative change of total surfactant mass M(t)−M(0)

M(0)
. One can immediately see that with re-scaling, the total surfactant mass 

conserves well while without the re-scaling, the surfactant mass will lose gradually. The plot of the magnitude of re-scaling 
parameter α − 1 is similar to those in previous subsection so we omit here.

4.4. Effect of varied Biot number

In this test, we study the desorption effect of the interfacial surfactant by varying the Biot number. The problem setup 
and dimensionless parameters are almost the same as in Subsection 4.3 except a slightly small capillary number Ca = 0.3
is used since we like to measure the drop steady shape quantitatively. To see the desorption effect, we choose the initial 
interfacial surfactant concentration to be c(s, 0) ≡ 1 while the bulk surfactant concentration is C(x, 0) ≡ 0.1 only in the 
region of 0 ≤ φ ≤ 0.5 and zero elsewhere. The computations are run up to time T = 5.

The shape of drop deformation can be measured by the deformation factor defined as D = L−B
L+B , where L and B are the 

maximum and minimum distance from the interface to drop center, respectively. Fig. 4 shows the time plots of the drop 
deformation factor, the interfacial surfactant mass, and the bulk surfactant mass for varied Biot number. Here, Bi = 0 corre-
sponds to the case of insoluble surfactant (no absorption or desorption occur). One can see that as Biot number increases, 
the desorption of the surfactant from the interface to the bulk increases as well which decreases the interfacial surfactant 
mass more significantly as we can see from Fig. 4 (b). Correspondingly, in Fig. 4 (c), the increase of the bulk surfactant mass 
becomes more significantly as Biot number increases at initial stage. However, after some time, the bulk surfactant mass 
begins to decrease due to the fact that the surfactant is transported out of the computational domain. Since the drop is 
stretched, the deformation factor increases as time evolves, and the smaller Biot number is, the larger deformation will 
be, as shown in Fig. 4 (a). Fig. 5 shows the detailed interfacial quantities at time T = 5; namely (a) interfacial surfactant 
concentration, (b) surface tension, (c) Marangoni force, and (d) capillary force, for different Biot numbers. As you can see 
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Fig. 4. The time evolutionary plots for varied Biot number. (a) drop deformation factor; (b) the interfacial surfactant mass; (c) the bulk surfactant mass. 
Bi = 0 (solid line), Bi = 0.1 (dotted line), Bi = 0.5 (dash-dotted line), Bi = 1 (dashed line).

from Fig. 5 (a), the interfacial surfactant concentration decreases as Bi decreases which confirms the interfacial surfactant 
mass behavior shown in Fig. 4 (b). Meanwhile, as Bi increases, the surface tension gradient becomes smaller, and thus less 
change of Marangoni force which results in less drop deformation. The capillary force remains largely unchanged since it is 
dominated by the interface curvature.

4.5. Effects of varied adsorption number γ and adsorption depth η

In this test, we study the effects of varied adsorption number γ and adsorption depth η. We use the same problem 
setup and dimensionless parameters as in previous Subsection 4.4 except with fixed Bi = 0.1 and varied γ = 0.1, 0.3, 1
and η = 0.1, 0.5, 1, respectively. Moreover we consider an unsteady case, so we choose Ca = 0.5. Fig. 6 shows the time 
evolutionary plots of interfacial surfactant mass (top), bulk surfactant mass (middle) and drop deformation factor (bottom). 
The computations are run up to time T = 6. Since the interfacial concentration is higher than the bulk concentration initially, 
the interfacial desorption always occurs as you can see the interfacial surfactant mass decreases as time evolves. For varied 
adsorption number case, the higher γ has less decrease in the interfacial surfactant mass and less increase in the bulk 
surfactant mass (up to some time) as you can see from Fig. 6 (a) and (c) which is not surprising from the physical point of 
view. On the other hand, for the varied adsorption depth case, the higher η has more decrease in the interfacial surfactant 
mass and more increase in the bulk surfactant mass (up to some time) as you can see from Fig. 6 (b) and (d). Nevertheless, 
those variations on γ and η affect slightly on the drop deformation factor as shown in Fig. 6 (e) and (f), respectively.

4.6. Effect of varied bulk Peclet number Pe

In this test, we study the effect of varied bulk Peclet number by fixing other parameters used in Subsection 4.2. In 
order to have better resolution for the case of high Peclet number, we choose the mesh width h = 0.02 and the time step 
size �t = h/16. To see the bulk surfactant diffusion effect, we choose the initial interfacial surfactant concentration to be 
c(s, 0) ≡ 0.1 while the bulk surfactant concentration is C(x, 0) ≡ 1 only in the region of 0 ≤ φ ≤ 0.5 and zero elsewhere. 
The computations are run up to time T = 8.
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Fig. 5. Interfacial quantities versus arc-length at T = 5. (a) interfacial surfactant concentration; (b) surface tension; (c) Marangoni force; (d) capillary force. 
Bi = 0 (solid line), Bi = 0.1 (dotted line), Bi = 0.5 (dash-dotted line), Bi = 1 (dashed line).

Drop deformation for different bulk Peclet number is shown in Fig. 7 (a). It seems to be insensitive to Pe, but from the 
locally zooming plot, it increases slightly as Pe increases. Fig. 7 (b) and (c) show the Marangoni force and the source term S
at time T = 8, respectively. One can clearly see that as P e increases, the magnitudes of the Marangoni force and source term 
increases as well. However, the patterns of S are similar for Pe = 0.1, 1, 10 but is quite different for the case of Pe = 1000. 
In the latter case, the source term reaches a positive maximum at one side of each drop tip and then abruptly jumps to a 
negative minimum at the adjacent side of the tip which means the surfactant is desorbed from the interface to bulk on one 
side and meanwhile it is absorbed from the bulk to interface on the other side.

Fig. 8 shows the corresponding contour plots of bulk surfactant concentration at T = 8 for different Peclet number. With 
small Pe = 0.1, the bulk surfactant spreads quickly and almost uniformly into the whole bulk domain. For large Pe = 1000, 
a thin layer of bulk surfactant concentration develops near the interface as observed in Fig. 8. In this case, surfactant is 
transported away from the drop in drop-tip direction. For even larger Pe, it is infeasible to resolve this boundary layer by 
mesh refinement. Singular perturbation analysis should be included in the numerical algorithm, see [4].

4.7. Interaction of two drops in 3D

We now are ready to perform three-dimensional simulations. In the first test, we study the drops interaction under shear 
flow and see the effect of surfactant solubility. We consider two identical drops with unit radius centered at (1.4, 0.0, −0.8)

and (−1.4, 0.0, 0.8) in computational domain � = (−5, 5) × (−2, 2) × (−3, 3). So the initial two level-set functions are 
φ1 = √

(x − 1.4)2 + y2 + (z + 0.8)2 −1 and φ2 = √
(x + 1.4)2 + y2 + (z − 0.8)2 −1, respectively. If the drops are covered with 

soluble surfactant, the initial interfacial surfactant concentration is set to be c(s, 0) ≡ 1 while the initial bulk concentration 
is C(x, 0) ≡ 0.5 in the region {0 ≤ φ1 ≤ 0.5} ∪ {0 ≤ φ2 ≤ 0.5} and is zero elsewhere. The dimensionless parameters are 
Re = 0.4, Ca = 0.2, γ = 0.1, η = 0.01, E = 0.2, ζ = 0.3, Pes = Pe = 10. We perform numerical simulations for different Biot 
number Bi = 0, 0.01, 0.1, 1 to see the effect of surfactant solubility. For comparison purpose, we also run the simulation of 
the clean interface which has no surfactant at all. We choose the mesh width h = 0.04 and the time step size �t = h/16, 
and run the simulations up to time T = 5.

It is known that the surfactant enhances drops bouncing and prevents coalescence as shown in [39,24]. Under the 
shear flow, two drops will first approach each other, then pass around, and finally depart away. Fig. 9 shows the time 
evolutionary plots of the minimum distance between two drops. One can see that the distances between two drops with 
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Fig. 6. The time evolutionary plots of interfacial surfactant mass (top), bulk surfactant mass (middle) and drop deformation factor (bottom) for varied γ
(left column) and varied η (right column).

surfactant are always larger than the one of without surfactant which shows the fact that surfactant prevents drops co-
alescence. When the two drops are getting close, the Marangoni force creates an inflow near the contact region, which 
helps to separate those drops, see, e.g., [39] as well. As the Biot number increases, the minimum distance decreases due 
to the fact that with larger Bi, more interfacial surfactant is desorbed into the bulk fluid leading to weaker Marangoni 
force.

The drop morphology together with the interfacial concentration for the case of Bi = 0.01 at different times are shown 
in Fig. 10, the corresponding bulk surfactant concentration on xz-plane is presented in Fig. 11.

4.8. Droplet breakup in 3D

In this simulation, we study the drop breakup behavior under shear flow. Here, we compare three different cases; namely, 
a clean drop (without surfactant), a drop with insoluble surfactant (Bi = 0) and with soluble surfactant case (Bi = 0.1). We 
put the drop with unit radius at the center of the computational domain � = (−7, 7) × (−2, 2) × (−2, 2) initially so the 
initial level-set function φ = √

x2 + y2 + z2 −1. If the drop is covered with soluble surfactant, the initial interfacial surfactant 
concentration is set to be c(s, 0) ≡ 1 while the initial bulk concentration is C(x, 0) ≡ 0.5 in the region of {0 ≤ φ ≤ 0.5} and 
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Fig. 7. The plots for varied bulk Peclet number. (a) drop deformation factor; (b) Marangoni force; (c) the source term S . Pe = 0.1 (solid line), Pe = 1 (dotted 
line), Pe = 10 (dash-dotted line), Pe = 1000 (dashed line).

Fig. 8. Contour plot of bulk surfactant concentration at T = 8. Pe = 0.1 (top left), Pe = 1 (top right), Pe = 10 (bottom left), Pe = 1000 (bottom right). Thin 
bulk surfactant boundary layer forms along the drop sides for Pe = 1000. (For interpretation of the colors in this figure, the reader is referred to the web 
version of this article.)

is zero elsewhere. The dimensionless parameters are Ca = 0.4, Re = 0.4, E = 0.2, ζ = 0.3, Pes = 10, Pe = 10, γ = 0.8, 
η = 0.01. We choose the mesh width h = 0.04 and the time step size �t = h/12, and run the simulations up to time 
T = 27.
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Fig. 9. The time evolutionary plots of the minimum distance between two drops under shear flow. Bi = 0 (insoluble surfactant, red dotted), Bi = 0.01 (black 
dashed), Bi = 0.1 (green dashed), Bi = 1 (cyan dashed), without surfactant (blue solid). (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

Fig. 10. Morphology of drops (with soluble surfactant, Bi = 0.01) together with interfacial surfactant concentration at different times. (For interpretation of 
the colors in this figure, the reader is referred to the web version of this article.)

Due to the shear stress, the drop is elongated. Theoretically, there is a critical capillary number Ca∗ beyond which the 
drop eventually breaks up, and under which the drop reaches a steady state. Simulation results for the clean drop and drop 
with soluble surfactant are given in Fig. 12 and Fig. 13, respectively. For the soluble surfactant case, the dynamics of the 
bulk concentration is shown in Fig. 14. After some time of elongation, the drop gradually evolves into three main bodies 
connected with thin necks. Then the necks become thinner and thinner until the drop breaks up.

It is clearly observed that the surfactant-laden drop breaks up at earlier time than the clean case. This is because the 
non-uniform distribution of surfactant leads to larger deformation which thins the drop more than the clean case. Also the 
drop with soluble surfactant breaks up later than drop with insoluble surfactant (not shown here) due to the desorption 
of surfactant from the interface to the bulk which reduces the effect of surfactant. These simulations demonstrate the 
capability of the level-set method in handling topological changes. Similar results were presented in [34] for the phase-field 
method where the velocity periodic boundary conditions are used.

5. Conclusion

A level-set method for computing two-phase flows with soluble surfactant is presented in this paper. Firstly, we develop 
a level-set based diffusive domain method for solving the bulk surfactant equation on complex domains with appropriate 
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Fig. 11. Bulk surfactant concentration on xz-plane at different times. (For interpretation of the colors in this figure, the reader is referred to the web version 
of this article.)

Fig. 12. Morphology of the clean drop at different times.

handling the adsorption/desorption of surfactant between the interface and bulk fluid. Conservation law for total surfac-
tant mass is derived and an efficient re-scaling procedure for the bulk/interfacial surfactant concentrations is proposed to 
compensate for the surfactant mass loss due to the numerical diffusion. The whole numerical algorithm is easy to imple-
ment and has been tested for several numerical simulations in two- and three-dimensional spaces. In particular, numerical 
simulations show the surfactant solubility can have significant effects on the drop dynamics under shear flow. The present 
level-set method is capable of performing 3D drop breakup simulations. We shall use the present code to study more 
realistic applications in the future work.
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Fig. 13. Morphology of the drop (with soluble surfactant) together with interfacial surfactant concentration at different times. (For interpretation of the 
colors in this figure, the reader is referred to the web version of this article.)

Fig. 14. Bulk surfactant concentration on xz-plane at the corresponding times for the soluble surfactant case. (For interpretation of the colors in this figure, 

the reader is referred to the web version of this article.)
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Appendix

In this appendix, we modify the derivation of the diffusive domain formulation for solving PDEs in complex domains 
in [15] by taking into account that the outer boundary is fixed and replacing the phase-field function by the level-set 
function.

We consider the following general convection–diffusion equation on an evolving domain as

∂C

∂t
+ u · ∇C = ∇ · (A∇C) + f , in �2(t), (43)

where A is a positive definite matrix, and �2 = � \�1 as illustrated in Fig. 1. The interface � and the domain �1 is moving 
with the prescribed velocity u. The inner boundary condition (on �) for above equation is a Robin type as

A∇C · n|� = β(C − g), β > 0 (44)

while the outer boundary condition on ∂� is arbitrary.
Assume that f and g are extended so that they are defined on �. Let ψ(x, t) be a test function. Multiplying the test 

function on Eq. (43) and integrating in the domain �2, we obtain

∫
�2

ψ

(
∂C

∂t
+ u · ∇C

)
dx =

∫
�2

ψ (∇ · (A∇C) + f )dx. (45)

The first term becomes∫
�2

ψ
∂C

∂t
dx =

∫
�2

(
∂(ψC)

∂t
− C

∂ψ

∂t

)
dx

= d

dt

∫
�2

ψCdx −
∫
�2

(
∇ · (ψCu) + C

∂ψ

∂t

)
dx +

∫
∂�

ψCu · n2ds

= d

dt

∫
�2

ψCdx +
∫
�

ψCu · nds −
∫
�2

C
∂ψ

∂t
dx, (46)

where Lemma 1 and the divergence theorem are used in above equalities.
The third term is∫

�2

ψ∇ · (A∇C)dx =
∫
�2

(∇ · (ψ A∇C) − ∇ψ · (A∇C))dx

= −
∫
�

ψ A∇C · nds +
∫
∂�

ψ A∇C · n2ds −
∫
�2

∇ψ · (A∇C)dx

= −
∫
�

ψ A∇C · nds +
∫
∂�

ψ A∇C · n2ds −
∫
�

∇ψ · (H A∇C)dx

= −
∫
�

ψ A∇C · nds +
∫
∂�

ψ A∇C · n2ds −
∫
∂�

ψ A∇C · n2ds

+
∫
�

ψ∇ · (H A∇C)dx = −
∫
�

ψ A∇Cnds +
∫
�

ψ∇ · (H A∇C), (47)

where H is the Heaviside function, so it is the indicator function of �2.
Integrating with respect to time in Eq. (45), we have

T∫
0

∫
�2

ψ

(
∂C

∂t
+ u · ∇C

)
dxdt =

T∫
0

∫
�2

ψ (∇ · (A∇C) + f )dxdt (48)

Integrating the time in last term of Eq. (46), we obtain
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T∫
0

∫
�2

C
∂ψ

∂t
dxdt =

T∫
0

∫
�

HC
∂ψ

∂t
dxdt =

T∫
0

∫
�

(
∂(HψC)

∂t
− ψ

∂(HC)

∂t

)
dxdt

=
∫

�2(T )

Cψdx −
∫

�2(0)

Cψdx −
T∫

0

∫
�

ψ
∂(HC)

∂t
dxdt. (49)

Plugging Eqs. (46), (47) and (49) into Eq. (48) and after some algebraic manipulation, we have

T∫
0

∫
�

ψCu · ndsdt +
T∫

0

∫
�

ψ
∂(HC)

∂t
dxdt +

T∫
0

∫
�

ψu · ∇Cdxdt

= −
T∫

0

∫
�

ψ A∇C · ndsdt +
T∫

0

∫
�

ψ∇ · (H A∇C)dxdt +
T∫

0

∫
�

Hψ f dxdt. (50)

Now, we rewrite the integrals on � as integrals in � using the δ function as

T∫
0

∫
�

ψCu · nδ(φ)|∇φ|dxdt +
T∫

0

∫
�

ψ
∂(HC)

∂t
dxdt +

T∫
0

∫
�

ψu · ∇Cdxdt

= −
T∫

0

∫
�

ψ A∇C · nδ(φ)|∇φ|dxdt +
T∫

0

∫
�

ψ∇ · (H A∇C)dxdt +
T∫

0

∫
�

Hψ f dxdt. (51)

Since the test function ψ is arbitrary, the above equation becomes

∂(HC)

∂t
+ H(u · ∇C) + C(u · n)δ(φ)|∇φ| = ∇ · (H A∇C) + H f − (A∇C · n)δ(φ)|∇φ|, in �. (52)

Using the fact ∇H · n = δ(φ)|∇φ| and combining the second and third terms, we can formally write the equation as

∂(HC)

∂t
+ u · ∇(HC) = ∇ · (H A∇C) + H f − (A∇C · n)∇H · n, in �. (53)

Together with the outer boundary condition, Eq. (53) forms the diffusive-domain formulation of the original equation (43)
in �2.
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