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Abstract

In this paper, we present an immersed boundary (IB) method to simulate a dry

foam, i.e., a foam in which most of the volume is attributed to its gas phase. Dry

foam dynamics involves the interaction between a gas and a collection of thin liquid-

film internal boundaries that partition the gas into discrete cells or bubbles. The

liquid film boundaries are flexible, contract under the influence of surface tension,

and are permeable to the gas, which moves across them by diffusion at a rate

proportional to the local pressure difference across the boundary. Such problems

are conventionally studied by assuming that the pressure is uniform within each

bubble. Here, we introduce instead an IB method that takes into account the non-

equilibrium fluid mechanics of the gas. To model gas diffusion across the internal

liquid-film boundaries, we allow normal slip between the boundary and the gas at

a velocity proportional to the (normal) force generated by the boundary surface

tension. We implement this method in the two-dimensional case, and test it by veri-

fying the von-Neumann relation, which governs the coarsening of a two-dimensional

dry foam. The method is further validated by a convergence study, which confirms

its first-order accuracy.
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1 Introduction

Liquid foams appear in daily life as the soap froth in a washing bowl or the

head on a pint of bear. A foam is a gas-liquid mixture in which the volume of

liquid is considerably smaller than that of the gas. Usually, in a “wet” foam

(for which the volume of fraction of liquid is about 10%− 20%), the bubbles

are approximately spherical; while in a “dry” foam (for which the volume of

fraction of liquid is less than 10%), the bubbles are more nearly polyhedral in

shape. One interesting phenomenon, which is called diffusive coarsening, is the

evolution in bubble size and topological structure that occurs as a result of gas

exchange between bubbles [1]. This gas exchange occurs by diffusion through

the thin liquid films that separate one bubble from another. The diffusive flux

of gas through such a film is proportional to the pressure difference between

the two bubbles that are separated by that film.

In 1952, von Neumann [2] showed that the rate of change of the area of a given

bubble (a curved polygon) in a two-dimensional dry foam is independent of

bubble size and solely dependent on the number of walls (or edges) of the

bubble. We give a derivation of von Neumann’s result here, since it plays

such a large role in the validation of our methodology, and it is therefore

important to understand under what conditions the von Neumann relation

can be expected to apply. The derivation is based on the fact that the net

rate of outward diffusion of gas per unit length through a wall of the (two-

dimensional) bubble is proportional to the pressure difference across that wall,

which in turn is equal to the product of the surface tension γ and the curvature

κ, where κ is considered positive if the wall is concave towards the bubble in

question, so that the pressure difference is tending to drive gas out of the
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bubble. This gives the equation

dA

dt
= −M γ

∫

Γ

κ dl, (1)

where M is a permeability coefficient, the curve Γ is the closed boundary of

the bubble, and dl is the arc length along Γ. Since κ is the rate of change

of tangent angle along each wall, and since the boundary of the bubble is a

closed curve, we also have

∫

Γ

κ dl +
n∑

i=1

αi = 2π , (2)

where αi is the exterior angle (i.e., the angle through which the tangent vector

turns) at the ith vertex, and n is the number of vertices (which of course is

equal to the number of edges) of the bubble.

Considering now only the generic case in which three edges meet at each

bubble vertex, and noting that mechanical equilibrium of the massless vertex

under surface tension requires that these three edges make equal angles, we

conclude that each of the exterior angles must be equal to 2π/6. This makes

the sum of the exterior angles be 2πn/6. Combining all of these results, we

conclude along with von Neumann that

dA/dt = −2πMγ
(
1− n

6

)
(3)

Note in particular that the area is constant for 6-sided bubbles, that bubbles

with fewer than 6 sides tend to disappear (and in fact reach zero area in

finite time), and that bubbles with more than 6 sides tend to grow; hence the

“coarsening” of the foam, in which bubbles with large numbers of sides grow

at the expense of bubbles with small numbers of sides.
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The above derivation is remarkably general. In particular it does not require

that κ be constant along each boundary of the bubble. Thus it applies to

foams that are not in mechanical equilibrium, as well as to foams that are.

This may not be well known, since the von Neumann condition is generally

applied to the equilibrium case, in which each edge is a circular arc.

A similar derivation of the von Neumann relation based on polar coordinates

can be found in [3]. Only very recently, the von Neumann relation has been

generalized to three-dimensional foams in [4,5].

There are only a few papers in the literature that describe the simulation

of foam dynamics in two or in three dimensions. In [1,6], the authors simu-

lated the evolution of a two-dimensional dry foam within the framework of

the following assumptions: (i) the Laplace-Young condition that the pressure

difference across a bubble wall equals the surface tension times the curvature;

(ii) Plateau’s rule that the number of walls that meet at each vertex is three

and that the angles at these triple junctions are all equal to 2π/3; and (iii)

the von Neumann relation for the rate of change of area as derived above.

In those simulations, the unknown variables were only the pressure in each

bubble (which was uniform within any one bubble, by hypothesis) and the

coordinates of the vertices.

There are other foam simulations that take the fluid dynamics into account.

In [7], a numerical study based on boundary integral formulation is presented

to simulate two-dimensional, doubly periodic, diluted and concentrated emul-

sions or foams structures in a simple shear Stokes flow. The numerical results

show qualitative agreement with theory regarding the basic geometrical fea-

tures of the evolving microstructure. Recent work of Bazhlekov, Anderson
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and Meijer [8] used a nonsingular boundary integral method to simulate the

three-dimensional wet foam drop formation and its dynamics in simple shear

flow. The authors also add the disjoining pressure into the interfacial forces

so that the repulsive van der Waals forces within small interface-to-interface

distances are taken into account. More numerical works on the two- and three-

dimensional dry or wet foams can also be found in the reference [9]. Unlike the

previous literature, the main purpose of the present paper is to describe an

immersed boundary (IB) method for the two dimensional dry foam problem,

and to check the von Neumann law in a full Navier-Stokes flow setting.

As discussed before, a foam is divided into bubbles, which we refer to as “cells”

from now on. In a dry foam, the walls between the cells are thin, and we idealize

these thin walls as massless internal boundaries. These boundaries interact

with the gas phase of the foam, which we model as a viscous incompressible

fluid of uniform density. This model is reasonable because (i) the pressure

differences within the foam are very slight in comparison to the total pressure,

and (ii) the flow velocities are very low in comparison to the speed of sound.

The interaction between the boundaries and the fluid has three aspects, all of

which are taken into account in our methodology. First, the boundaries move

at the local fluid velocity. This is the no-slip condition of a viscous fluid (but

see below). Second, the boundaries are under surface tension. When curved,

they apply a normal force to the fluid in which they are immersed, and thereby

generate a jump in pressure across each such boundary. Finally, the boundaries

are permeable to the gas, which leaks through them by diffusion with a flux

proportional to the pressure difference. This requires a modification of the

no-slip condition in the normal direction, but the tangential no-slip condition

is maintained despite the boundary permeability.
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The IB method that we use to handle porosity is described in [10], in which

a 2D parachute with a porous canopy was studied, and it was shown that

canopy porosity can help to stabilize the parachute motion. In that work,

the parachute canopy was allowed to slip relative to the fluid, in the normal

direction only, at a velocity proportional to the pressure difference across the

boundary. Fortunately, it was unnecessary to evaluate the pressure difference

explicitly, since the pressure difference is determined by the normal component

of the boundary force, and the boundary force is always calculated anyway,

from the spatial configuration of the boundary, when the IB method is applied.

Thus, in the parachute calculation, the relative slip velocity was obtained

from the projection of the boundary force onto the normal direction to the

boundary. We use the same method here, with one important simplification.

Since the surface tension is uniform, the force that it generates is already

normal to the boundary. This means that we can use the boundary force

directly, without having to project it and without having to evaluate separately

the normal direction.

The rest of the paper is organized as follows. In Section 2, we describe the

equations of motion of the foam in immersed boundary form. These are the

typical IB equations of motion, generalized to handle a permeable bound-

ary under surface tension. The numerical implementation including external

boundary conditions is described in Section 3. In Section 4, we present simula-

tion results: First, we validate the method by checking that the von Neumann

relation is satisfied and also by doing a convergence study. Then we consider

more complicated cases including one in which significantly non-equilibrium

flows of gas occur within each cell of the foam, thus requiring the full fluid

dynamics treatment of the present paper. Conclusions and future work are
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discussed in Section 5.

2 Immersed boundary formulation

In this section, we state the equations of motion of a two-dimensional dry

foam, in which the boundaries between cells are idealized as massless curves

under a constant surface tension γ. These boundaries are assumed permeable

to the gas phase of the foam, with permeability coefficient M . The gas phase is

modeled as a viscous incompressible fluid, for reasons that have been stated in

the previous section. The constant density and viscosity of the gas are denoted

ρ and µ, respectively.

In the following formulation, the parameter s labels a material point of an in-

ternal foam boundary. Note that s does not measure arc length, since the dis-

tance along the boundary between two particular material points may change

over time. We assume that distinct intervals of the parameter s are used for

the different internal foam boundaries, so that any particular value of s occurs

on at most one internal boundary. An integral with respect to s with no stated

limit of integration should be understood to mean an integral over the union

of all of the internal foam boundaries. With this understanding, the equations

of motion are as follows.

ρ(
∂u

∂t
+ u · ∇u) = −∇p + µ∇2u + f , (4)

∇ · u = 0, (5)

f(x, t) =
∫

F(s, t)δ(x−X(s, t))ds, (6)
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∂X

∂t
(s, t) =u(X(s, t), t) + M F/

∣∣∣∣∣
∂X

∂s

∣∣∣∣∣ ,

=
∫

u(x, t)δ(x−X(s, t))dx + M F/

∣∣∣∣∣
∂X

∂s

∣∣∣∣∣ , (7)

F(s, t) =
∂

∂s
(γ τ ) = γ

∂τ

∂s
, (8)

τ (s, t) =
∂X

∂s
/

∣∣∣∣∣
∂X

∂s

∣∣∣∣∣ . (9)

Eqs. (4)-(5) are the familiar Navier-Stokes equations for a viscous incompress-

ible fluid. The unknown functions in the fluid equations are the fluid velocity,

u(x, t); the fluid pressure, p(x, t); and the force density applied by the im-

mersed boundary to the fluid, f(x, t), where x = (x, y) are fixed Cartesian

coordinates, and t is the time.

Eqs. (8)-(9) are the foam boundary equations which are written in Lagrangian

form. The unknown X(s, t) completely describes the motion of the foam

boundary and also its spatial configuration at any given time. The functions

τ (s, t) is the unit tangent vector to the foam boundary. In Eq. (8), the first

formula for F(s, t) is the standard one for a fiber under tension, where Fds is

the force applied by the interval ds of such a fiber to the fluid in which it is

immersed. The second formula follows from the first one because the surface

tension γ is constant.

An important consequence of Eqs. (8)-(9) is that the boundary force density

F is normal to the boundary, since τ is a unit vector (Eq. 9), and it therefore

follows that τ · ∂τ/∂s = (1/2)(∂/∂s)|τ |2 = 0. The fact that F is normal to

the boundary simplifies the formulation of the problem, as explained in more

detail below.
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Eqs. (6) and (7) both involve the two-dimensional Dirac delta function δ(x) =

δ(x)δ(y), which expresses the local character of the interaction between the

fluid and boundary. Eq. (6) simply expresses the relation between the two

corresponding force densities f(x, t)dx and F(s, t)ds. Eq. (7) is the equation

of motion of the immersed foam boundary in which M is the permeability

constant. In order to derive Eq. (7), we start with the special case of zero

permeability. When the permeability M = 0, Eq. (7) becomes the familiar

no-slip condition. In the following, we use the notation U(s, t) to represent

the fluid velocity evaluated at the boundary point X(s, t), i.e,

U(s, t) = u(X(s, t), t) =
∫

u(x, t)δ(x−X(s, t))dx. (10)

Now we consider the nonzero permeability of the foam boundary. (This dis-

cussion will be phrased in terms of the 2-D case, but a similar discussion could

be made in the 3-D case with a few changes of units.) We assume that the

gas (fluid) goes through the liquid-film boundary only in the normal direc-

tion. Consider a patch of the boundary of which the length is |∂X
∂s
|ds. The

net amount of gas per unit time transported through the patch will be pro-

portional to the pressure difference and the length of the patch. This means

that the flux through the patch is equal to M(p1 − p2)|∂X
∂s
|ds where M is

the permeability and p1 and p2 are the pressures on the two sides of the foam

boundary, see Figure 1. We assume here that the thickness of the foam bound-

ary is a constant. (Otherwise, the flux could also be inversely proportional to

the thickness of the foam boundary.)

The flux through the patch can be also evaluated by considering the difference

between the fluid velocity at the internal boundary and the velocity of the
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Fig. 1. A foam boundary with permeability.

boundary itself. That is, the flux can be written as

n(s, t) · (U(s, t)− ∂X

∂t
(s, t))

∣∣∣∣∣
∂X

∂s

∣∣∣∣∣ ds. (11)

where n(s, t) is the unit normal to the internal boundary. Setting the above

two expressions for the flux equal to each other, we get

M(p1 − p2) = n(s, t) · (U(s, t)− ∂X

∂t
(s, t)). (12)

From the normal component of mechanical equilibrium at the foam boundary,

we see that the pressure jump (p1−p2) can be related to the normal component

of the boundary force F(s, t) [11,12] as

(p1 − p2)

∣∣∣∣∣
∂X

∂s

∣∣∣∣∣ + F(s, t) · n = 0. (13)

Combining these equations and using the fact that F(s, t) is normal to the

boundary as discussed above, we obtain

∂X

∂t
(s, t)−U(s, t) = M F(s, t)/

∣∣∣∣∣
∂X

∂s

∣∣∣∣∣ . (14)

Note that the tangential no-slip condition is automatically satisfied in Eq. (14),

i.e.,

(
∂X(s, t)

∂t
−U(s, t)

)
· τ = 0. (15)
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One can see that our IB formulation has the advantage of not needing to

evaluate the pressure differences between bubbles in order to move the internal

boundaries of the foam, since the relative slip between such a boundary and

the fluid can be naturally found directly from the boundary force. This is

important, since the pressure is only computed on the uniform grid that is

used for the fluid mechanics (see next section), and the internal boundaries of

the foam cut through this grid without being constrained to conform to it in

any way, so the direct evaluation of the fluid pressure on the two sides of an

internal boundary would require some sort of extrapolation procedure. This

is completely avoided here, since our formulation makes no explicit reference

to the pressure at all.

3 Numerical scheme

3.1 Computational procedure

What has been stated so far is the mathematical formulation of the prob-

lem in immersed boundary form (i.e., with delta-function forces instead of

explicit boundary conditions). For the numerical implementation, we use a

first-order IB method, generalized to take a permeable foam boundary into

account [10]. As usual in IB computations, we introduce two distinct grids: a

regular Eulerian grid for the fluid variables, and a Lagrangian grid to track

the foam boundary. Let the fluid domain be Ω = [0, Lx] × [0, Ly] and let

the fluid variables be defined on a fixed Nx × Ny Eulerian grid labeled as

x = (xi, yj) = (ih, jh), 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny, where the mesh width

h = Lx/Nx = Ly/Ny is uniform. For the foam boundary, we use a set of La-
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grangian points Xk = X(k∆s), 0 ≤ k ≤ nf to track the boundary, where ∆s

is the discrete increment of the Lagrangian parameter s along the boundary.

Recall that ∆s is not arc length in general. In particular, ∆s remains constant

over time even though the physical length of the segment to which it refers

may grow or shrink. Note in the foregoing that we have used a subscript to

denote a discrete spatial location. Similarly we use a superscript to denote the

time step index Thus, un(x) and Xn(s) are the approximations of u(x, n∆t)

and X(s, n∆t), respectively.

Throughout this section, we simplify the notation by considering only one

of the internal boundaries of the foam. Since there are many such internal

boundaries, the numerical procedures we describe below, in particular Steps

1, 2, and 4, need to be applied to all of them. The step-by-step procedure for

the time integration from time level n to time level n + 1 can be summarized

as follows.

Step 1: Using the position of the internal boundary Xn, calculate the La-

grangian force density by

Fn
k =

γ

∆s

nf−1∑

i=1

Xn
i+1 −Xn

i

|Xn
i+1 −Xn

i |
(δi,k − δi,k−1), (16)

where δi,k is the Kronecker symbol which is 1 when i = k and 0 otherwise. This

force density is derived from the relation Fn
k ∆s = −∂E/∂Xn

k , where E[Xn] is

the discretized energy functional of the form E[Xn] = γ
∑nf−1

k=1

∣∣∣Xn
k+1 −Xn

k

∣∣∣.

Step 2: Distribute this tension force defined on Lagrangian grid points into

the force at Eulerian spatial grid points to be applied in the Navier-Stokes
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equations. This is done by a discretization of Eq. (6) as

fn(x) =
∑

k

Fn
kδh(x−Xn

k)∆s, (17)

where x = (x1, x2) is the fluid mesh point, and δh is the smooth version of

Dirac delta function [11,13].

Step 3: Given the Eulerian force density fn(x), we are ready to solve the

descritized version of the fluid equations Eqs. (4)-(5):

ρ(
un+1 − un

∆t
+

1

2

∑

i=1,2

(uiD
0
i u + D0

i (uiu))n) + Dpn+1 = Lun+1 + fn, (18)

D · un+1 = 0, (19)

where D0
i is the standard central difference operator in the spatial direction

denoted by i, where i = 1, 2, and L is the standard 5-point discrete Lapla-

cian. Note that skew-symmetric differencing is used for the convection term

[10,11,14]. The vector operator D = (D1, D2) that is used for the discrete

gradient and divergence can be defined as follows [15]:

(D1)φ(x1, x2) =
∑

x′1,x′2

φ(x′1, x
′
2)γ(x1 − x′1)ω(x2 − x′2), (20)

(D2)φ(x1, x2) =
∑

x′1,x′2

φ(x′1, x
′
2)ω(x1 − x′1)γ(x2 − x′2), (21)

where γ(x) = δh(x+X)|X=h/2
X=−h/2 and ω(x) =

∫−h/2
h/2 δh(x+X)dX. It is designed

for “improved volume conservation” and is constructed according to a recipe

introduced in [15] which ensures that the value of D ·u at any particular grid

point is exactly equal to the average over an h × h square centered on that

grid point of the continuous divergence of the interpolated velocity field in

which the immersed boundary points move. Note that Eqs. (18)-(19) are a
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linear system with constant coefficients in the unknowns un+1 and pn+1. With

the periodic boundary conditions, we solve this linear system using Fourier

transform methodology.

Step 4: Update the foam boundary points which are moved at the local fluid

velocity of the updated velocity field, corrected by the relative slip. This is

done by approximating Eq. (7) as follows:

Xn+1
k −Xn

k

∆t
=

∑
x

un+1(x)δh(x−Xn
k)h2 +

MFn
k∆s

(|Xn
k+1 −Xn

k |+ |Xn
k −Xn

k−1|)/2
.(22)

This completes the time step.

3.2 Some implementation details

(A) No permeability at the junctions : We assume that there is no permeability

at the junctions where three (or more) internal boundaries meet, i.e., at k = 1

or at k = nf . These junctions simply move at the local fluid velocity, that is,

by Eq. (22) with M = 0. To allow permeability at the junction points would

result in inconsistencies, since the normal direction is not uniquely defined

there. Physically, the lack of permeability at junction points is enforced by

an accumulation of liquid at such points, resulting in a slight thickening and

smoothing out of the junction. An interesting mathematical consequence of

the assumption that there is no permeability at the junction itself is that,

by continuity, the flux through an internal boundary must approach zero as

a junction is approached. This can only happen if the pressure difference,

and hence the curvature, approaches zero as the junctions are approached.

Thus our internal boundaries are locally flat at their end points. This does

not need to be imposed as a boundary condition, since deviations from such
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local flatness will be automatically corrected by the dynamics of the numerical

scheme.

(B) The maintenance of foam boundary point resolution : Since the internal

boundary points Xn
k of the foam move without any constraint on the distance

between two adjacent points, we need to address the important issue how to

maintain reasonable resolution along the boundary. If the resolution becomes

too coarse, there will be leaks between the boundary points, and if it becomes

too fine, there will be too severe a constraint on the time step to maintain

numerical stability. We maintain proper resolution of the boundary by simply

adding or deleting immersed boundary points as needed in the following way.

At each time step, we start from one end point of an internal boundary

and proceed along that boundary to check the distances between neighboring

boundary points Xn
k+1 and Xn

k . Whenever |Xn
k+1−Xn

k | > h/2, we create a new

immersed boundary point halfway between them. Note that the addition of

such a point does not change the length of the immersed boundary at all, and

therefore it has no effect on the potential energy of the boundary. Whenever

|Xn
k+1 − Xn

k | < h/4, we delete both points and create in their place a new

boundary point halfway between them. An exception to this rule is that the

end points of an internal boundary are never deleted. When a neighboring

point to an end point is within the lower-limit distance of the end point (h/4),

the neighboring point is simply deleted. Unlike addition of points, deletion

does slightly change the potential energy of the boundary, but only by low-

ering it. Thus, deletion may be viewed as a kind of numerical dissipation of

energy. This loss of energy is part of the numerical error of the scheme.

(C) Implementation of no-slip boundary conditions by applying a boundary
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feedback force : To complete the description of the numerical IB method, we

need to explain the boundary conditions imposed along the edges of our com-

putational domain. As discussed before, we use periodic boundary conditions

in both space directions for the fluid equations. Despite this, we are able to

impose the no-slip condition at the edges of the computational domain by lay-

ing out an array of “target points” along those boundaries. Let Z(s, t) be the

target points along the boundaries, then the method used to impose no-slip

condition is to apply to the boundary by the following force:

F0(s, t) = c0(Z(s, t)−X(s, t)), (23)

where c0 is a large constant and X(s, t) is immersed boundary points that

moves at the local fluid velocity and applies F0(s, t) locally to the fluid. This

provides a feedback mechanism for computing the boundary force needed to

enforce the no-slip condition. In the present paper, the target points Z(s, t)

are sometimes fixed (i.e., independent of time), to simulate stationary walls,

and sometimes they move along the boundaries of the domain in a prescribed

manner to simulate sliding walls. Note that the target-point method for en-

forcing the no-slip condition still allows for the usage of FFT, since we do

so not by changing the boundary conditions per se but instead by applying

forces that effectively prevent the fluid from moving, or force it to move in a

prescribed manner at the specified locations.

4 Results and Discussion

In this section, we perform three different numerical tests for our model and

numerical scheme presented in the previous sections. They include (1) a foam
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with a single inner cell, (2) a numerical verification and convergence study,

and (3) a foam with multiple inner cells. Throughout this paper, we choose

the computational domain Ω = [0, 1]× [0, 1], and no-slip boundary conditions

are imposed along the computational boundary, unless otherwise stated. The

fluid density is chosen as ρ = 1, the viscosity µ = 0.001, and the surface

tension coefficient γ = 2. Note that these parameters are arbitrarily chosen

and do not correspond to any particular physical case. We use three different

permeabilities, M=0, 0.025, 0.05 to see how the permeability affects the foam

dynamics.

4.1 Foam with a single inner cell

As the first test, we start with a single n-edged inner cell with circular arcs and

connect its vertices with n straight radial lines to the computational boundary

as illustrated in Figure 2. Thus, the initial foam boundary is the combination

of a circle with radius 0.2 and n straight lines. Figure 2 shows the case of n = 8,

and we shall later change the number n. Note that, the number of lines is the

same as the number of vertices (triple junctions) of the inner cell, which is

initially a circular disc. We use the mesh width h = ∆x = ∆y = 1/256, which

is uniform and fixed in time, and the time step duration ∆t = 2.5× 10−6.

Figure 3 compares the configurations of the foams at selected times: t = 0

(dotted lines), t = 0.25 (dashed lines), and t = 0.5 (solid lines). The perme-

ability M is zero in the upper panels and M = 0.05 in the lower panels. The

number of edges of the central cell is n = 4 (first column), n = 6 (second col-

umn), and n = 8 (third column), respectively. In the case of zero permeability,

M = 0, all the foams quickly go to their steady configurations and almost stop
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Fig. 2. Initial foam boundary as a combination of a circle with radius 0.2 and 8

straight lines which connect the circle to the computational boundary.
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Fig. 3. Motion of the foam boundaries. The permeability is M = 0 in the upper

panels and M = 0.05 in the lower panels. The number of edges of the central

bubble is n = 4 (first column), n = 6 (second column), and n = 8 (third column),

respectively. The times chosen are t = 0 (dotted lines), t = 0.25 (dashed lines), and

t = 0.5 (solid lines).

moving. When the permeability M = 0.05, the inner cell of 4 edges shrinks,

that of 8 edges grows, and that of 6 edges behaves very much as if there were

no permeability. This observation from Figure 3 confirms the von Neumann

relation (3) qualitatively.
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Fig. 4. Streamlines of the velocity fields at time t = 0.5. The case in each panel

corresponds to that in Figure 3.

Since our computation is based on fluid mechanics, we can obtain the fluid

velocity field as well as the motion of the foam’s internal boundaries. Figure 4

shows the streamlines of the velocity fields. The case in each panel corresponds

to that in Figure 3. The time is fixed at t = 0.5. When the central bubble

is 4-sided (left column), the vertices are moving inward. In the case of zero

permeability (upper left), this is necessarily compensated by outward motion

of the centers of the edges, but in the case of nonzero permeability (lower left),

the central bubble as a whole is collapsing inwards. The opposite behavior is

seen in the case of an 8-sided central bubble (right column), in which the

vertices are moving outward. With no permeability (upper right) the outward

motion of the vertices is compensated by inward motion of the centers of the

edges, but in the case of positive permeability (lower right) the whole central

bubble is expanding. The 6-sided central bubble maintains its area regardless

of permeability (see below for quantitative evidence of this). Nevertheless, its
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flow pattern has different symmetry in the impermeable and permeable cases

(compare the upper and lower panels in the middle column of Figure 4).

In order to check the von Neumann relation quantitatively, we change the

number of cell edges and the permeability parameter and plot the areas of

the inner cells as functions of time in Figure 5. The number of edges varies

from n = 4 to n = 9, and the permeability parameters are M = 0 (left panel),

M = 0.025 (middle panel), and M = 0.05 (right panel). The inner cell is

initially a circular disc. When there is no permeability (M = 0), the areas

of the inner cells do not change for all the numbers n of edges. When the

permeability is nonzero, the areas of the inner cells change for any number

of edges except for the case of n = 6. These plots of the inner cell area are

all linear as functions of time and almost follow the von Neumann relation

(Eq. (3)), i.e., dA
dt

= −2πMγ(1− n/6), which is represented by the solid lines

in the figure.

4.2 Numerical verification and convergence study

Even though the changes of the inner cell areas are very close to those predicted

by the von Neumann relation, we can see some discrepancy: see Figure 5 and

compare the solid lines to the other lines. The origin of most of this discrepancy

is that the initial shapes of the foams in Figure 3 do not satisfy all of the

assumptions used in deriving the von Neumann relation. Whereas the von

Neumann relation assumes that the angles at triple junctions should be 2π/3,

one of the three initial angles at each of those junctions in our case is π and

the other two are π/2. This discrepancy will be quickly corrected (in principle,

infinitely quickly) but the resulting boundary layer in time introduces a certain
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Fig. 5. The change of the inner cell area with time. The number of edges varies

from n = 4 to n = 9, and the permeability parameters are M = 0 (left), M = 0.025

(middle), and M = 0.05 (right). The changes of the inner cell areas are linear and

almost follow the von Neumann relation, which is represented by the solid lines.

error.

In order to remove the initial transition and check the von Neumann rela-

tion more carefully, we construct foams which have the initial shape satisfying

the assumption that the angles at triple junctions are 2π/3. Figure 6 shows

the motion of two such foams, each at two different times: 4-edged (left) and

8-edged (right), with the initial configuration of the inner cell depicted by a

dotted line in each case. The solid lines show the configurations of the two

foams at t = 0.1. The permeability coefficient is fixed at M = 0.05. Note

that the 4-sided inner cell shrinks whereas the 8-sided inner cell grows. Now

we choose the mesh sizes of the domain N = 128, 256, 512, 1024 so the corre-

sponding mesh width is h = 1/N . We also choose ∆s and ∆t proportional to

h, so that each factor of 2 in refinement of the fluid mesh width is accompanied
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are t = 0 (dotted line) and t = 0.1 (solid line).
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Fig. 7. The errors of area in comparison to that predicted by the von Neumann

relation are plotted as functions of time on a logarithmic vertical scale for each of

the cases N=128, 256, 512, and 1024. The left panel is for a 4-sided cell and the

right panel is for an 8-sided cell. Note the decrease of the error as N increases.

by a factor of 2 refinement of the boundary mesh and likewise of the time step

duration. Figure 7 shows the errors of the computed areas of the inner cells

from the von Neumann relation in the two cases. The errors are plotted as

functions of time on a logarithmic vertical scale for each of the cases N=128,

256,512, and 1024. Clearly the discrepancy between the computed areas and

those predicted by von Neumann is decreasing as N →∞.
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Fig. 8. Convergence ratios of the computed velocity field u(x, t) of the fluid (top) and

the position (xi
N , yi

N ) of vertices (bottom). The convergence ratios (defined in the

text) are plotted as functions of time for two different cases: 4-sided inner cell (left)

and 8-sided inner cell (right). In each panel, the dashed line is the convergence ratio

obtained using the grids N = 128, 256, 512, and the solid line is the rate obtained

with N = 256, 512, 1024. The convergence ratio is near 2 (first order accuracy).

Next, we study the convergence of the computed solution. Since we do not

know the exact solution of the problem, the estimation of a convergence ratio

requires three numerical solutions for three consecutive N ’s. Let (uN , vN) be

the velocity field, and let || · ||2 be the L2 norm. The top panel of Figure 8

shows the convergence ratios (||uN−u2N ||22+ ||vN−v2N ||22)1/2/(||u2N−u4N ||22+

||v2N−v4N ||22)1/2 as functions of time for each of the cases N=128 (dotted line)

and 256 (solid line). The convergence ratio 2 implies that the scheme has first

order accuracy which is typical of the IB method as applied to problems with

thin elastic boundaries (for second order convergence of the IB method in the

case of an immersed elastic structure of finite thickness, see [16,17]).

The bottom panel of Figure 8 shows the convergence ratios of the motion of

the vertices of the foam as functions of time. Let (xi
N , yi

N) be the position
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of vertices of the inner cell where the index i =1,2,...,I is the numbering

of the vertices. Thus I=4 for the 4-sided inner cell and I=8 for the 8-sided

inner cell. Then the bottom panel of Figure 8 shows the convergence ratios

(
∑I

i=1[(x
i
N − xi

2N)2 + (yi
N − yi

2N)2])1/2/(
∑I

i=1[(x
i
2N − xi

4N)2 + (yi
2N − yi

4N)2])1/2

as functions of time for each of the cases N=128 (dotted line) and 256 (solid

line). Again we can see that the actual convergence ratios are roughly equal

to 2, which implies that the scheme is approximately first order accurate.

4.3 Foam with multiple inner cells

We now consider more general foam configurations with a fixed permeability,

M = 0.05. The first case, shown in Figure 9, has three inner cells with different

numbers of sides (n = 4,6, and 8) in a fluid-filled domain Ω = [0, 2] × [0, 1].

At the outer boundary, no slip boundary conditions are imposed by means

of target points, in the manner discussed above. The upper panels show the

configuration of the foam at t = 0 (left) and t = 0.5 (right). Streamlines of

the velocity field at the latter time are also shown (the fluid is at rest at t=0,

so no streamlines appear in that case). The lower panel of Figure 9 shows the

areas of the three inner cells plotted as functions of time, in comparison to

the areas predicted by the von Neumann relation. As before, the agreement is

excellent, and the small discrepancy seen in the figure is mostly attributable

to the failure of the initial configuration to satisfy the equal-angle rule, as

discussed above. The linear changes in area with time over a wide range of

areas makes it clear that the rate of change of area is unrelated to the area

per se. For example, the 8-sided cell in Figure 9 grows when it is the smallest

of the three inner cells, and continues to grow at exactly the same rate when
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Fig. 9. The motion of a foam at t = 0 (top-left) and t = 0.5 (top-right) with

streamlines depicting the velocity field, and the areas of the three inner cells plotted

as functions of time (bottom). The areas follow the von Neumann relation (solid

lines with no symbols).

it is the largest of the three at later time.

The fluid dynamics of a foam is not necessarily restricted to the slow coarsening

regime that has been considered up to now. To illustrate this, we use the same

initial configuration of the foam as in Figure 9. We remove the target points on

the side boundaries, however, so that the foam is periodic in the x direction.

We keep fixed target points on the bottom of the domain. Near the top of

the domain, at y = 0.875, we create a horizontal row of target points that

slides left and right in an oscillatory manner. This motion of the target points

can be created by defining Z(s, t) = (s + Asin(ωt), 0.875) for 0 ≤ s ≤ 2 in

Eq. (23) where the amplitude is A = 0.25 and frequency is ω = 10π. The

upper panels of Figure 10 show the motion of the foam with the streamlines
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Fig. 10. Foam driven by oscillatory shear. Target points near the upper boundary

slide left and right in an oscillatory motion with frequency 10π and amplitude 0.25.

Target points on the lower boundary are held fixed. There are no target points on

the left or right boundary, so the motion is periodic in x. The configuration and

motion of the foam are shown at t = 0.25 (upper left) and t = 0.5 (upper right),

with the velocity field plotted in terms of streamlines. The areas of the three central

cells are plotted as functions of time in the lower panel, where the predictions of

the von Neumann relation are shown for comparison as solid lines. Even though the

foam is far from equilibrium, the von Neumann relation is well satisfied.

of the velocity fields at t = 0.25 (left) and t = 0.5 (right). We can clearly

observe the interaction between the foam boundaries and the fluid flow. Even

though the foam is now far from equilibrium, the areas of the inner cells still

follow closely the von Neumann relation, see the lower panel of Figure 10.

Finally we simulate the coarsening of a more complicated foam immersed in

the domain Ω = [0, 1]× [0, 1]. Figure 11 shows the motion of the foam at some

chosen times. We initially set up the inner cells with different numbers of
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edges ranging from n = 3 to n = 9, and number those inner cells accordingly

at initial time. We can see that the cells with fewer than 6 edges shrink and

disappear as time goes on: The 3-sided cell disappears at t=0.12, the 4-sided

cell at t = 0.24, and the 5-sided cell at t = 0.48. Meanwhile, the other cells

with fewer than 6 edges (not numbered) are also decreasing in area. At the

same time, however, the cells with more than 6 edges are growing in area, see

for example the panel at time t = 0.48. The overall result of these changes in

area is the coarsening of the foam structure.

Whereas the cells with numbers of edges other than 6 change their shapes and

areas, the cell with 6 edges changes only its shape with its area remaining con-

stant, see the cell numbered 6 in Figure 11. In order to see more quantitatively

the changes of the cell areas, we plot in Figure 12 the areas of the inner cells

numbered in Figure 11 as functions of time. The area of the 6-sided cell does

not change, the areas of the cells with fewer than 6 edges decrease, and the

areas of the cells with more than 6 edges increase. The cell areas as functions

of time do not, however, follow the von Neumann relation exactly, since their

slopes are not constant after about t = 0.1.

We attribute these deviations from linearity to the total shrinkage of some

cells and to the new generation of quadruple junctions, see the figure at time

t = 0.12 when this happens for the first time. At a quadruple junction, the

exterior angles are no longer equal to 2π/6, as was assumed in the derivation

of the von Neumann relation.

The occurrence of quadruple junctions points out a limitation of our present

methodology. In reality, quadruple junctions are unstable and resolve them-

selves into a pair of triple junctions, with the creation of a new edge that arises
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Fig. 11. The motion of a general foam at some chosen times. The cells of less than 6

edges shrink and eventually disappear, whereas those with more than 6 edges grow.

This results in the coarsening of the foam. The number below each frame is the time

to which that frame corresponds. In the frame showing the initial configuration,

selected cells are numbered according to their number of edges. The disappearance

of cell #3 occurs at t = 0.12, that of cell #4 occurs at t = 0.24, and that of cell #5

occurs at t = 0.48.

at zero length and grows in length as the two triple junctions move apart. We

do not currently simulate this phenomenon, however. Thus, when a quadruple

(or higher order) junction forms in the course of our simulations it remains as

such, unless it collides with another junction, in which case its order becomes
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Fig. 12. The areas of the numbered cells in Figure 11 as functions of time.

even higher. The resolution of higher-order junctions into lower order ones is

left as a subject for future work.

5 Summary and Conclusions

We have presented an immersed boundary method to simulate the fluid dy-

namics of a two-dimensional dry foam. We model the gas phase of the foam as

a viscous incompressible fluid, and the liquid phase as a massless network of

permeable internal boundaries under surface tension. The internal boundary

force, generated by the surface tension, is everywhere normal to the internal

boundaries. Permeability is modeled by allowing the internal boundaries to

slip relative the fluid, at a velocity (speed and direction) proportional to the

boundary force. This is equivalent to slip in the normal direction only at a

speed proportional to the pressure difference across each internal boundary,

and thus models correctly the diffusion of gas through the liquid phase of the

foam.

An algorithm is described that maintains the resolution of each internal bound-
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ary within predetermined bounds despite arbitrarily large changes in length

of the internal boundary.

We have validated the method by checking that the von Neumann relation

is well satisfied, except when the assumptions under which it was derived are

violated. A striking fact, confirmed by our results, is that the derivation of the

von Neumann relation does not require the assumption of uniform curvature

along each internal boundary, and therefore does not require uniform pressure

within each bubble of the foam. The von Neumann relation therefore remains

valid in dynamical situations with nontrivial fluid dynamics in the gas phase

of the foam, as we have seen. Additional validation has been provided in the

form of a convergence study, which confirms the expected first-order accuracy

of the scheme.

Within the context of two-dimensional foams, the principal limitation of the

method as currently implemented is that we do not allow for the resolution of

quadruple or higher order junctions into triple junctions. A more important

limitation, of course, is the restriction to the two-dimensional case. The ex-

tension of the methodology introduced here to the study of three-dimensional

foams will be the subject of future work.

Acknowledgement The first author was supported by National Re-

search Foundation of Korea Grant funded by the Korean Government (2009-

0075530). The second author was supported in part by the MoE-ATU project

and the National Science Council of Taiwan under grant NSC97-2628-M-009-

007-MY3.

31



References

[1] D. Weaire and S. Hutzler, The Physics of Foams, Oxford University Press, 1999.

[2] von Neumann, J. in Metal Interfaces (ed. C.Herring) 108-110(American Society

for Metals, Cleveland, 1951).

[3] W.W.Mullins, in Metal Surfaces: Structure, Energetics, and Kinetics. (eds.

W.D.Robertson and N.A.Gjostein) 17-66(American Society for Metals, Metals

Park, Ohio, 1963).

[4] R.D.MacPherson and D.J.Srolovitz, The von Neumann relation generalized

to coarsening of three-dimensional microstructures, Nature, 446(26):1053-1055,

2007.

[5] S. Hilgenfeldt, A. M. Kraynik, S. A. Koehler, and H. A. Stone, An accurate von

Neumann’s law for three-dimensional foams, Phys. Rev. Lett. 86(12):2685-2688,

2001.

[6] T. Herdtle and H. Aref, Numerical experiments on two-dimensional foam, J.

Fluid Mech. 241, 233-260, 1992.

[7] X. Li, H. Zhou and C. Pozrikidis, A numerical study of the shearing motion of

emulsions and foams, J. Fluid Mech., 286, 379–404, (1995).

[8] I.B.Bazhlekov, P.D.Anderson, and H.E.H. Meijer, Nonsingular boundary

integral method for deformable drops in viscous flows Phys. Fluids, 16(4), 2004.

[9] A. M. Kraynik and D. A. Reinelt, Foam microrheology: from honeycombs to

random foams, Proceedings of thePPS-15, 1999.

[10] Y.Kim and C.S.Peskin. 2-D parachute simulation by the Immersed Boundary

Method. SIAM J.Sci.Comput. 28(6), 2006.

[11] C.S.Peskin, The immersed boundary method Acta Numerica, 11:479-517, 2002.

32



[12] M.-C. Lai and Z. Li, A remark on jump conditions for three-dimensional Navier-

Stokes equations involving an immersed moving membrane, Appl. Math. Lett.,

14: 149-154, 2001.

[13] C.S.Peskin and D.M.McQueen, Fluid dynamics of the heart and its valves. In:

Case studies in Mathematical Modeling: Ecology, Physiology, and Cell Biology.

Prentice Hall, Englewood Cliffs NJ, 1996, pp. 309-337

[14] M.-C.Lai and C.S.Peskin, An immersed boundary method with formal second-

order accuracy and reduced numerical viscosity, J. Comput. Phys. 160:705-719,

2000.

[15] C.S.Peskin and B.F.Printz, Improved volume conservation in the computation

of flows with immersed elastic boundaries, J.Comput. Phys. 105:33-46,1993

[16] Y.Kim and C.S.Peskin, Penalty immersed boundary method for an elastic

boundary with mass, Phys. Fluids, 19(5), 2007.

[17] B.E.Griffith and C.S.Peskin, On the order of accuracy of the immersed

boundary method: Higher order convergence rates for sufficiently smooth

problems. J. Comput. Phys. 208:75-105, 2005.

33


