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Abstract. In this paper, numerical methods are proposed for some interface problems in polar

or Cartesian coordinates. The new methods are based on a formulation that transforms the interface

problem with a non-smooth or discontinuous solution to a problem with a smooth solution. The

new formulation leads to a simple second order finite difference scheme for the partial differential

equation and a new interpolation scheme for the normal derivative of the solution. In conjunction

with the fast immersed interface method, a fast solver has been developed for the interface problems

with piecewise constant but discontinuous coefficient using the new formulation in polar coordinate

system.
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1. Introduction. Our original motivation of the paper is to solve certain elliptic
interface problems defined in a disk using polar coordinates. To this purpose, we
consider two types of interface problems.

1.1. Interface problem A. The Poisson equation with discontinuities and sin-
gularities:

∆u(x) = f(x), x ∈ R− Γ,

u(x) = u0(x), on ∂R,
(1.1)

where ∆ is the Laplacian operator, R is a circular domain in two space dimensions,
∂R is the boundary of R, Γ ∈ C2 is a closed interface that does not pass the origin
within the domain R. Across the interface Γ, the jump conditions in the solution and
in the flux

[u]|X∈Γ = w(s), [un]|X∈Γ = v(s), w(s) ∈ C2(Γ), v(s) ∈ C2(Γ), (1.2)

are prescribed, where s is the arc-length parameter of the interface Γ, un = ∂u
∂n = ∇u·n

is the normal derivative of u, and n is the unit normal direction of Γ pointing outward,
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see Fig. 1.1 for a geometric illustration. The jumps are defined as the difference of
the limiting values from two different sides of the interface, for example

[u]|X∈Γ = lim
x→X,x∈R+

u(x) − lim
x→X,x∈R−

u(x) define= u+(X)− u−(X).

In this paper, since the jump is always defined at the interface, we can use either
[u]|X , or [u] with the subscript dropped, for the jump if there is no confusion. Across
the interface, the source term f(x) can also have a discontinuity. We refer the readers
to [9, 10, 11] for more explanations on the jump conditions. In this paper, we use bold

n
τ

r = rmax

Γ

R−
β+

β−

R+

Fig. 1.1. (a). A diagram of a circular domain R = R+∪R− with an immersed interface Γ(s).

The coefficients β(x) may have a jump across the interface.

face of lower case letters such as x = (x, y), y, · · · to express points in the domain
R, and bold face of upper case letters such as X, Y, · · · to express points on the
interface Γ unless stated otherwise. We use a Dirichlet boundary condition on ∂R for
simplicity. Other boundary conditions can be treated using standard techniques.

1.2. Interface problem B. The elliptic equation with discontinuities and sin-
gularities:

∇ · (β(x)∇u(x)) = f(x), x ∈ R− Γ,

u(x) = u0(x), on ∂R,
(1.3)

where · is the Euclidean norm, and β(x) has a constant value in each sub-domain,

β(x) =

{
β+ if x ∈ R+

β− if x ∈ R−.
(1.4)

The jump conditions

[u]|X∈Γ = w(s), [βun]|X∈Γ = v(s), (1.5)
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are prescribed along the interface Γ.

Note that the problem A is a special case of the problem B with β− = β+ = 1.
Problem B can be written as a single partial differential equation (PDE) to include
the interface Γ in the domain in the sense of distributions. For example, if w ≡ 0,
then the problem (1.3)-(1.5) is well known to be equivalent to

∇ · (β(x)∇u(x)) = f(x) +
∫

Γ

v(s) δ2(x−X(s)) ds,

u(x) = u0(x), on ∂R,

(1.6)

where the equation is defined for all x ∈ R including Γ, δ2(x) is the two dimensional
Dirac delta function, see [10, 11] for the equivalence. The non-homogeneous jump in
the solution can also be incorporated as a double layer source distribution along the
interface Γ in the potential theory.

1.3. Some applications of the interface problems and a brief review
of numerical methods. In the computation of micro-magnetics for ferromagnetic
materials, or electrostatics for macromolecules, the potential function can be model
as the solution of the interface problem A or B, see [5]. For a potential problems
defined on an infinite domain, usually a big circle or rectangle is used to divide the
infinite domain into two parts. The problem then can be solved either on one or both
domains. If a circle is used in the separation, then the discussions in this paper can
be applied.

Equation (1.6), in which the interface conditions (1.5) with w = 01 is expressed
as a distribution using the Dirac delta function, is the core of Peskin’s immersed
boundary (IB) method, see [18] for an overview. Numerically, the IB method uses a
discrete delta function to distribute the integral in (1.6) to the nearby grid points.
The IB method have been used for many applications, particularly in fluid mechanics
and mathematical biology. However, the IB method is known to be only first order
accurate. In this paper, we will propose second order accurate algorithms for the
interface problems A and B including the IB model (1.6), in polar coordinates.

The interface problems A and B probably can be solved with some efforts us-
ing other methods as well, for example, finite element methods with a body fitted
grid; the ghost fluid method (GFM) [15] which is first order accurate, the second
order finite difference methods based on integral equations [4, 16], the explicit jump
immersed interface [21], and a few others. We refer the readers to [13] for a brief
discussion of different methods. However, there are few discussions on how to apply
these techniques to problems in polar coordinates.

The immersed interface method (IIM) [9, 11, 13] has a number of advantages in
solving interface problems. However, the IIM method has not been directly applied
to the interface problems in polar coordinates because the equation (1.3) has a non-
constant coefficient in polar coordinates. The jump relations of the solution and its

1In some of the literature, Γ is called an internal boundary, and (1.5) is called internal boundary

conditions.

3



derivatives are not as useful and informative in polar coordinates as the ones derived
in [9, 11] for Cartesian coordinates.

1.4. The contributions and the organization of the paper. In Section 2, a
new formulation that is based on the extension of the jump conditions (1.2) along the
normal lines is proposed. The new formulation transforms the interface problem A to a
problem with a smooth solution. Theoretical analysis is given for the new formulation
there.

In Section 3, a numerical method that uses the new formulation. The method is
second order accurate in the maximum norm. The cost of the new method is about
one call to a fast Poisson solver.

We should point out that the idea of extending the solution smoothly across the
interface is not new, see, for example, the description of the IIM method in terms of
extensions [3], the ghost fluid method [15], and maybe some others. The question is
how to do it correctly and accurately to obtain efficient and accurate algorithms. Our
proposed extension is particularly simple when the interface Γ is implicitly defined by
a level set function. The strategy of the extension developed in this paper is unique
and distinct from other approaches. The numerical method developed from the jump
extension is simple and accurate for both the solution and its normal derivative.

In Section 4, we generalize the fast immersed interface method developed in [12]
to the interface problem B in polar coordinates. The iterative method utilizes the new
algorithm described in Section 3 as a fast Poisson solver. The iterative method for
piecewise constant coefficient is second order accurate and the number of iterations is
almost independent of the mesh size and the jump in the coefficient.

Numerical experiments and analysis are reported in Section 5.

2. A new formulation and extensions for the interface problem A. Let
us repeat the interface problem A below:

∆u = f, x ∈ R− Γ, [u]Γ = w(s). [un]Γ = v(s),

u(x) = u0(x).
(2.1)

We assume that w ∈ C2(Γ) and v ∈ C2(Γ).

Let ϕ(x) be a real valued function such that

ϕ(x)




< 0, if x ∈ R−,

= 0, if x ∈ Γ,

> 0, if x ∈ R+.

(2.2)

We assume that ϕ(x) ∈ C3(R)2 in the neighborhood of the interface Γ, which is
the zero level set ϕ(x) = 0. Usually, the level set function is chosen as the signed

2In the algorithms implementation, ϕ(x) just needs to be in C2(R), see Section 3-5. Second

order accurate results are obtained when ϕ(x) ∈ C2.

4



distance function from the interface, see [17, 20] and the references therein. In the
neighborhood of the interface Γ, we define the extensions of w(X(s)) and v(X(s))
along the normal line (both directions) as

we(x) = we (X(s) + αn) = w(X(s)), (2.3)

and

ve(x) = ve (X(s) + αn) = v(X(s)), (2.4)

for all α ∈ R such that the normal lines do not intersect, where n is the unit nor-
mal direction pointing outward. We construct the following function based on the
extension

ũ(x) = we(x) + ve(x)
ϕ(x)

|∇ϕ(x)| , (2.5)

where | · | is used to denote the Euclidean norm. Note that ũ(x) ∈ C2 in the neigh-
borhood of the interface Γ since we assume that w(s), v(s) are in C2, and ϕ is in C3.
Define also

û(x) = H(ϕ(x))ũ(x) =




0, if ϕ(x) < 0,
1
2 ũ(x), if ϕ(x) = 0,

ũ(x), if ϕ(x) > 0,

(2.6)

in the same neighborhood in which ũ(x) is well defined, where H(·) is the Heaviside
function. We have the following theorem.

Theorem 2.1. Let u(x) be the solution of (2.1), û(x) be defined in (2.6). Define
q(x) = u(x)− û(x). Then in the neighborhood of the interface where we(x) and ve(x)
are well defined, the following are true:

∆q(x) = f(x)−H(ϕ(x))∆û(x), x ∈ R− Γ, (2.7)

[q]Γ = 0, [qτ ]Γ = 0, [qn]Γ = 0, (2.8)

where τ is the unit tangent direction, and qτ = ∇q · τ = ∂q
∂τ . In other words, the new

function q(x) is a smooth function across the interface Γ.

Proof: If x ∈ R−, then we have û(x) = 0, so ∆û(x) = 0, and H(ϕ(x)) = 0.
Therefore ∆q(x) = ∆u(x)−0 = f(x) and (2.7) is true. If x ∈ R+, then H(ϕ(x)) = 1,
we have

∆q(x) = ∆u(x)−∆û(x) = f(x)−H(ϕ(x))∆û(x).

What are left to prove are the jump conditions. Note that for any X(s) ∈ Γ, we have

[q]X(s) = [u]X(s) − [û]X(s) = w(s)− ũ+(X(s)) = w(s)− we(X(s)) = 0.

Since w(s) is differentiable along the interface, so is we(X(s)). Differentiate the ex-
pression above with respect to s, we get

d

ds
[q]X(s) = w′(s)− d

ds
we(X(s)) = [qτ ]X(s) = 0.
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To prove the last jump condition, we proceed with the following derivation

∇
(

ve(x)
ϕ(x)

|∇ϕ(x)|
)
· n = ve(x)∇ ϕ(x)

|∇ϕ(x)| · n

= ve(x)
( ∇ϕ(x)
|∇ϕ(x)| + ϕ(x)∇ 1

|∇ϕ(x)|
)
· n,

here we have used the fact that ve(x) is a constant along the normal line. Using the
facts that n = ∇ϕ/|∇ϕ|, ϕ = 0 on Γ, and ∇we(x) · n = 0, we conclude that

û+
n (X(s)) = ∇we(x) · n + ve(X(s))

∇ϕ(X(s))
|∇ϕ(X(s))| · n

= v(X(s))
∇ϕ(X(s))
|∇ϕ(X(s))| ·

ϕ(X(s))
|∇ϕ(X(s))| = v(X(s)),

for any point X(s) on the interface. Therefore we get

[qn](X(s)) = [un](X(s))− û+
n (X(s)) = 0. 2

Remark: While q(x) is smooth across the interface Γ, its second derivatives
usually have finite jumps across the interface. This can also be observed from equation
(2.7) where the right hand side is discontinuous across the interface.

3. A numerical algorithm for the interface problems A. For a discontin-
uous quantity such as u(x), f(x), etc., if x happens to be a grid point, then we define
its value at the interface as the limiting value from a particular side of the interface,
say the R+ side instead of the average of the limiting values from the two sides. This
is because our algorithms actually approximate the partial differential equation from
a particular side at the grid points near the interface.

In this section, we assume that β = 1 for simplicity. We describe our algorithm
for solving (2.1). While the discussion is for polar coordinates, it can and have been
applied to Cartesian grids with minor modifications.

We assume the domain is 0 ≤ r ≤ rmax, 0 ≤ θ < 2π. We construct the following
grid in polar coordinates:

ri =
(

i− 1
2

)
∆r, i = 1, 2, · · · ,M with rM = rmax, ∆r =

rmax

M − 1
2

;

(3.1)

θj = j∆θ, j = 0, 1, · · · , N − 1, with θ0 = 0, ∆θ =
2π

N
.

The j index ends at N − 1 because u(r, 0) = u(r, 2π). We choose ∆θ ∼ ∆r and
introduce

h = max { ∆r, ∆θ } (3.2)

for later use. We choose such a grid that the fast Poisson solver developed in [8] can
be used. The level set function is defined at grid points according to ϕij = ϕ(ri, θj).
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Because q(x) is smooth across the interface, we should be able to get reasonably good
accuracy with the standard central five-point finite difference scheme. Clearly, the
crucial part is how to extend w(s) and v(s) along the normal line accurately, and how
far we should extend. These issues will be discussed in the following subsections.

We will use upper case letters such as Uij , the approximate solution to u(r, θ) at
(ri, θj), U , the vector formed by all Uij , etc., for discrete approximations, and lower
case letters such as u, q, ϕ etc., for the exact solutions or exact quantities unless
stated otherwise.

3.1. The extension of the jumps along the normal line. Let

ϕmax
i,j = max{ϕi−1,j , ϕi,j , ϕi+1,j , ϕi,j−1, ϕi,j+1},

ϕmin
i,j = min{ϕi−1,j , ϕi,j , ϕi+1,j , ϕi,j−1, ϕi,j+1}.

(3.3)

We define xij as an irregular grid point if

ϕmax
i,j ϕmin

i,j ≤ 0. (3.4)

We define xij = (ri, θj) as an sub-irregular grid point if it is not an irregular grid
point, but one of its four neighbors is an irregular grid point.

If xij is neither an irregular nor a sub-irregular grid point, then we call it a
regular grid point.

Note that all the irregular and sub-irregular points are located within two grid
size from the interface. In our numerical scheme, we only need to extend the jumps
to all the irregular and sub-irregular grid points. Given any such a grid point x = xij ,
the normal extension of the jumps is simply the jumps at the orthogonal projection
of xij on the interface. So the crucial part is to find the projections effectively and
accurately in polar coordinates. Assume that x = (r, θ) is a point near the interface.
Let X∗ be the orthogonal projection of x on the interface. We can write

X∗ = x + αp, where p =


 ϕr(x)

ϕθ(x)
r2


 . (3.5)

Since x is close to the interface, α is small. Using the Taylor expansion at x, we get
the following quadratic equation for the unknown scalar α:

ϕ(x) + (∇ϕ(x) · p) α +
1
2

(
pT He(ϕ(x))p

)
α2 = 0, (3.6)

where

pT He(ϕ)p = ϕ2
r ϕrr +

2
r2

ϕrϕθϕrθ +
1
r4

ϕ2
rθ ϕθθ. (3.7)

In our algorithm, x is an irregular or sub-irregular grid point. The partial derivatives
∇ϕ(x), ϕrr, ϕrθ, and ϕθθ are computed at the grid point using the standard centered
five-point difference formula. For Cartesian coordinates, we refer the readers to [7, 14]
for the details.
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Remark: Usually (3.6) has two solutions. We pick one that minimizes ‖x−X∗‖2.
If there are more than one point on the interface that have equal distance to x, which
can happen only if the curvature is very large (∼ 1/h) relative to the grid, we just
take one of those points as the projection. The extension then is carried out with the
chosen projection. This actually has little effect on the global accuracy because such
points are few, if exist, see [2] for the reasoning for a similar problem.

3.2. An outline of the algorithm. Our algorithm for solving (2.1) is outlined
below:

• Set-up a grid (3.1).
• Label all the grid points as regular, irregular, and sub-irregular.
• Find the projections for irregular and sub-irregular grid points using (3.5)

and (3.6).
• Extend the jumps to irregular and sub-irregular grid points from the projec-

tions to get ũij and ûij defined in (2.5) and (2.6).
• Form the discrete Laplacian

∆hUij =




fij −H(ϕij)∆hũij + ∆hûij + Cij , if xij is irregular,

fij , otherwise.
(3.8)

where ∆h is the standard central finite difference operator. In polar coordi-
nates, for example, it is3

∆hUij =
Ui−1,j − 2Uij + Ui+1,j

(∆r)2
+

1
ri

Ui+1,j − Ui−1,j

2∆r

+
1
r2
i

Ui,j−1 − 2Uij + Ui,j+1

(∆θ)2
.

The correction term Cij is defined in (3.10) and it is important for second
order accuracy of our method.

• Apply the fast Poisson solver for polar coordinates [8] to solve the discrete
system of equations (3.8).

Now we can see why we just need to extend the jumps to the irregular and sub-
irregular points. At a regular grid point where ϕij > 0, we have

−H(ϕij)∆hũij + ∆hûij = ∆hûij −∆hũij = ∆hũij −∆hũij = 0.

If ϕij < 0, we have ∆hûij = 0 and ∆hũij = 0 from the definition. Therefore the term
−H(ϕij)∆hũij + ∆hûij has no effect on the right hand side at regular grid points.

Below we discuss how to determine Cij in (3.8) at irregular grid points. Define

Fij = fij −H(ϕij)∆hũij . (3.9)

3Note that ũ and û are defined using the known jump conditions and they are not unknowns, so

we still use the lower case letters to represent them at grid points.
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We expect Fij + Cij to be a good approximation to ∆hqij = ∆h(uij − ûij). Without
the correction term (i.e. Cij = 0), then the finite difference scheme (3.8) is first order
accurate because the second order derivatives of q(x) are discontinuous. The jumps
in ∆q is reflected in the jump of Fij .

Let xij be an irregular grid point, the contribution to the correction term comes
from those of the four neighboring grid points that are in the other side of the interface
from the grid point xij . The correction term can be written as

Cij =
∑
ik,jk

H(−ϕi+ik,j+jk
ϕij) γi+ik,j+jk

(
ϕi+ik,j+jk

|∇ϕi+ik,j+jk
|
)2

Fi+ik,j+jk
− Fij

2
, (3.10)

where (ik, jk) = { (−1, 0), (1, 0), (0,−1), (0, 1) }, H(·) once again is the Heaviside
function4, and γi+ik,j+jk

is the coefficient of the discrete Laplacian ∆h corresponding
to Ui+ik,j+jk

. In polar coordinates, these coefficients are

γi±1,j =
1

(∆r)2
± 1

2ri∆r
, γi,j±1 =

1
(∆θ)2

. (3.11)

To show why we have the correction term (3.10), we introduce the following
lemmas.

Lemma 3.1. Let q(x) = u(x)− û(x), ∂2

∂n2 be the second order derivatives of q(x)
along the outer normal direction, and F (x) = f(x)−H(ϕ)∆ũ(x). Then we have

[
∂2q

∂n2

]
= [∆q] = [f −H(ϕ)∆ũ] = [F ] (3.12)

for any point on the interface Γ.

Proof: Since the Laplacian operator is invariant under orthogonal coordinates,
we have

∆q =
∂2q

∂n2
+

∂2q

∂τ2
= F.

From [q] = 0, [qn] = 0, and [qτ ] = 0 proved in Theorem 2.1, we can conclude that
[ ∂2q
∂τ2 ] = 0, which is derived in [9, 11] for the interface relations in the local coordinates.

Therefore we conclude

[∆q] = [F ] =
[

∂2q

∂n2

]
. 2

The following lemma is the basis for the correction terms.

Lemma 3.2. Let ϕ(x) ∈ C3 in the neighborhood of the zero level set ϕ(x) = 0, xij

be an irregular point with ϕij < 0 and ϕi+1,j > 0, and ũ(x) be well defined within

4In the discrete case, we define H(ϕ) = 1 if ϕ ≥ 0.
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two grid points from xij. Then we have

∆r
hq(xij)

define=
q(xi−1,j)− 2q(xij) + q(xi+1,j)

(∆r)2
+

1
ri

q(xi+1,j)− q(xi−1,j)
2∆r

=
∂2q

∂r2
(xij) +

1
ri

∂q

∂r
(xij) + γi+1,j

(
ϕi+1,j

|∇ϕi+1,j |
)2

Fi+1,j − Fij

2
.

(3.13)

Proof: Let X∗ be the projection of xi+1,j on the interface. Expanding ϕ(x) in
Taylor expansion at X∗, we get

0 = ϕ(X∗) = ϕ(xi+1,j) +∇ϕ(xi+1,j) · (X∗ − xi+1,j) + O
(
|xi+1,j −X∗|2

)
.

Since x∗ − xi+1,j is parallel to the normal direction n according to the definition of
the projection, and ϕi+1,j > 0, we get

|xi+1,j −X∗| = ϕ(xi+1,j)
|∇ϕ(xi+1,j)| + O

(
|xi+1,j −X∗|2

)
(3.14)

which is known to be an approximate distance between X∗ and xi+1,j . Now we expand
q(xi+1,j) in Taylor expansion at X∗ to get

q(xi+1,j) = q+(X∗) +∇q+(X∗) · (xi+1,j −X∗)

+
1
2

(xi+1,j −X∗)T
He(q+(X∗)) (xi+1,j −X∗) + O

(
|xi+1,j −X∗|3

)
,

where q+(X∗) is the limiting value of q(x) from the outer side of R and so forth, and
He(q+(X∗)) is the Hessian matrix of q(x) at X∗. Since

X∗ − xi+1,j

|X∗ − xi+1,j | = −n + O(h2),

from the continuity condition of q(x) and its derivative at X∗, we get

q(xi+1,j) = q−(X∗)− ∂q−(X∗)
∂n

|xi+1,j −X∗|+ 1
2
|xi+1,j −X∗|2 ∂2q−(X∗)

∂n2

+
1
2
|xi+1,j −X∗|2

[
∂2q(X∗)

∂n2

]
+ O(|xi+1,j −X∗|3).

Define the smooth extension of q−(x) from R− into R+ in the neighborhood of X∗

as

q−(x) = q−(X∗)− ∂q−(X∗)
∂n

|x−X∗|+ 1
2
|x−X∗|2 ∂2q−(X∗)

∂n2
.

We have

q(xi+1,j) = q−(xi+1,j) +
1
2
|xi+1,j −X∗|2

[
∂2q(X∗)

∂n2

]
+ O(|xi+1,j −X∗|3).
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Therefore

∆r
hq(xij) =

q(xi−1,j)− 2q(xij) + q(xi+1,j)
∆r2

+
1
ri

q(xi+1,j)− q(xi−1,j)
2∆r

=
q(xi−1,j)− 2q(xij) + q−(xi+1,j)

∆r2
+

1
ri

q−(xi+1,j)− q(xi−1,j)
2∆r

+ γi+1,j

(
1
2
|xi+1,j −X∗|2

[
∂2q(x∗)

∂n2

]
+ O(|xi+1,j −X∗|3)

)
.

Since q−(xi+1,j) is the extension of q−(x) from R− into R+, the first two terms
in the expression above are second order approximations to ∂2q

∂r2 (xij) and 1
ri

∂q
∂r (xij)

respectively. Therefore the expression above can also be written as

∆r
hq(xij) =

∂2q

∂r2
(xij) +

1
ri

∂q

∂r
(xij)

+ γi+1,j

(
1
2
|xi+1,j −X∗|2

[
∂2q(X∗)

∂n2

]
+ O(|xi+1,j −X∗|3)

)
.

(3.15)
Finally from (3.14) and Lemma 3.1, we have

1
2
|x−X∗|2

[
∂2q(X∗)

∂n2

]
=

1
2

(
ϕi+1,j

|∇ϕi+1,j |
)2 [

∂2q(X∗)
∂n2

]
+ O(|xi+1,j −X∗|3)

=
1
2

(
ϕi+1,j

|∇ϕi+1,j |
)2

[F (X∗)] + O(|xi+1,j −X∗|3)

=
1
2

(
ϕi+1,j

|∇ϕi+1,j |
)2

(Fi+1,j − Fij) + O(|xi+1,j −X∗|3),

where we have used (3.12), the fact that ϕi+1,j = O(|xi+1,j − X∗|), and
[F (X∗)] = Fi+1,j −Fij +O(|xi+1,j −X∗|). Plugging the expression above into (3.15),
we get the result of the lemma. 2

The last term in (3.13) in Lemma 3.2 is the contribution to the correction term
Cij from xi+1,j , if it is in the different side of the interface from the grid point
xij . Similarly, we can show the contributions to the correction term from the other
neighboring points if they are in the different side of the interface from xij .

With the correction term Cij , the finite difference scheme matches the differential
equation up to second order derivatives after the Taylor expansion at X∗. As a result,
the computed solution of (3.8) has global second order accuracy in the infinite norm,
see [13] for the analysis and Section 5 for the numerical results. If the extension is
exact, the method described in this section gives the exact solution if it is a piecewise
quadratic function.

Since the left hand side of the system of the finite difference equations (3.8) is the
standard discrete Laplacian in polar coordinates, the FFT-based fast Poisson solver
[8] or the one from Fishpack [1] can be applied directly. The main cost is the Poisson
solver which typically requires MN log(MN) operations. The cost in dealing with
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the interface is O(N1) where N1 is the total number of irregular and sub-irregular
grid points. Usually we have N1 ∼ max{M,N} which is one dimension lower than
the total number of grid points.

3.3. Computing the normal derivative. Quite often, we need to compute
not only the solution of the Poisson equation (2.1), but also the normal derivative of
the solution at the interface. With the new formulation, it can be done easily since
q(x) is smooth across the interface.

Because the level set function is defined everywhere, or at least in a tube |ϕ(x)| ≤ δ

that contains the interface, where δ is a given width, we can naturally define the
‘normal derivative’ at all grid points in the tube as

∂u

∂n
(x) = ∇u(x) · ∇ϕ(x)

|∇ϕ(x)| . (3.16)

Therefore we can get second order accurate ‘normal derivative’ at regular grid points
in the tube using the central differencing. In this section, we discuss how to compute
the normal derivative of the solution (2.1) at irregular grid points. This is one of
the crucial steps in the applications of the level set method in which the velocity is
calculated at the grid points. The scheme discussed here will also be used in sub-
section 4.4 to compute the normal derivative of the solution at the projections of
irregular grid points on the interface.

Since we assume that the level set function be in C3 in theory (C2 condition is
enough for the implementation) in the neighborhood of the interface, we can compute
∇ϕ/|∇ϕ| to second order accuracy using the centered differencing at all grid points
in the tube. It remains to evaluate (ur, uθ) to second order accuracy. Again, we take
advantage of the smooth property of q(x) with the following formula

∂Uij

∂r
≈




Ui+1,j − Ui−1,j

2∆r
− ûi+1,j − ûi−1,j

2∆r

+ H(ϕij)
ũi+1,j − ũi−1,j

2∆r
+ Cr

ij , if xij is irregular,

Ui+1,j − Ui−1,j

2∆r
, otherwise,

(3.17)

∂Uij

∂θ
≈




Ui,j+1 − Ui,j−1

2∆θ
− ûi,j+1 − ûi,j−1

2∆θ

+H(ϕij)
ũi,j+1 − ũi,j−1

2∆θ
+ Cθ

ij , if xij is irregular,

Ui,j+1 − Ui,j−1

2∆θ
, otherwise,

(3.18)
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where the correction term is

Cr
ij =

1
2∆r

H(−ϕi+1,j ϕij)
(

ϕi+1,j

|∇ϕi+1,j |
)2

Fi+1,j − Fij

2

− 1
2∆r

H(−ϕi−1,j ϕij)
(

ϕi−1,j

|∇ϕi−1,j |
)2

Fi−1,j − Fij

2
,

Cθ
ij =

1
2∆θ

H(−ϕi,j+1 ϕij)
(

ϕi,j+1

|∇ϕi,j+1|
)2

Fi,j+1 − Fij

2

− 1
2∆θ

H(−ϕi,j−1 ϕij)
(

ϕi,j−1

|∇ϕi,j−1|
)2

Fi,j−1 − Fij

2
.

(3.19)
The correction terms are needed to offset the discontinuity in the second order deriva-
tives of q(x). The reasoning is the same as discussed in sub-section 3.2.

4. The GMRES iteration for solving the interface problem B. In this
section, we consider the algorithm for solving the elliptic interface problem (1.3)-(1.5)
with β given by (1.4) (β+ 6= β−). Divided by the coefficient in each sub-domain of
R, the original problem can be written as

∆u =
f

β+
if x ∈ R+,

∆u =
f

β−
if x ∈ R−,

(4.1a)

u(x, y) = u0(x, y), on ∂R, (4.1b)

excluding the interface Γ. This is a Poisson equation which can be solved easily using
the algorithm discussed in the previous section if we know the jump in the solution
[u] = w(s) and the jump in the normal derivative [un]. However, the usual jump
condition is in the flux [βun] = v instead of [un]. We can not divide β from the
flux jump condition because β is discontinuous. In [12], we proposed a fast iterative
method for Cartesian grids. In this section, we describe a similar iterative method
in polar coordinates for (4.1a) with jump condition (1.5) using the new fast Poisson
solver and the new interpolation scheme described in Section 3.

As described in [12], the idea is to augment the unknown [un] = g(s) to the
original problem to have the following system

∆u =
f

β
, if x ∈ R+ ∪R− − Γ,

[u] = w(s), [βun] = v(s), [un] = g(s).
(4.2)

Note that g(s) is also an unknown. The system is still closed because of an additional
equation [un] = g(s).

In the discretization, we represent the unknown jump g(s) = [un] only at the
projections X∗

k (k = 1, 2, · · · , NΓ) of the irregular grid points from the ϕ ≥ 0 side,
where NΓ is the number of such projections. We call these points as the control points.
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The reason to choose the projections on one particular side is to avoid clustered control
points. The intermediate unknown jump g = [un] is defined at those control points
as G = [G1, G2, · · · , GNΓ ]T in the discretization. The dimension of G is much smaller
than that of the solution of U that is defined at all the grid points. Therefore we
use the GMRES method [19] to find the discrete intermediate unknown G. Once we
know g(s), we can solve (4.1a) with [u] = w(s) and [un] = g(s) using the new method
described in Section 3.

4.1. Setting-up the system of equations for G and computing the resid-
ual. There are two coupled equations for the unknown u(x) and g(s). The first
equation is the PDE ∆u = f(x)/β excluding the interface Γ with [u] = w(s) and
[un] = g(s) are given. The solution depends on g(s) and can be written as ug(x).
The second equation is the flux jump condition [β ∂ug

∂n ] = v(s). So there are two steps
discretizations:

• The system of the finite difference equations, which is obtained from the
algorithm discussed in Section 3 with given jumps [u] = w and [un] = g, can
be written as (in the matrix-vector form)

AU + BG = F + Fw = F1, . (4.3)

On (4.3), U is the vector formed from the approximation to u(x) at all grid
points, G is a discrete form of g(s) at the control points on the interface,
A is the matrix obtained from the standard discrete Laplacian in polar co-
ordinates, F is the vector formed from the source term; Fw is the part of
−H(ϕij)∆hũij +∆hûij +Cij in (3.8) corresponding to the jump [u] = w, and
−BG is the part of the term corresponding to the jump [un] = g. We will
not discuss the structures and properties of those matrices above and below
because they are never explicitly formed in our implementation. However,
they are useful in the theoretical discussions in this section.

• The discretization of the flux jump condition [βun] = v in terms of u, [u] = w,
and [un] = g using an interpolation scheme, can be written as

EU + DG = F2, (4.4)

where E, D, are two matrices. This is discussed in Section 4.4.

If we put the two systems (4.3) and (4.4) together, we get[
A B

E D

][
U

G

]
=

[
F1

F2

]
. (4.5)

Since the dimension of G, which is defined at the control points on the interface,
is much smaller than the dimension of U , which is defined at all grid points, it is
advantageous to focus on the Schur complement

(D − EA−1B)G = F2 − EA−1F1,

or SG = b, where S = D − EA−1B, b = F2 − EA−1F1

(4.6)
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for the unknown G. The Schur complement system can be solved using the GMRES
method [19]. Each iteration involves a call to the Poisson solver described in Section 3
to get U = A−1(F1 − BG), and an interpolation scheme of (4.4) for the flux jump
condition [βun] = v to get the residual vector

R(G) = (D −EA−1B)G− (
F2 − EA−1F1

)
= DG + EU − F2 (4.7)

of the Schur complement system.

Note that, if we take G = 0 in (4.7), then −R(0) = b is the right hand side of
the Schur complement system. Also the residual vector (4.7) is the same as R(G) =
β+U+

n (G) − β−U−n (G) − V , where U±n (G) is the vector whose components are the
approximation of the normal derivative ∂u±

∂n (X∗
k), computed with the given normal

jump G, and V is the vector whose components are v(X∗
k), k = 1, 2, · · · , NΓ, at the

control points.

4.2. An outline of the algorithm for solving the interface problem B.

• Set-up the grid (3.1).
• Label the grid points as regular, irregular, and sub-irregular.
• Find the projections of irregular and sub-irregular grid points.
• Set [u] = w, [un] = 0, and solve the Poisson equation (4.1a)-(4.1b). Evaluate

the residual (4.7) which gives the right hand side b for the equation (4.6).
• Set G0

k = v(X∗
k), k = 1, 2, · · · , NΓ, at the control points as an initial guess of

G.
• Use the GMRES method to solve the system of (4.6) with some pre-conditioning

techniques.

There are several important implementation details that are addressed at the
following subsections.

4.3. Interpolating G at projections that are not control points. In the
GMRES iteration, the unknown G is the intermediate jump in the normal derivative
defined only at the control points, that is, the projections of the irregular grid points
where ϕ ≥ 0. However, when we solve the Poisson problem (4.1a) and (4.1b) using the
algorithm described in Section 3, we need to know the jumps at all the projections
before extending them to all irregular and sub-irregular grid points. This is done
through the weighted least square interpolation [12]. At a projection X∗

k which is not
a control point, we use

Gk =
∑

p

γp Gp, (4.8)

to get an approximation of Gk from those Gp at the control points. The summation
include 3 ∼ 6 projections from the ϕ ≥ 0 side within a circle:

‖X∗
k −X∗

p‖2 ≤ ε.

In our experiment, we choose ε to be 2h ∼ 3h. The circle should enclose at least three
control points to ensure second order accuracy. If there are more than six control
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points in the circle, then we choose the six of them that are closer to X∗
k than the

others in the circle. The coefficients γp are obtained from the un-determined coefficient
method by expanding g(X∗

p) along the interface up to second order derivatives. The
least square solution of the under-determined system of equations for γp is solved
with the singular value decomposition (SVD), see Section 3.2 in [14] for the detailed
description of the interpolation scheme. Note that we have omitted the dependency
of p on the index k for simplification of notations.

4.4. Computing the residual of the Schur complement. In the GMRES
iteration, given a guess G, the matrix-vector multiplication involves two steps. The
first step is to solve the Laplace equation (4.1a)-(4.1b) to get U , the vector whose
components are the solution at all grid points. The second step is to compute the
residual vector R(G) in (4.7) which is the same as β+U+

n (G)− β−U−n (G)− V , where
again U±n (G) is the vector whose components are the approximation of the normal
derivative ∂u±

∂n (X∗
k), computed with the given normal jump G, Therefore we need to

compute each component of U+
n (G) and U−n (G) at those control points X∗

k.

Once again, it is easier to evaluate Q±n (G) because q(x) is smooth, where Q±n (G) is
the vector whose components are the approximation of the normal derivative ∂q±

∂n (X∗
k),

k = 1, 2, · · · , NΓ, at the control points. Once we have Q±n (G), we can get U±n (G) using
the relation u(x) = q(x) + û(x). We have already described how to evaluate (U±n )ij

at grid points in sub-section 3.3, which gives (Q±n )ij = (U±n )ij − ûij . Therefore we
can use an interpolation scheme to get (Q±n )k, the k-th component of vector (Q±n ),
from the values at nearby grid points. Since q+

n (X∗
k) = q−n (X∗

k), we can either use

(Q+
n )k =

∑
ij

γk
ij (Q+

n )ij , (4.9)

and set (Q−n )k = (Q+
n )k, or use

(Q−n )k =
∑
ij

γk
ij (Q−n )ij , (4.10)

and set (Q+
n )k = (Q−n )k. Due to the jumps in the second order derivatives of q(x),

the results obtained from (4.9) and (4.10) are slightly different. We will explain in
the next sub-section for the choice of the scheme. The summation is done through
the grid points in a neighborhood of X∗

k. We use the nine point stencil centered at
the irregular grid point whose projection is X∗

k for the interpolation. If ϕij < 0 and
xij is a regular grid point, then (Q+

n )ij = (Q−n )ij and it is evaluated using the central
finite difference scheme. If ϕij < 0 and xij is an irregular grid point, then (Q+

n )ij is
the extension of Q+

n from the outside of the interface:

(Q+
n )ij = (Q−n )ij + [F ]ij

ϕij

|∇ϕij | . (4.11)

Similarly, the extension from inside to outside grid point (ϕij > 0) is:

(Q−n )ij = (Q+
n )ij + [F ]ij

ϕij

|∇ϕij | . (4.12)

16



The discrete average jump [F ]ij at an irregular grid point is defined as

[F ]ij =

∑
i+ik,j+jk

H(−ϕi+ik,j+jk
ϕij) (Fi+ik,j+jk

− Fij)

∑
ik,jk

H(−ϕi+ik,j+jk
ϕij)

, (4.13)

where (ik, jk) = { (−1, 0), (1, 0), (0,−1), (0, 1) }, as we used earlier in (3.10). Note that
at an irregular grid point, the denominator can not be zero. Once we have computed
Q±n (X∗

k), the normal derivatives of the solution at X∗
k are then determined from

(U−n )k = (Q−n )k, (U+
n )k = (Q+

n )k + ûn(X∗
k). (4.14)

To determine the coefficients γk
ij , the un-determined coefficients method is once

again use. By expanding q(xij) at X∗
k up to second order derivatives for all nine-points

that are involved, we get the linear system of six equations for the nine unknowns γk
ij .

The under-determined linear system is solved by the singular value decomposition
(SVD) approach, see Section 4 in [12] for this least squares interpolation. One of the
advantages of such interpolation is that the magnitude of the coefficients can not be
very large regardless of the position of X∗

k. The total CPU time spent in dealing with
the interfaces usually is less than 5% of the total CPU time. The main cost is the
time used for the Poisson solver in polar coordinates.

4.5. The pre-conditioning Strategy. The iterative method described above
works for the interface problem B. But the number of iterations seems to grow linearly
with the mesh size, see Table 5.3. We believe this is because the flux jump condition
involves the normal derivative. Some pre-conditioning techniques are crucial to reduce
the number of iterations. Note that we do not form the iteration matrix of the
Schur complement system and many conventional pre-conditioning strategies based
on the structure of the coefficient matrix can not be applied. Our strategy of the pre-
conditioning is to enforce the flux jump condition during the iteration which seems
to work well. The pre-conditioning techniques that we have implemented are the
following:

if β+ ≤ β− : use




(Q+
n )k =

∑
ij

γk
ij (Q−n )ij , (U+

n )k = (Q+
n )k + ûn(X∗

k),

(U−n )k = (Q−n )k =
v(X∗

k)− β+Gk

β+ − β−
.

if β+ > β− : use




(U−n )k = (Q−n )k =
∑
ij

γk
ij (Q+

n )ij ,

(U+
n )k =

v(X∗
k)− β−Gk

β+ − β−
,

The second part of the pre-conditioning strategy is the same as in [12] to enforce the
flux jump condition, but the first part, which is discussed in the previous sub-section,
is new in this paper. The reasoning is simple, for example, if β− > β+, then it is
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likely that u− is flatter than u+ from the jump relation in the flux. Therefore u− and
q−n are likely to be more accurate than u+ and q+

n .

The computational cost of the algorithm described in this section is
O (k(MN log(MN) + N1)), where k is the number of iterations of the GMRES method
and N1 is the total number of irregular and sub-irregular grid points. Generally, the
extra time spent in dealing with the interface is less than 5% of the total CPU time.
The main cost is the Poisson solver at each iteration.

5. Numerical Examples. We have done intensive tests on the methods dis-
cussed in this paper. Most of experiments are done on Sun Ultra workstations. Our
computer codes5 have not been optimized and parallelized. However, all the numerical
results confirm second order accuracy for the solution and the normal derivative from
both sides of the interface in the infinity norm. The extra efforts spent on the inter-
face is only a small portion of the total machine time if we compute the interpolation
coefficients outside of the GMRES iteration.

In this section, we present our results for the interface

ϕ(r, θ) = r − (r0 + λ sin(ωθ)) , 0 ≤ r ≤ rmax, 0 ≤ θ < 2π, (5.1)

with different parameters. Note that ϕ depends on both r and θ.

5.1. An example in which β is a constant. Since any constant β can be
absorbed in the source term, we simply take β = 1. We present our results with the
interface

ϕ(r, θ) = r − (0.5 + 0.1 sin(4θ + π)) , 0 ≤ r ≤ 1, 0 ≤ θ < 2π. (5.2)

To check the order of accuracy, we use two non-linear functions:

u(r, θ) =

{
r4, if ϕ(r, θ) < 0,

r2 sin θ, if ϕ(r, θ) ≥ 0,
(5.3)

as the exact solution. Note that the solution depends on both r and θ. The source
term excluding the interface Γ is

f(r, θ) =

{
16 r2, if ϕ(r, θ) < 0,

3 sin θ, if ϕ(r, θ) > 0.
(5.4)

The Dirichlet boundary condition at rmax = 1, the jump in the solution and the
normal derivative are computed from the exact solution at the projections where
ϕ ≥ 0.

Table 5.1 lists the grid refinement analysis of the computed results. The error of
the computed projections is defined as

Ep = max
k
|re(θ∗k)− r∗k| (5.5)

5The code is available to public upon request.
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where (r∗k, θ∗k)’s, are computed projections of all irregular grid points, re(θ∗) is the
exact interface relation given by re(θ) = 0.5+0.1 sin(4θ+π). The error in the solution
Eu is defined as

Eu = max
0 ≤ i ≤ M

0 ≤ j ≤ N

|u(ri, θj)− Uij | . (5.6)

where Uij is the computed solution at the grid points.

The error of the normal derivatives are measured at two levels. Eun,g is the error
measured at all irregular grid points

Eun,g = max
(ri,θj) is irregular

|un(ri, θj)− (Un)ij | , (5.7)

while Eun,Γ is the error measured at all the projections of irregular grid points

Eun,Γ = max
(r∗k,θ∗k)

∣∣∣un(r∗k, θ∗k)− (Un)(r∗k,θ∗k)

∣∣∣ , (5.8)

where (Un)ij , (Un)(r∗k,θ∗k) are computed normal derivative at grid points and at the
projections respectively. At a projection, we compare both (U+

n )(r∗k,θ∗k) and (U−n )(r∗k,θ∗k)

with the exact normal derivatives from each side of the interface. The convergence
order rE(M) is defined as

rE(M) =
log(E(M)/E(2M))

log 2
. (5.9)

We see that the computed projections are third order accurate, the computed so-
lution, the normal derivative at grid points, the normal derivative at the projections
are all second order accurate.

Table 5.1

Numerical results and convergence analysis for singular sources with N = 2M , β− =

β+ = 1.

M Ep rp Eun,g run,g Eun,Γ run,Γ Eu ru

40 1.915 10−4 1.294 10−2 9.044 10−3 1.877 10−3

80 2.452 10−5 2.97 3.053 10−3 2.08 2.071 10−3 2.13 3.384 10−4 2.47
160 3.079 10−6 2.99 6.147 10−4 2.31 5.262 10−4 1.98 7.427 10−5 2.19
320 3.866 10−7 2.99 1.595 10−4 1.95 1.476 10−4 1.83 1.786 10−5 2.06
640 4.834 10−8 3.00 3.768 10−5 2.08 3.759 10−5 1.97 4.245 10−6 2.07

5.2. Numerical examples in which β is a piecewise constant. Now we
consider the case where β is discontinuous. First we present the grid refinement
analysis for the same exact solution as in the previous example. Therefore the solution
is independent of β. Now we use a more complicated interface

ϕ(r, θ) = r −
(

1
2

+
1
5

sin(5θ)
)

, 0 ≤ r ≤ 1, 0 ≤ θ < 2π, (5.10)
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see Fig. 5.1 (a). The source term now is

f(r, θ) =

{
16β− r2, if ϕ(r, θ) < 0,

3β+ sin θ, if ϕ(r, θ) > 0.
(5.11)

We normalize the PDE and the jump condition (1.3),(1.5) so that max{β−, β+ } = 1
by dividing the larger β from the PDE (1.3) and the second jump condition in (1.5).

Table 5.2

Numerical results and convergence analysis for discontinuous coefficient and singular

sources with N = 2M . The solution is independent of the coefficient β.

(a) β− = 10−3, β+ = 1.

M Ep Eun,g run,g Eun,Γ run,Γ Eu ru No.

40 3.828 10−3 0.1204 0.1746 4.099 10−2 10
80 4.565 10−4 3.147 10−2 1.94 4.857 10−2 1.85 9.972 10−3 2.04 8
160 8.954 10−5 4.292 10−3 2.87 1.815 10−2 1.42 1.551 10−3 2.69 8
320 1.035 10−5 1.448 10−3 1.58 2.503 10−3 2.86 2.628 10−4 2.56 5
640 1.247 10−6 1.716 10−4 3.08 5.608; 10−4 2.16 7.534 10−5 1.80 5

(b) β− = 1, β+ = 10−3.

M rp Eun,g run,g Eun,Γ run,Γ Eu ru No.

40 10.77 12.59 3.150 22
80 3.1 2.5425 2.08 2.5425 2.21 0.6301 2.21 16
160 2.4 1.066 10−2 7.89 3.628 10−2 6.23 2.701 10−3 7.86 7
320 3.1 3.217 10−3 1.73 4.198 10−3 3.11 8.041 10−4 1.75 7
640 3.1 1.013 10−3 1.67 1.075 10−3 1.64 2.043 10−4 1.98 6

In Table 5.2, we present the grid refinement analysis with large jump in the
coefficient β. The projection error is listed in the second column in Table 5.2 (a),
while the convergence rate is listed in the second column in Table 5.2 (b). Again we
see third order convergence. In Table 5.2 (a), the ratio of the β from different side
of the interface is ρ = β−/β+ = 10−3. It is ρ = 103 in Table 5.2 (b). In either of
the case, we can see the average convergence rates for the rest of the quantities are
quadratic. The number of iterations, or the number of calls to fast Poisson solver is
small (less than 10). It is actually decreasing as the mesh size increases. It is almost
the same for different ratio of β− and β+.

In Table 5.3, we present the grid refinement analysis with the solution dependent
of the coefficient β

u(r, θ) =




r4

β−
, if ϕ(r, θ) < 0

r2 sin θ

β+
, if ϕ(r, θ) ≥ 0.

(5.12)
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The source term is also adjusted accordingly. In Table 5.3, we show the grid refinement
analysis with two extreme ratios of β. The problem is harder because one of the
solution that is divided by the smaller β has large magnitude. We still observe second
order convergence for all the quantities. The number of GMRES iterations remains
small compared to the size of the problems and the large jump in the coefficient.

Table 5.3

Numerical results and convergence analysis for discontinuous coefficient and singular

sources with N = 2M for the solution that depends on β.

(a) β− = 10−3, β+ = 1. The last column is the number of iterations without the
pre-conditioning strategy described in Section. 4.5.

M Eun,g run,g Eun,Γ run,Γ Eu ru No. No.np

40 5.118 10−2 3.118 10−2 6.444; 10−2 12 21
80 1.261 10−2 2.02 1.126 10−2 1.50 1.546 10−2 2.06 12 22
160 1.615 10−3 2.97 3.335 10−3 1.75 2.853 10−3 2.44 13 21
320 3.798 10−4 2.09 7.267 10−4 2.20 5.720 10−4 2.32 14 26
640 8.295 10−5 2.20 1.428 10−4 2.35 1.541 10−4 1.89 9 33

(b) β− = 1, β+ = 10−3.

M Eun,g run,g Eun,Γ run,Γ Eu ru No.

40 1.934 10−2 1.373 10−1 1.772 10−3 27
80 8.445 10−3 1.20 4.316 10−2 1.67 2.635 10−4 2.75 18
160 2.172 10−3 1.96 1.853 10−2 1.22 7.565 10−5 1.80 22
320 7.661 10−4 1.50 1.895 10−3 3.29 2.374 10−5 1.67 19
640 1.612 10−4 2.25 5.740 10−4 1.72 4.654 10−6 2.35 22

In the last column of Table 5.3 (a), we show the number of iterations of the
iterative method without the pre-conditioning strategy described in Section 4.5. We
see the number of iterations is almost doubled and is growing. The accuracy is nearly
the same so there is no need to list it.

We also tested the convergence behavior when β+ is close to β−. The number of
iterations is small in this case. For example, when β+ = 1 and β− = 1.1 or vise versa,
only three or four iterations are needed. This is true for all the tested mesh sizes,
M = 40, 80, 160, 320, and 640.

For interface problems, the errors may not decrease monotonically, see [12] for the
analysis. Still, we see the average convergence rates for all quantities are quadratic.
Usually, the more complex of the interface, the more oscillatory of the errors. In
Table 5.4, we show the grid refinement analysis with a simpler interface (5.2). The
other parameters are β− = 1, β+ = 10−2, and the exact solution is defined in (5.12)
that depends on β. This test case is close to the tougher example in Table 5.3 (b). We
see the grid refinement analysis behaviors more like a regular non-interface problem
with the order of convergence approaches to number two more uniformly. Again the
number of GMRES iterations is small and decreasing slightly as the size of the mesh
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Fig. 5.1. (a) The domain r = 1 and the interface r = 0.5 + 0.2 sin(5θ) used in Table 5.2 and

Table 5.3. (b) The solution used for Table 5.1.

Table 5.4

Numerical results and convergence analysis for discontinuous coefficient and singular

sources with N = 2M , β− = 1, and β+ = 10−2. The interface is defined in (5.2) which has

smaller curvature than that of (5.10). The ratio in β, ρ = β−/β+ = 100, is also smaller

than that used in Table 5.2 and Table 5.3. As a result, the error behaviors more line a

non-interface problem with a more uniform convergence rate.

M Eun,g run,Γ Eun,Γ run,Γ Eu ru No.

40 5.952 10−4 1.064 10−3 3.104 10−2 12
80 1.227 10−4 2.28 3.238 10−4 1.72 8.499 10−3 1.87 13
160 2.441 10−5 2.33 9.488 10−5 1.77 2.417 10−3 1.81 11
320 4.746 10−6 2.36 2.434 10−5 1.96 5.882 10−4 2.04 9
640 7.853 10−7 2.60 6.083 10−6 2.00 1.461 10−4 2.01 9

As a final test, we check the effect of the regularity of the level set function ϕ(x)
on the accuracy of the computed solution. Theoretically, the second order accuracy
is guaranteed if ϕ(x) ∈ C3 in the neighborhood of the zero level set ϕ(x) = 0 which is
the interface. In implementation, the level set function just needs to be ϕ(x) ∈ C2 and
|∇ϕ(x)| 6= 0 near the interface. In experiments, we have found out that ϕ(x) ∈ C2 is
enough for second order accuracy. If ϕ(x) ∈ C1, the algorithm still works and seems
to have super-linear convergence, see Table 5.5. Ideally, the level set function should
be chosen as the signed distance function which satisfies |∇ϕ(x)| = 1. If a level set
function is not the signed distance function, then a re-initialization technique can
be applied to get the signed distance function while the interface is unchanged, see
[6, 17, 20].

In the test, the level set function is chosen as

ϕ(r, θ) =

{
r − 0.5, if r < 0.5,

r − 0.5 + (r − 0.5)l, if r ≥ 0.5,
(5.13)
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where l ≥ 1 is an integer. We see that ϕ(x) ∈ Cl−1 but not Cl. The interface is the
circle r = 0.5.

The exact solution is given in (5.12). The other parameters are β− = 1, β+ =
10−2. This test case is close to the tougher example in Table 5.3 (b). We see that
when l = 3, ϕ(x) ∈ C2, we have second order convergence. When l = 2, ϕ(x) ∈ C1,
the algorithm still works with a super-liner convergence. The accuracy is affected
by the computation of second order derivatives in ϕ(x). In all of cases, the number
of iterations is small because the interface is simple. Furthermore, the number of
iterations when l = 3 is slightly smaller than that when l = 2.

Table 5.5

Effect of the regularity of ϕ(x) on the fast iterative method for the interface problem B.

The parameters are N = 2M , β− = 1, and β+ = 10−2. The interface is defined in (5.13). In

the first three columns, l = 3 and ϕ(x) ∈ C2, we see clearly second order accuracy. In the

last three columns, l = 2 and ϕ(x) ∈ C1 but not in C2, the accuracy is affected.

M Eu, l = 3 ru, l = 3 No. l = 3 Eu, l = 2 ru, l = 2 No. l = 2

40 4.4608 10−3 10 5.4403 10−3 10
80 1.0608 10−3 2.0721 9 1.7050 10−3 1.6739 10
160 2.5915 10−4 2.0333 8 5.5425 10−4 1.6212 9
320 6.4062 10−5 2.0162 6 1.9660 10−4 1.4952 9
640 1.5920 10−5 2.0087 5 7.7421 10−5 1.3445 8

6. Conclusion. In this paper, we have proposed a new formulation that trans-
forms the certain interface problems with discontinuous/non-smooth solution to a
problem with a smooth solution. A second order scheme for the PDE and an inter-
polation scheme for the normal derivative are developed and tested for the interface
problems in polar coordinates. The method is easy to implement in both polar and
Cartesian coordinates. There is no need to differentiate the jumps along the interface
and use the local coordinates as the original IIM does. Coupled with the fast IIM
idea, we have also developed a second order fast iterative method for elliptic interface
problems with piecewise constant but discontinuous coefficient in polar coordinates.
The number of iterations of the method is almost independent of the mesh sizes and
the jumps in the coefficient.
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