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We develop a simple Dufort-Frankel type scheme for solving the time-dependent Gross-Pitaevskii
equation (GPE). The GPE is a nonlinear Schrödinger equation describing the Bose-Einstein con-
densation (BEC) at very low temperature. Three different geometries including 1D spherically
symmetric, 2D cylindrically symmetric, and 3D anisotropic Cartesian domains are considered.
The present finite difference method is explicit, linearly unconditional stable and is able to han-
dle the coordinate singularities in a natural way. Furthermore, the scheme is time reversible
and satisfies a discrete analogue of density conservation law. c© ??? John Wiley & Sons, Inc.
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I. INTRODUCTION

Recently, the Bose-Einstein condensate (BEC) has been observed in dilute atomic vapor
of 87Rb atoms by confining magnetic traps at ultra-low temperature [1, 12]. This suc-
cessful experiment has spurred a great interest in the study of experimental, theoretical
[11], numerical investigations on various aspects of the condensate [2, 4, 8, 9, 19], and
the references therein. The condensate usually consists of a few thousand to millions of
atoms confined by the trap potential. This is a complicated many-body problem whose
complete description would involve a fully understanding of quantum kinetics. However,
at very low temperature, the dynamics of a finite, dilute system of weakly interacting
bosons can be well-captured by the Gross-Pitaevskii theory [13, 18].
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The Gross-Pitaevskii equation (GPE) [13, 18] of the condensate wave function ψ has
the form

i h̄
∂ψ

∂t
= − h̄2

2m
∆ψ + V (x)ψ + U0 |ψ|2 ψ, (1.1)

where in quantum mechanics, the quantity |ψ|2 represents the density distribution of the
atoms. Thus, the total number of atoms N in the condensate equals to

N =

∫

R3

|ψ(x, t)|2 dx. (1.2)

The parameter m is the atomic mass, h̄ the Planck constant, and the U0 describes the
interaction between atoms with the form

U0 =
4π h̄2 a

m
, (1.3)

where a is the s-wave scattering length. Note that, a > 0 represents for a repulsive interac-
tion while a < 0 for attractive interaction. The equation (1.1) was derived independently
by Gross [13] and Pitaevskii [18] in 1960s. Its validity is based on the assumption that
the s-wave scattering length must be much smaller than the average distance between
atoms and that the number of atoms in the condensate be much larger than one. Thus,
at very low temperature, the GPE can be used to explore the macroscopic behavior of
the condensate.

The external trap potential V (x) is usually chosen in the form of a harmonic well,

V (x) =
m

2
(ω2
xx

2 + ω2
yy

2 + ω2
zz

2), (1.4)

where ωx, ωy and ωz are the angular trap frequencies in the x, y, and z direction.
To make the equation dimensionless, we first introduce the following characteristic

length and time units

Sl =

√
h̄

mωx
, St =

1

ωx
. (1.5)

We then scale the space, time and the wave function by those units; that is,

x̃ =
x

Sl
, t̃ =

t

St
, ψ̃ =

S
3/2
l ψ√
N

. (1.6)

After some careful calculation, we obtain the dimensionless GPE (after dropping the ˜
notation) as

i
∂ψ

∂t
= −1

2
∆ψ + V (x)ψ + κ |ψ|2 ψ, (1.7)

where the harmonic trap potential becomes

V (x) =
1

2
(x2 + γ2

y y
2 + γ2

z z
2), γy =

ωy
ωx
, γz =

ωz
ωx
, (1.8)

and the parameter κ is

κ =
4πNa

Sl
. (1.9)
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The density conservation law (1.2) now becomes the normalizing condition
∫

R3

|ψ(x, t)|2 dx = 1. (1.10)

One should note that the above conservation of the position density can be easily derived
from the equation (1.7) itself under the assumption of the same normalizing condition
for the initial value.

The main goal of this paper is to introduce a simple finite difference scheme to solve
the dimensionless GPE (1.7) on different symmetric geometries. There are a few numeri-
cal approaches in the literature. For instance, in [2], the author used the Crank-Nicolson
scheme to study the spherically symmetric GPE in two space dimensions. This is a semi-
implicit scheme, meaning that the nonlinear term of |ψ|2 is treated explicitly while the
linear term is treated implicitly. This scheme is first-order accurate in time and second-
order in space as shown in [4]. The first-order accuracy in time might be attributed
to the way of discretization of |ψ|2 term. If we use the Adams-Bashforth method to
discretize the |ψ|2 term, then the scheme becomes second-order in time and space. This
linearized Crank-Nicolson scheme was developed in [10] for solving the generalized nonlin-
ear Schrödinger equation. However, the Crank-Nicolson type of scheme involves solving
a linear system of equations whose diagonal entries change at each time step. Such com-
putational complexity becomes very impractical in the case of three-dimensional BEC
simulation.

One alternative to avoid solving linear system of equations is to use an explicit scheme.
In [8], the authors used an explicit finite difference method called the synchronous Viss-
cher scheme to simulate the GPE in 2D cylindrical geometry. Notice that, this method
is nothing but the well-known leap-frog scheme [20] which is applied to integrate certain
time-dependent PDEs. As the authors mentioned, the other contribution of their paper
is the careful treatment near the axis (coordinate singularity). However, the leap-frog
scheme has a very restrictive stability constraint so the time step must be chosen one
order smaller than the spatial mesh which makes the method less efficient for the long
time integration.

Another explicit type scheme called Dufort-Frankel method has been applied to solve
the linear and nonlinear one-dimensional Schrödinger equations [21]. The method is very
similar to the leap-frog scheme but has better numerical stability, see the comparison
in the next section. The scheme is time reversible just as the Schrödinger equation.
Furthermore, the grid analogue of density conservation law (1.10) has been established
by different authors [15, 17, 21] to study the convergence and stability of the method. In
particular, Markowich et. al. [17] apply the Wigner-measure analysis to investigate the
convergence of the Dufort-Frankel scheme for the Schrödinger equation in semi-classical
regime.

In this paper, we shall extend the Dufort-Frankel method to solve the Gross-Pitaevskii
equation (1.7) on different symmetric geometries. We will introduce a simple but different
spatial discretization from [2, 8, 9, 19] to handle the coordinate singularities occurring
in spherical and cylindrical geometries. Besides, we will derive a discrete analogue of
density conservation law for the scheme on the spherically symmetric case. To the best
of our knowledge, this is the first time such a scheme has been applied to the context of
BEC problems.

Recently, Bao, Jin and Markowich have proposed an elegant time-splitting spectral
method (TSSP) to solve the linear [6] and nonlinear [5] Schrödinger equations in the
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semi-classical regime. Their method is based on time splitting (two steps) the nonlin-
ear Schrödinger equation in a clever way so that the solution can be integrated exactly
in each time step. The method is second-order accurate in time and spectral accurate
in space. Furthermore, the scheme is explicit, unconditionally stable, time reversible,
time transverse invariant and conserves the position density at discrete level. Comparing
to the Dufort-Frankel scheme, the TSSP method only needs an additional Fast Fourier
Transform (FFT) employed at each time step so the method is very efficient. The ap-
proach has also been applied to solve the GPE in Cartesian coordinates [4] and in the
radial and cylindrical coordinates [7]. Note that, it is not our intention to compare or
compete with the TSSP method. Instead, here we just try to introduce a simple and
explicit finite difference alternative to simulate the time-dependent BEC problem.

The rest of the paper is organized as follows. In Section 2, we make a comparison of
the leap-frog and the Dufort-Frankel schemes by considering the one-dimensional linear
Schrödinger equation. We then write down the detailed time and spatial discretization
for the Dufort-Frankel type scheme on different geometries in Section 3. The numerical
test results are given in Section 4 and followed by some conclusions. In the appendix, we
derive a discrete conservation law of the position density for the present Dufort-Frankel
scheme on 1D spherically symmetric domain.

II. LEAP-FROG VS. DUFORT-FRANKEL SCHEME

In this section, we shall compare the leap-frog and Dufort-Frankel schemes. We will
show that although both schemes are explicit, the leap-frog scheme is conditionally stable
while the Dufort-Frankel scheme is unconditionally stable. For simplicity, we consider
the following one-dimensional linear equation

i
∂ψ

∂t
= −1

2

∂2ψ

∂x2
+ V0 ψ. (2.1)

The potential here is simply chosen as a positive constant V (x) = V0.
The leap-frog scheme for the equation (2.1) is

i
ψn+1
j − ψn−1

j

2 ∆t
= −1

2

ψnj+1 − 2ψnj + ψnj−1

∆x2
+ V0 ψ

n
j . (2.2)

One can easily see that the scheme is explicit and the truncation error is of order O(∆t2+
∆x2). To see the stability, let us apply the von Neumann analysis by writing the discrete
solution as

ψnj = λn ei k(j∆x). (2.3)

Substituting the expansion into (2.2) and manipulating the algebra a bit, we can get the
quadratic equation of the amplification factor as

λ2 + 2 i(µ(1 − cos k∆x) + ∆t V0)λ− 1 = 0, (2.4)

where

µ =
∆t

∆x2
. (2.5)

Thus, the roots of the above equation are

λ± = −i (µ(1 − cos k∆x) + ∆t V0) ±
√

1 − (µ(1 − cos k∆x) + ∆t V0)2. (2.6)
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It can be checked easily that |λ±| = 1, if the stability constraint

2µ+ ∆t V0 ≤ 1, (2.7)

is satisfied. So the leap-frog scheme is conditionally stable.
The Dufort-Frankel scheme for the equation (2.1) is simply to replace the term ψnj by

(ψn+1
j + ψn−1

j )/2 in the leap-frog (2.2); that is

i
ψn+1
j − ψn−1

j

2 ∆t
= −1

2

ψnj+1 − (ψn+1
j + ψn−1

j ) + ψnj−1

∆x2
+ V0

ψn+1
j + ψn−1

j

2
. (2.8)

One can easily check that the truncation error is of order O(∆t2 + ∆x2 + (∆t/∆x)2).
The scheme is again explicit since the right-hand side term involves only ψn+1

j term (no

ψn+1
j+1 and ψn+1

j−1 terms). Applying the von Neumann analysis, we can get the quadratic
equation of the amplification factor as

(1 + i (µ+ ∆t V0))λ
2 − (2 i µ cosk∆x)λ − (1 − i (µ+ ∆t V0)) = 0. (2.9)

The roots of the above equation are

λ± =
i µ cosk∆x±

√
−µ2 cos2 k∆x+ 1 + (µ+ ∆t V0)2

1 + i (µ+ ∆t V0)
. (2.10)

Note that, the term inside the square root is always positive; thus, it can be checked
easily that |λ±| = 1, for any µ. This concludes that the scheme is unconditionally stable.
However, in order to ensure the consistency, the meshes should satisfy ∆t/∆x → 0 as
the meshes ∆t,∆x go to zero. Therefore, the key to the convergence is the consistency
rather than the stability of the scheme.

III. DUFORT-FRANKEL SCHEME FOR GPE ON DIFFERENT GEOMETRIES

In this section, we will present the detailed time and spatial discretization of Dufort-
Frankel scheme for the GPE (1.7) in different geometries. Those geometries include
the 1D spherically symmetric, 2D cylindrically symmetric, and 3D anisotropic Cartesian
domains. One should realize that those geometries we considered here are strongly related
to the form of the trap potential via the choice of γy and γz in (1.8). Notice that, the
present Dufort-Frankel scheme is time reversible just like the equation (1.7), and satisfies
a discrete analogue of density conservation law (see the appendix in detail).

A. 1D spherically symmetric case

For the isotropic case (i.e. γy = γz = 1), the BEC ground state wave function is
spherically symmetric [19]. Thus, the 3D GPE (1.7) with spherical symmetry can be
simply reduced to an effective 1D equation as

i
∂ψ

∂t
= −1

2

(
∂2ψ

∂r2
+

2

r

∂ψ

∂r

)
+

1

2
r2 ψ + κ |ψ|2 ψ, (3.1)

with the normalizing condition

4π

∫ ∞

0

|ψ|2 r2 dr = 1. (3.2)
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The traditional numerical approach [19] is first to write the wave function as a new
function divided by 1/r term, then substitute this new form into the equation (3.1) to
eliminate the first derivative term. In order to integrate the equation, the behavior at
r = 0 must be derived. However, one can see that is not necessary in our finite difference
discretization as follows.

Since the solution decays very fast in the radial direction, we simply pick a large
domain [0, R] such that the solution is set to be ψ(R, t) = 0. We then choose a uniform
spatial grid rj = j∆r, j = 1, 2, . . . ,M with ∆r = R/(M + 1), and a temporal grid
tn = n∆t with the time step ∆t > 0. Now we discretize the equation (3.1) by the
Dufort-Frankel type scheme

i
ψn+1
j − ψn−1

j

2 ∆t
= −1

2

(
ψnj+1 − (ψn+1

j + ψn−1
j ) + ψnj−1

∆r2
+

2

rj

ψnj+1 − ψnj−1

2∆r

)
(3.3)

+
1

2
r2j

ψn+1
j + ψn−1

j

2
+ κ |

ψn+1
j + ψn−1

j

2
|2
ψn+1
j + ψn−1

j

2
,

where the solution ψnj is considered an approximation of ψ(rj , tn). Unlike the explicit

treatment for the |ψ|2 term used in the work [21, 15], we discretize the nonlinear term
implicitly too. So in order to find ψn+1

j , we need to solve a complex cubic equation of
ψn+1

j
+ψn−1

j

2 . However, this can be done analytically and no extra work is needed. Besides,
when the index j = 1 of (3.3), it can be observed that the coefficient of ψn0 equals to
zero. Thus, there is no need to find the numerical boundary value ψn0 so that no pole
condition is needed. Therefore, the coordinate singularity can be handled more naturally
than in [19].

B. 2D cylindrically symmetric case

In the earlier BEC experiments, the external potential is typically chosen in the form of
cylindrical trap (γy = 1, γz 6= 1), so that the number γz determines the aspect ratio of
the trap. With cylindrical symmetry, the 3D GPE can be simply reduced to an effective
2D equation as

i
∂ψ

∂t
= −1

2

(
∂2ψ

∂r2
+

1

r

∂ψ

∂r
+
∂2ψ

∂z2

)
+

1

2
(r2 + γ2

zz
2)ψ + κ |ψ|2 ψ, (3.4)

with the normalizing condition

2π

∫ ∞

−∞

∫ ∞

0

|ψ|2 r dr dz = 1. (3.5)

As in the 1D spherically symmetric case, we simply choose a computational domain
Ω = [0, R]× [−Lz/2, Lz/2] in r− z plane such that the solution is set to be zero outside
this domain. That is, we set ψ(R, z, t) = 0 and ψ(r,−Lz/2, t) = ψ(r, Lz/2, , t) = 0.
Again, like the 1D isotropic case, most of existing numerical methods such as the one
in [8] need to have specific treatment at the origin. In the next, we will see this is not
necessary in our finite difference discretization.

We first choose a shifted grid [16] as

(rj , zk) = ((j − 1/2)∆r,−Lz/2 + k∆z), 1 ≤ j ≤M, 1 ≤ k ≤ L, (3.6)



DUFORT-FRANKEL SCHEME FOR GPE 7

where ∆r = 2R/(2M+1) and ∆z = Lz/(L+1). Now we write down the Dufort-Frankel
type scheme for the equation (3.4) by

i
ψn+1
jk − ψn−1

jk

2 ∆t
= −1

2
(
ψnj+1,k − (ψn+1

jk + ψn−1
jk ) + ψnj−1,k

∆r2
+

1

rj

ψnj+1,k − ψnj−1,k

2∆r
(3.7)

+
ψnj,k+1 − (ψn+1

jk + ψn−1
jk ) + ψnj,k−1

∆z2
) +

1

2
(r2j + γ2

zz
2
k)
ψn+1
jk + ψn−1

jk

2

+κ |
ψn+1
jk + ψn−1

jk

2
|2
ψn+1
jk + ψn−1

jk

2
.

Note that, by choosing such grid, we avoid placing the grid point directly at the origin.
When the index j = 1 in (3.7), the coefficient of ψn0k equals to zero since r1 = ∆r/2.
Once again, we do not have to find the numerical boundary value ψn0k so that no pole
condition at r = 0 is needed. This concludes that our scheme is more succinct than the
scheme with pole conditions.

C. 3D anisotropic case

Now we consider the 3D anisotropic case without any symmetry (γy 6= γz 6= 1). The
3D GPE is written in Cartesian coordinates with the form (1.7). As the previous two
cases, we choose a 3D computational domain Ω = [−Lx/2, Lx/2] × [−Ly/2, Ly/2] ×
[−Lz/2, Lz/2], such that the solution is set to be zero outside this domain. We then
define a uniform grid in this computational domain by

(xj , yk, zl) = (−Lx/2 + j∆x,−Ly/2 + k∆y,−Lz/2 + l∆z). (3.8)

The 3D GPE (1.7) can be discretized by the Dufort-Frankel method as

i
ψn+1
j,k,l − ψn−1

j,k,l

2 ∆t
= −1

2
(
ψnj+1,k,l − (ψn+1

j,k,l + ψn−1
j,k,l) + ψnj−1,k,l

∆x2
(3.9)

+
ψnj,k+1,l − (ψn+1

j,k,l + ψn−1
j,k,l ) + ψnj,k−1,l

∆y2
+
ψnj,k,l+1 − (ψn+1

j,k,l + ψn−1
j,k,l) + ψnj,k,l−1

∆z2
)

+
1

2
(x2
j + γ2

yy
2
k + γ2

zz
2
l )
ψn+1
j,k,l + ψn−1

j,k,l

2
+ κ |

ψn+1
j,k,l + ψn−1

j,k,l

2
|2
ψn+1
j,k,l + ψn−1

j,k,l

2
.

Here, the numerical boundary values in x, y and z directions are all given by the zero
boundary conditions.

IV. NUMERICAL RESULTS

In this section, we perform a series of tests for the Dufort-Frankel type scheme developed
in the previous section. Those test problems consist of the accuracy check of 1D spheri-
cally symmetric case, the free expansion of 2D cylindrically symmetric condensate, and
the 3D simulation of the anisotropic condensate. To quantify the numerical results, we
define the condensate width σx along x−axis as

σx =
√
〈(x − 〈x〉)2〉, (4.1)
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where the bracket 〈·〉 denotes the space averaging with respect to the position density

〈f〉 ≡
∫

Ω

f(x) |ψ(x, t)|2 dx. (4.2)

As we can see from the probability theory, the bracket 〈·〉 represents the expected value
while the condensate width σx represents the standard deviation. Similarly, we can define
the condensate widths σy, σz and σr of y, z and r directions in the same manner.

Example 1: The accuracy check of 1D spherically symmetric case
In the first test, we consider the following 1D accuracy check. The idea is to construct
an exact solution for the 1D spherically symmetric GPE (3.1), and then apply the 1D
Dufort-Frankel scheme (3.3) to obtain the numerical solution. To proceed, we need to
find the ground state solution within the formalism of mean-field theory. For this, the
condensate wave function can be written as

ψ(r, t) = e−i µ t φ(r), (4.3)

where µ is the chemical potential and φ is a time-independent real function. Then the
Gross-Pitaevskii equation becomes

µφ = −1

2

(
∂2φ

∂r2
+

2

r

∂φ

∂r

)
+

1

2
r2 φ+ κ |φ|2 φ, (4.4)

subject to the same normalizing condition (3.2) for φ. Obviously, we have |ψ(r, t)|2 =
|ψ(r, 0)|2 = φ2(r), meaning that the density profile has the same shape as the ground
state density.

Instead of solving the nonlinear eigenvalue problem (4.4) directly, we use the same
Dufort-Frankel scheme to compute the ground state solution by solving the normalized
gradient flow to its steady state [3]. This approach of finding the ground state is called the
imaginary-time method which is popularly used in physics literatures. Once we obtain
the µ and φ(r), we can construct the exact wave function by the equation (4.3).

Now we apply the 1D scheme (3.3) to integrate the spherically symmetric GPE (3.1).
The initial condition ψ(r, 0) is chosen as the computed ground state solution φ(r). Table I
shows the grid refinement results for our Dufort-Frankel scheme. The error is measured
by the maximal norm of the difference between the exact solution ψe given by (4.3) and
the computed solution ψc. We compute three different errors: ‖|ψe|2−|ψc|2‖∞, real part
‖Re(ψe−ψc)‖∞, and imaginary part ‖Im(ψe−ψc)‖∞ errors. In our test, the parameter
κ = 100.

As mentioned in Section 2, the truncation error of the Dufort-Frankel scheme is
O(∆t2 +∆r2 +(∆t/∆r)2). One can easily see that if we choose the time step ∆t = ∆r2,
then we expect second-order convergence as the mesh is refined. This is indeed the case
as we see from Table I. However, using these meshes, the leap-frog scheme is unstable.

Fig. 1-(a) shows the plot of the computed density solution |ψ|2 at T = 5 and the
ground state solution φ2 = |ψ(r, 0)|2. One can see they coincide with each other quite
well. Fig. 1-(b) is the evolutionary plot of the l2 norm of |ψ|. One can see that our
scheme actually preserves the normalizing condition (3.2) very well too.

Example 2: Free expansion of 2D cylindrically symmetric condensate
In this example, we consider the free expansion of 2D cylindrical self-interacting con-
densate [14]. Such a situation is realized in experiments by first evaporative cooling an
almost pure condensate in which the non-condensate portion is less than 20%. We then
allow the cloud to expand freely by suddenly turning off the confining potential.
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TABLE I. Three different errors for ‖|ψe|
2 − |ψc|

2‖∞ ‖Re(ψe − ψc)‖∞, and ‖Im(ψe − ψc)‖∞
at T = 5.

∆r ∆t ‖|ψe|
2 − |ψc|

2‖∞ rate ‖Re(ψe − ψc)‖∞ rate ‖Im(ψe − ψc)‖∞ rate

1

10

1

100
8.7241e-004 - 0.0645 - 0.1024 -

1

20

1

400
2.6937e-004 1.70 0.0115 2.49 0.0294 1.80

1

40

1

1600
7.4881e-005 1.85 0.0026 2.15 0.0076 1.95
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FIG. 1. (a) The plot of computed density |ψ(r, T = 5)|2 and the ground state density |φ|2 =
|ψ(r, 0)|2. (b) The time evolutionary plot of l2 norm of |ψ|.
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FIG. 2. The snapshots of the density |ψ|2 profile at different times for the free expansion of
2D cylindrical condensate.

In order to simulate this problem, as in [8], we start with an elongated condensate
wave function as

ψ(r, z, 0) =
γ

1/4
z

(12.5π)3/4
exp(−0.04(r2 + γ2

z z
2)), (4.5)

with the aspect ratio γz =
√

8 as in [8]. At time t = 0+, we turn off the trap potential
to let the condensate expand freely; that is, we use the scheme (3.7) to evolve the 2D
GPE (3.4) without the trap potential term. The computational domain is chosen as
[0, 20] × [−20, 20] in the r − z plane. The mesh width is chosen as ∆r = ∆z = 0.1 and
the time step ∆t = 0.01. The parameter κ = 100 corresponds to thousands of bosons in
physical units.

Fig. 2 shows four snapshots of contour images of the condensate density function
|ψ|2. One can see that the condensate is initially confined more strongly in the axial
(z) direction than in the radial (r) direction. Once the trap potential is removed, the
condensate proceeds an expansion where the thin portion of condensate expands faster
than the thick one. This phenomenon has been confirmed from the contour plots as well
as the condensate widths plots in Fig. 3.

Example 3: 3D anisotropic defocusing condensate
We now perform the anisotropic test by simulating the 3D defocusing condensate [4]. As
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FIG. 3. The time evolutionary plot of the 2D condensate widths σr and σz.

in [4], the initial condition is taken as

ψ(x, y, z, 0) =
(γy γz)

1/4

π3/4
exp(−(x2 + γy y

2 + γz z
2)/2). (4.6)

The computational domain is chosen as Ω = [−8, 8]3. We use the mesh ∆x = ∆y =
∆z = 1/8 and the time step ∆t = 0.001.

Fig. 4 shows the condensate widths as a function of time for the anisotropic condensate
of γy = 2 and γz = 4 for the weakly interacting case κ = 10. One can see the time
frequencies of the condensate widths σy and σz are roughly two and four times of the
frequency of σx, respectively. This result coincides with the frequency ratios γy and γz
perfectly which also shows a good agreement with the one obtained in [4]. Thus, the
numerical evidence confirms the validness of our scheme.

V. CONCLUSIONS

In this paper, we have developed a simple Dufort-Frankel type scheme for solving the
time-dependent Gross-Pitaevskii equation in different symmetric geometries. The GPE is
a nonlinear Schrödinger equation describing the Bose-Einstein condensation at very low
temperature. We present the detailed time and spatial discretization for the equation
in three different geometries including the 1D spherically symmetric, 2D cylindrically
symmetric, and 3D anisotropic Cartesian domains. The present finite difference scheme
has three major advantages: it is explicit, linearly unconditional stable and is able to
handle the coordinate singularities naturally. Furthermore, the scheme is time reversible
and satisfies a discrete analogue of density conservation law. The numerical evidence of
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FIG. 4. The time evolutionary plot for the 3D anisotropic condensate width of the case
γy = 2, γz = 4.

different test problems shows the validness of our scheme. It is our belief that the present
numerical scheme can be applied to further complex time-dependent BEC problems.

The authors thank Professor Tsin-Fu Jiang for his helpful discussion and the
referees for their suggestions to improve the original version of this paper. The
work was partially supported by the National Science Council of Taiwan under
research grant NSC-92-2115-M-009-012.

APPENDIX: DISCRETE DENSITY CONSERVATION OF THE DUFORT-FRANKEL SCHEME

As shown in the Introduction, the GPE (1.7) preserves the L2 norm of the wave function
as (1.10). It is desirable for a finite difference scheme to preserve this quantity at the
discrete level. In [15, 21], the authors have investigated some discrete conservation of the
Dufort-Frankel scheme for 1D linear and nonlinear Schrödinger equations in Cartesian
coordinates. In this appendix, we shall derive a discrete analogue of density conservation
for the 1D spherically symmetric GPE (3.1)

i
∂ψ

∂t
= − 1

2 r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

2
r2 ψ + κ |ψ|2 ψ. (A1)

Here, we rewrite the Laplacian term as a divergence form. Note that, the following
derivation can be extended to the 2D cylindrically symmetric and 3D cases without any
difficulty.
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To proceed, we introduce some notations firstly. As before, we truncate the infinite
domain to a large computational domain [0, R] such that the solution is set to be ψ(R, t) =
0. We then choose a spatial mesh ∆r = R/M , and define the spatial grid points

rj−1/2 = (j − 1) ∆r, rj = (j − 1/2) ∆r, rj+1/2 = j∆r, 1 ≤ j ≤M. (A2)

The numerical approximation ψj is defined at the grid point rj so that the boundary
value ψM+1 = 0. We also define the discrete l2 norm of ψj by

‖ψ‖2 =

M∑

j=1

r2j |ψj |2 ∆r. (A3)

One should notice that the above numerical integration is simply the midpoint rule for
the integral in (3.2).

Now we discretize the equation (A1) by the Dufort-Frankel type scheme

i
ψn+1
j − ψn−1

j

2 ∆t
= − 1

2 r2j

(
r2j+1/2

ψnj+1 − ψ̃nj
∆r

− r2j−1/2

ψ̃nj − ψnj−1

∆r

)
/∆r (A4)

+
1

2
r2j ψ̃

n
j + κ |ψ̃nj |2 ψ̃nj

where ψ̃nj =
ψn+1

j
+ψn−1

j

2 . Multiplying the equation (A4) by the term 2 ψ̃nj r
2
j ∆r (z is the

complex conjugate of z), and making the summation over j = 1 to M , we obtain

i
M∑

j=1

(ψn+1
j − ψn−1

j ) 2 ψ̃nj r
2
j ∆r = 2 ∆t

M∑

j=1

r4j |ψ̃nj |2 ∆r + 4 ∆t κ
M∑

j=1

r2j |ψ̃nj |4 ∆r

− ∆t

∆r2

M∑

j=1

(r2j+1/2(ψ
n
j+1 − ψ̃nj ) − r2j−1/2(ψ̃

n
j − ψnj−1)) 2 ψ̃nj ∆r

∗

Taking the imaginary part of the above equation and using the definition of the discrete
l2 norm, we obtain

‖ψn+1‖2 − ‖ψn−1‖2 = − ∆t

∆r2
Im{

M∑

j=1

(r2j+1/2ψ
n
j+1 + r2j−1/2ψ

n
j−1) 2 ψ̃nj ∆r}. (A5)

Adding ‖ψn‖2 to the both sides and substituting the definition of ψ̃nj into the above
equation, we can obtain

‖ψn+1‖2 + ‖ψn‖2 +
∆t

∆r2
Im{

M∑

j=1

(r2j+1/2ψ
n
j+1 + r2j−1/2ψ

n
j−1)ψ

n+1
j ∆r}

= ‖ψn‖2 + ‖ψn−1‖2 − ∆t

∆r2
Im{

M∑

j=1

(r2j+1/2ψ
n
j+1 + r2j−1/2ψ

n
j−1)ψ

n−1
j ∆r}

= ‖ψn‖2 + ‖ψn−1‖2 +
∆t

∆r2
Im{

M∑

j=1

(r2j+1/2ψ
n
j+1 + r2j−1/2 ψ

n
j−1)ψ

n−1
j ∆r}
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= ‖ψn‖2 + ‖ψn−1‖2 +
∆t

∆r2
Im{

M∑

j=1

(r2j+1/2ψ
n−1
j+1 + r2j−1/2ψ

n−1
j−1 )ψnj ∆r + r21/2 (ψn0 ψ

n−1
1 − ψn1 ψ

n−1
0 ) ∆r}

= ‖ψn‖2 + ‖ψn−1‖2 +
∆t

∆r2
Im{

M∑

j=1

(r2j+1/2ψ
n−1
j+1 + r2j−1/2ψ

n−1
j−1 )ψnj ∆r}. (r1/2 = 0 in (A2))

Therefore, we derive a discrete analogue of density conservation as

‖ψn+1‖2 + ‖ψn‖2 +
∆t

∆r2
Im{

M∑

j=1

(r2j+1/2ψ
n
j+1 + r2j−1/2ψ

n
j−1)ψ

n+1
j ∆r} ≡ C. (A6)
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