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Abstract. We extend the immersed boundary (IB) method to simulate the dynamics
of a 2D dry foam by including the topological changes of the bubble network. In the
article [Y. Kim, M.-C. Lai, and C. S. Peskin, J. Comput. Phys. 229:5194-5207, 2010], we
implemented an IB method for the foam problem in the two-dimensional case, and
tested it by verifying the von Neumann relation which governs the coarsening of a
two-dimensional dry foam. However, the method implemented in that article had an
important limitation; we did not allow for the resolution of quadruple or higher order
junctions into triple junctions. A total shrinkage of a bubble with more than four edges
generates a quadruple or higher order junction. In reality, a higher order junction is
unstable and resolves itself into triple junctions. We here extend the methodology pre-
viously introduced by allowing topological changes, and we illustrate the significance
of such topological changes by comparing the behaviors of foams in which topological
changes are allowed to those in which they are not.
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1 Introduction

We use the immersed boundary (IB) method [10] to simulate the dynamics of a 2D dry
foam, including the topological changes of the foam structure. Liquid foam is a gas-filled
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space divided into bubbles or cells of which the boundaries are liquid. In a “dry” foam, in
which most of the volume is attributed to its gas phase, the bubbles are nearly polyhedral
in shape. The thin liquid boundaries move under the influence of surface tension and
have permeability which allows the gas to move through the thin liquid boundaries.
Thus the capillarity and gas exchange between bubbles together result in the evolution in
bubble size and topological structure [12]. This process is called diffusive coarsening. The
diffusive flux of gas through a liquid boundary is proportional to the pressure difference
between the two bubbles that are separated by that boundary.

In [5], we have applied and extended the immersed boundary (IB) method to simulate
the dynamics of a dry foam in the two-dimensional case, and tested it by verifying the
von Neumann relation [8, 9]: let A be the area of one bubble of a foam, then

dA
dt

=−Mγ
∫

Γ
κdl =−2πMγ

(
1− n

6

)
, (1.1)

where M, γ, κ, and n are the permeability coefficient, surface tension, curvature of the
bubble boundary Γ, and the number of vertices of the bubble, respectively. The von
Neumann relation simply says that the area is constant for 6-sided bubbles, that bubbles
with fewer than 6 sides tend to disappear (and in fact reach zero area in finite time), and
that bubbles with more than 6 sides tend to grow; hence the “coarsening” of the foam,
in which bubbles with large numbers of sides grow at the expense of bubbles with small
numbers of sides.

We verified numerically the von Neumann relation in [5] and we showed there the
capability of the IB method to simulate the dynamics of a foam with an arbitrarily gen-
eral shape which experiences the coarsening due to the gas diffusion through the bubble
boundaries. An important limitation of the numerical method used in [5], however, was
that we did not allow for the resolution of quadruple or higher order junctions into triple
junctions. The total disappearance of a bubble with four or more edges generates quadru-
ple or higher order junction at which the exterior angles are no longer equal to 2π/6, as
was assumed in the derivation of the von Neumann relation (1.1). In reality, higher or-
der junctions are unstable and resolve themselves into a pair of triple junctions, with the
creation of a new edge that arises at zero length and grows in length as the two triple
junctions move apart.

We now extend the methodology of [5] and introduce a method to resolve quadruple
or higher order junctions into triple junctions. The extension is based on two primary
topological changes which may occur in the evolution of a bubble network [3, 12]. The
first one, which is called a T1 process, is needed when an edge of a bubble gradually
shrinks and is about to make a quadruple junction. Since a quadruple junction is un-
stable, after some transient, this vertex decomposes to form two triple junctions, but in
a different configuration. The second one, which is called a T2 process, occurs when a
three-edged bubble gradually shrinks and finally disappears. Other topological changes
are also possible through the combination of these two processes. For example, a four-
sided bubble can disappear by a T1 process followed by a T2 process.
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The rest of the paper is organized as follows. In Section 2, we describe the equations
of motion of a foam. These are the typical IB equations of motion, generalized to handle a
permeable boundary under surface tension. The numerical implementation is described
in Section 3 which includes the methods for the topological changes and for the initial-
ization of a foam with a general configuration. In Section 4, we present the numerical
results which simulate the foams with 50 and 200 bubbles and the foam of a hexago-
nal structure with a minor defect. In each case, we compare the foams with topological
changes and without them. Some of the results are available as online animations on the
web ‘http://cau.ac.kr/∼kimy’. Summary and conclusions are in Section 5.

2 Immersed boundary formulation

We summarize the equations of motion of the foam boundaries interacting with the sur-
rounding gas which can diffuse through the foam boundaries. The equations of motion
are as follows:

ρ(
∂u
∂t

+u·∇u)=−∇p+µ∇2u+f, (2.1)

∇·u=0, (2.2)

f(x,t)=
∫

F(s,t)δ(x−X(s,t))ds, (2.3)

∂X
∂t

(s,t) = u(X(s,t),t)+MF/
∣∣∣∣
∂X
∂s

∣∣∣∣,

=
∫

u(x,t)δ(x−X(s,t))dx+MF/
∣∣∣∣
∂X
∂s

∣∣∣∣, (2.4)

F(s,t)=
∂

∂s
(γτ), (2.5)

τ(s,t)=
∂X
∂s

/
∣∣∣∣
∂X
∂s

∣∣∣∣. (2.6)

In this system, Eqs. (2.1)-(2.2) are fluid equations, Eqs. (2.5)-(2.6) are equation for the
force density of the bubble boundary, and Eqs. (2.3)-(2.4) are interaction equations. We
describe the notation and meaning of each of these subsystems of equations in turn.

The fluid equations (2.1)-(2.2) are the familiar Navier-Stokes equations of a viscous
incompressible fluid. The constant parameters ρ and µ are the fluid density and viscosity,
respectively. The unknown functions in the fluid equations are the fluid velocity u(x,t),
the fluid pressure p(x,t), and the force per unit length applied by the bubble boundary
to the fluid f(x,t), where x=(x,y) are fixed Cartesian coordinates, and t is the time.

The force density equations of the foam boundary (2.5)-(2.6) are written in Lagrangian
form. The unknown function X(s,t) completely describes the motion of the bubble bound-
ary, and also its spatial configuration at any given time. For example, if we hold s fixed,
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then the equation x=X(s,t) defines the trajectory of the material point whose coordinate
is s. The functions τ(s,t) is the unit tangent vector to the bubble boundary, and the for-
mula for F(s,t) is the standard one for a fiber under tension. The constant γ is the surface
tension.

Finally, we come to the interaction equations (2.3) and (2.4). These both involve the
two-dimensional Dirac delta function δ(x)=δ(x)δ(y), which expresses the local character
of the interaction between the fluid and boundary. Eq. (2.3) expresses the relationship
between the two corresponding force densities f(x,t)dx and F(s,t)ds. To see that this is
the content of Eq. (2.3), integrate both sides over an arbitrary region Ω of 2D space. On
the right-hand side, interchange the order of integrations, and recall that

∫
Ω δ(x−X)dx

yields the value 1 if X is within Ω and 0 otherwise. Note that f(x,t) is singular, whereas
F(s,t) is not, but both have finite integrals over finite regions.

Eq. (2.4) is the equation of motion of the immersed bubble boundary, in which M is
the permeability constant. Setting M=0, Eq. (2.4) reduces to the no-slip condition that the
immersed boundary moves at the local fluid velocity. The term involving M describes the
normal motion of the boundary relative to the fluid. This normal slip is a consequence
of the permeability of the boundary. The specific form of this term is a consequence of
three assumptions: Darcy’s law relating the flux of gas to the pressure difference; the
jump condition for normal stress at the immersed boundary; and the fact that the force
F associated with the surface tension is normal to the boundary (since γ is constant, see
Eq. (2.5)). For a more detailed derivation of the permeability term in Eq. (2.4), see [5].
Other methods to simulate a permeable thin boundary can be found in [6, 11].

3 Numerical scheme

In this section we summarize the computational procedures used in [5] and describe new
features of the present simulations. The new features concern topological changes and
the manner in which we set up the initial configuration of a foam.

3.1 Computational procedure

In order to solve numerically Eqs. (2.1)-(2.6), we use a standard first-order IB method,
generalized to take a permeable foam boundary into account [4, 5]. The step-by-step
procedure of the numerical implementation used here and in [5] can be summarized as
follows. (See [5] for greater detail.)

(1) Using the position of the internal bubble boundary, calculate the Lagrangian force
density. This is done by the discritization of Eqs. (2.5) and (2.6).

(2) Distribute this tension force defined on Lagrangian grid points into the force at
Eulerian spatial grid points to be applied in the Navier-Stokes equations. This is done by
a discretization of Eq. (2.3).

(3) Given the Eulerian force density, we solve the descritized version of the fluid equa-
tions (2.1)-(2.2) to update the velocity and pressure fields.
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(4) Update the bubble boundary points which are moved at the local fluid velocity of
the updated velocity field with correction for relative slip. This is done by approximating
Eq. (2.4).

At the end of each time step, we redistribute the internal boundary points of the foam
to maintain reasonable resolution along the boundary. A proper resolution of the bound-
ary is maintained by these two processes: (1) when the distance between two neighbor-
ing boundary points is larger than h/2 where h is the spatial meshwidth, add a new
immersed boundary point halfway between them, or (2) when the distance between two
neighboring boundary points is smaller than h/4, delete both points and create in their
place a new boundary point halfway between them.

In addition to the redistribution of the internal boundary points, we now perform
topological changes when they are needed at the end of each time step. This is the subject
of the following section.

3.2 Topological changes

Topological changes are needed to resolve quadruple or higher order junctions into triple
junctions. Since a junction of more than 4 edges is unstable, it should be resolved into
triple junctions. Moreover the coarsening process cannot complete without the resolu-
tion process [5]. The topological changes of a 2D foam network can all be described in
terms of two primary topological processes [3, 12]: (1) removal of an edge between two
neighboring bubbles, so that they cease to be neighbors, and its replacement by an edge
between two other bubbles that consequently become neighbors (‘T1’ process), and (2)
the removal of a three-sided bubble (‘T2’ process). Other topological changes are also
possible through the combinations of these two processes. For example, a four-sided
bubble can disappear by a T1 process followed by a T2 process.

The T1 process is needed when an edge of a bubble gradually shrinks and is about
to make a quadruple junction. This unstable vertex now decomposes to form two triple
junctions, but in a different configuration, see Figure 1. The effect of T1 process is to
reduce by one the number of edges of two bubbles, and to increase by one the number of
edges of two other bubbles.

In order to realize the T1 process, we count the number of internal boundary points on
each bubble edge at each iteration. We declare that the edge is a candidate for switching
when and only when there are no interior points on an edge, i.e., when the two vertices of
the edge are connected directly to each other, see the left plot of Figure 1. When an edge
with only two vertices is candidate for switching, we try the switch but actually make it
only if it lowers the total energy (i.e., total length) of the bubble boundary. The meaning
of “try the switch” is to rotate the edge by 90 degrees about its center, to break the old
connections, and to make the new ones by connecting the rotated edge to the other four
edges which previously formed the two triple junctions, see Figure 1. Since this switch
involves breaking four links and creating four new ones, it is only the lengths of these
links li and l′i , i=1, 2, 3, 4 that we need to consider in deciding whether to make the actual
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Figure 1: T1 process: a bubble edge on which there are no interior marker points is a candidate for switching
(left). We rotate the edge by 90 degrees about its center, break the old connections, and make the new ones

as shown (right). This switch, however, is actually made only when ∑4
i=1 li≥∑4

i=1 l′i . In this case, the switch
lowers the potential energy.

Figure 2: T2 process: whenever there are no interior points on the edges of a three-edged bubble (left), we
replace the three-edged bubble by one vertex at the centroid of the bubble, and connect the new vertex directly
to the three edges which previously formed triple junctions with the three-edged bubble (right).

switch or not. The actual switch is made only when it lowers the total potential energy,
i.e., ∑4

i=1 li≥∑4
i=1 l′i .

The T2 process is the disappearance of a 3-edged bubble when three vertices of the
bubble become one point (vertex). Whenever all the edges of a 3-edged bubble have
no interior points and are connected directly to each other as shown in the left plot of
Figure 2, we replace the 3-edged bubble by one vertex at the centroid of the bubble,
and connect the new vertex directly to the three edges which previously formed triple
junctions with the 3-edged bubble, see Figure 2. As in the T1 process, since the perimeter
of a disappearing triangle is always greater than the sum of the three lengths from its
vertices to its centroid, the T2 process does slightly change the potential energy of the
boundary, but only by lowering it. Thus, the T1 and T2 processes may be viewed as a
kind of numerical dissipation of energy, and this loss of energy is part of the numerical
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Figure 3: The effect of T1 and T2 processes. The T1 process between the 1st and the 2nd panels reduces
by one the number of edges of two bubbles including the 4-edged bubble and increases by one the number of
edges of two other bubbles. Then the 3-edged bubble shrinks further and disappears by the T2 process in the
4th panel.

error of the scheme.
In order to illustrate the effect of the two topological processes, Figure 3 shows the

time evolution of a few bubbles, among which the initially 4-edged bubble goes through
a T1 process followed by a T2 process and disappears. A T1 process occurring between
the 1st and the 2nd panels changes the 4-edged bubble into a 3-edged one. It also reduces
by one the number of edges of one neighboring bubble on the right side and increases by
one the number of edges of two other neighboring bubbles on the upper and lower sides.
Then the 3-edged bubble shrinks further in the 3rd panel and finally disappears by the
T2 process in the 4th panel. Thus the 4-edged bubble disappears by the combination of
T1 and T2 processes, and so can other bubbles with more than 4 edges.

3.3 Initial configurations

Consider the incompressible viscous fluid in a square Ω = [0,1]×[0,1] with periodic
boundary conditions which contains a network of bubble boundaries. We construct a
Voronoi diagram to set up an initial configuration of a foam [3], see Figure 4. To do that,
we first choose randomly and independently from the uniform distribution on Ω a set
of points Z1, ..., Zn, where n is the desired number of bubbles. We then consider the en-
larged domain Ω′=[−1,2]×[−1,2], and make periodic images of Z1, ..., Zn so as to obtain
an enlarged list Z1, ..., Z9n of points in Ω′, of which the first n are the originally chosen
points of Ω, and the rest are their periodic images. Now we use the built-in command
‘voronoi’ in Matlab to construct the Voronoi diagram with generating points Z1, ..., Z9n
in Ω′. This is a partition of Ω′ into 9n convex polygons P1, ..., P9n. The defining property
of the Voronoi diagram is that the interior of polygon Pk contains precisely those x∈Ω′
for which

||x−Zk||< ||x−Zj|| (3.1)

for all j 6= k, where ||·|| is the Euclidean norm. The restriction of the Voronoi diagram
thus constructed on Ω′ to Ω is then the Voronoi diagram on Ω regarded as a periodic
domain. (We assume here that the maximum norm diameter of each of the Pk is less than
the period of the domain, which will be true with high probability when n is reasonably
large.)
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Figure 4: A set of points (50 dots) is randomly chosen in a square [0,1]×[0,1] and copied periodically into
[−1,2]×[−1,2]. A Voronoi network is then constructed on the enlarged domain. The restriction of this network
to the domain [0,1]×[0,1] is the periodic Voronoi network generated by the original 50 points
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Figure 5: Initial configuration: the ‘relaxed’ configuration of a foam (left) obtained from the Voronoi network
shown in Figure 4 and the corresponding pressure contours (right). The dashed line in the left panel represents
the periodic unit square. Note that bubble boundaries are not explicitly drawn in the right panel. They are
visible anyway because the steep pressure gradient across the bubble boundaries makes the pressure contours
concentrate along those boundaries.
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Since the Voronoi network as an initial configuration of a foam is composed of a set
of straight lines, we relax the initial bubble network to obtain a more realistic shape of a
foam in which the bubbles are curved polygons and all the exterior angles at the triple
junctions are close to 2π/6. To do that, we allow the given Voronoi network to evolve
according to the methods of the present paper but with zero permeability, so that the
bubbles change shape without changing area. This initial relaxation phase of the com-
putation is continued until the pressure changes with respect to time are small, which
signifies that the foam has reached a near-equilibrium state in the absence of permeabil-
ity. This relaxed state is then used as an initial condition for a computation with nonzero
permeability.

Figure 5 shows a ‘relaxed’ configuration of the foam (left) obtained from the Voronoi
network shown in Figure 4 and the corresponding pressure level contours (right). The
dashed line in the left figure represents the periodic unit square. Note that the pressure
contours enable us to recognize the configuration of the foam without even drawing the
internal foam boundaries. The bold colors in the pressure contours are mainly near the
internal foam boundaries indicating that the largest pressure differences are across these
internal boundaries.

4 Results and Discussion

In this section, we show the simulation results obtained by the numerical scheme pre-
sented in Section 3. The foams have general configurations and go through topology
changes based on the T1 and T2 processes. Some of the results are also available as on-
line animations, see ‘http://cau.ac.kr/∼kimy’.

Throughout this paper, we choose the computational domain Ω = [0,1]×[0,1] with
periodic boundary conditions, and use the mesh width h=∆x=∆y=1/512, which is uni-
form and fixed in time, and the time step duration ∆t = 1.25×10−6. The fluid density is
chosen as ρ=1, the viscosity µ=0.001, and the surface tension coefficient γ=1. Note that
these parameters are arbitrarily chosen and do not correspond to any particular physi-
cal case. We use the permeability M=0.04 to see how the permeability affects the foam
dynamics.

As the first case, we start with the foam shown in Figure 5 which has 50 bubbles and
compare two cases: one in which the topological changes are allowed to occur, and the
other in which they are not. Figure 6 shows the motion of the foams without topological
changes (upper panels) and with topological changes (lower panels) at some selected
times: t=0.3 (left), t=0.6 (middle), and t=0.9 (right). In both cases, whereas the bubbles
with fewer than 6 edges shrink and disappear, the bubbles with more than 6 edges are
growing in area as time goes on. Thus the overall result of these changes in area is the
diffusive coarsening of the foam structure.

When there is no topological changes, as in the upper panels, however, the bubbles
with fewer than 6 edges shrink, almost disappear, and form quadruple or higher order
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time=0.3 time=0.6 time=0.9

Figure 6: The motion of the foams without topological changes (upper panels) and with topological changes
(lower panels) at some selected times: t=0.3 (left), t=0.6 (middle), and t=0.9 (right). In both cases, we can
observe the diffusive coarsening of the foam structure. Whereas the foam without topological changes generates
some higher order junctions, however, the foam with topological changes resolves higher order junctions into
triple junctions.

junctions. See for example the two arrows in the upper-middle panel in which two bub-
bles with four and five edges shrink to make two higher order junctions. When a higher
order junction forms in the course of our simulations, since it remains as such without
any topological changes, it is in fact made up of the bubble which almost disappears and
thus has a negligible area. As time proceeds, triple or higher order junctions can meet to
form a junction with even higher order, see the upper-right panel. The foam with topo-
logical changes resolves higher order junctions into triple ones in the lower panels, in
which case the foam moves in a more realistic way.

In order to see in a more quantitative way the difference between the two cases, we
compare the number of bubbles as a function of time. The upper panels in Figure 7
show the distribution of the number of bubbles (y-axis) which have any given number of
edges (x-axis). The initial distributions are the same for the two cases with and without
topological changes as shown in the graph at time 0. Although the distribution is constant
without topological changes and remains the same as the one at time 0, it changes over
time with topological changes. The lower panel compares the total number of bubbles of
the foams without (dotted line) and with (solid line) topological changes as functions of
time. Again, the total number of bubbles is constant at 50 without topological changes,
but it decreases over time from 50 to 17 with topological changes, which clearly indicates
the diffusive coarsening process of the foam. A similar statistical behavior of the foam
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Figure 7: The distributions of the numbers of bubbles which have any given number of edges for the foam with
topological changes (upper panels), and the total number of bubbles of the foams as a function of time (lower
panel) for foams without (dotted line) and with (solid line) topological changes. While the distribution and
total number of bubbles are constant in time without topological changes, they vary over time in a decreasing
manner with topological changes. Note that the upper left panel corresponding to the initial time is applicable
to both simulations, with and without topological changes. The subsequent upper panels pertain only to the
case in which topological changes occur, since the edge-number distribution obviously remains constant if there
are no topological changes.

structure can be found in [1, 3, 13, 14].

Figure 8 compares the areas of three chosen bubbles as functions of time for the two
cases: the foams without (dotted line) and with (solid line) topological changes. The
three bubbles initially have 6, 7, and 8 edges, respectively. While these numbers of edges
are constant without topological changes, they vary in time with topological changes, see
the numbers on the solid line in each panel. The von Neumann relation (1.1) says that
the area of an inner bubble changes linearly as a function of time, increasing for bubbles
with more than 6 edges, and decreasing for bubbles with fewer than 6 edges. We can
see clearly that the bubble areas of the foam without topological changes do not follow
the von Neumann relation, simply because the slopes of the areas plotted as functions of
time are not constant, see the dotted lines.

In order to check the von Neumann relation quantitatively for the foam with topo-
logical changes, since the number of edges of the chosen bubbles may change, we should
also change the edge number n in Eq. (1.1). The dashed lines in the figure represent the
von Neumann relation with the properly chosen number of edges n. The bubble areas
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Figure 8: The areas of three selected bubbles as functions of time for the two cases: foams without (dotted
line) and with (solid line) topological changes. The numbers on the solid lines represent the number of edges
of each bubble, which vary in time only with topological changes. The dashed lines represent the von Neumann
relation (1.1) with the corresponding number of edges n. Note that the agreement with the von Neumann
relation is almost perfect when topological changes are allowed to occur. Without topological changes, the von
Neumann relation is violated, as expected, once higher order junctions form.

represented by solid lines are almost linear as functions of time for each fixed number
of edges and follow closely the von Neumann relation. Notice, however, that there exist
appreciable deviations of the area changes from the theory near the singular points of the
graphs. These singular points represent the moment of topological changes, especially
T1 process. We attribute these deviations to the following: when a T1 process is about to
occur, one of the bubble edges almost shrinks and the foam generates a transient quadru-
ple junction at which the exterior angles are no longer equal to 2π/6, which violates the
assumption of the von Neumann relation. After the T1 process, all the junctions are again
triple, and the area changes of the bubbles follow again the von Neumann relation.

If all the bubbles of a foam have a hexagonal shape, since they have 6 edges, the foam
does not experience topological changes and approaches quickly a state of equilibrium
in which all the exterior angles at the triple junctions are 2π/6. If, however, a foam with
a primarily hexagonal structure contains a few bubbles with numbers of edges unequal
to 6, then diffusive coarsening is initiated at these defects and spreads throughout the
foam [12]. Figure 9 compares the motion of a foam with some initial defects for two
cases: foams without (upper panels) and with (lower panels) topological changes. Here
the defect is set up by first choosing an hexagonal bubble network and then by modifying
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Figure 9: The spreading of a defect in a hexagonal bubble network due to the diffusive coarsening for the two
cases: foams without (upper panel of each pair) and with (lower panel of each pair) topological changes. Note
that the panels are arranged in pairs for easier comparison, with the two members of each pair corresponding
to the same time.

it so that the central part of the foam contains two 5-edged bubbles and two 7-edged
bubbles, see the first panel in Figure 9.

In the case without topological changes, the two 7-edged bubbles grow at the expense
of the neighboring 5-edged bubbles. When the 5-edged bubbles disappear around time
0.6, two 5-fold junctions are generated. Then the 7-edged bubbles grow further prey-
ing on the neighboring 6-edged bubbles with a new creation of 7-fold junctions, see the
picture at time 2.4. In the case with topological changes, the motion is the same as that
without topological changes at early times. However, when the two 5-edged bubbles dis-
appear around time 0.6, the foam goes through topological changes. The foam evolves
further to show the diffusive coarsening process together with more topological changes.
The spreading of the defect occurs in a realistic fashion only when topological changes
are allowed, as shown in Figure 9 which is comparable to Figure 7.8 in [12], which was
obtained by using a different numerical scheme.
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Finally we simulate the coarsening process of a foam with 200 bubbles immersed
in the domain Ω = [0,1]×[0,1]. Since the computational time of our method is mostly
consumed in solving the fluid equations, the total computational cost is dependent only
slightly on the number of bubbles. Figure 10 shows the motion of the foam with topo-
logical changes at some selected times. Whereas the foam goes through rapid topological
changes and the total number of bubbles decreases rapidly at early times (upper panels),
the topological changes slow down at later times (lower panels), see also the lower panel
of Figure 11.

The upper panels in Figure 11 show the distribution of the number of bubbles (y-
axis) which have any given number of edges (x-axis) at some selected times, and the
lower panel shows the total number of bubbles of the foam as a function of time. The
distribution of the bubbles varies, and the total number of bubbles decreases over time
from 200 to 28, which indicates the diffusive coarsening process of the bubble network.
These statistical behaviors of the foam structure have been investigated in [1, 3, 13, 14],
which contain qualitatively similar figures to Figures 10 and 11.

5 Summary and Conclusions

We have used an immersed boundary method to simulate the fluid dynamics of a two-
dimensional dry foam and extended the model to allow for topological changes of the
bubble network. These topological changes are based on T1 and T2 processes and enable
a foam to complete its total coarsening. We have compared the foam dynamics with-
out and with topological changes. Without topological changes, there occur unrealistic
quadruple or higher order junctions at which the exterior angles are no longer equal to
2π/6, as was assumed in the derivation of the von Neumann relation. The topological
changes as used here resolve these higher-order junctions into triple junctions and enable
us to investigate the foam dynamics in a more realistic way.

A particular feature of the methodology used here is that we simulate the full fluid
dynamics of the foam. Thus we do not make any assumption that the pressure within
each bubble is uniform, or that the internal boundaries are circular arcs. This enables us
to investigate foams that are far from equilibrium as easily as those that progress slowly
through a sequence of near-equilibrium states.

In future work, we plan to extend the methodology introduced here to the study of
three-dimensional foams [2,7]. That is, we plan to simulate the fluid dynamics of a three-
dimensional dry foam by modeling the gas phase of the foam as a viscous incompressible
fluid, and the liquid phase as a massless network of permeable internal boundaries under
surface tension. The gas diffusion through the liquid phase of the foam can be modeled,
as in the two-dimensional case, by allowing the internal boundaries to slip relative to the
fluid, at a velocity (speed and direction) proportional to the boundary force. In 3D, the
bubble boundaries can be represented as surfaces which we can model by triangulation,
and the discrete force density has to be evaluated at the vertices of the triangles. The
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Figure 10: Diffusive coarsening of a foam which initially contains 200 bubbles, with topological changes allowed
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Figure 11: Results from the simulation shown in Figure 10. Upper panels show the numbers of bubbles with
different numbers of edges at selected times, and the lower panel shows the total number of bubbles as a
function of time.
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greatest challenge of the 3D case will be the inclusion of topological changes, as in the
present paper, since the types of changes that need to be considered are surely more
various in 3D than in 2D.
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